{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE NoTypeSynonymInstances #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
--------------------------------------------------------------------------------
-- | Common data types for Xanthous ------------------------------------------------------------------------------
module Xanthous.Data
( Opposite(..)
-- *
, Position'(..)
, Position
, x
, y
-- **
, Positioned(..)
, _Positioned
, position
, positioned
, loc
, _Position
, positionFromPair
, positionFromV2
, addPositions
, diffPositions
, stepTowards
, isUnit
, distance
-- * Boxes
, Box(..)
, topLeftCorner
, bottomRightCorner
, setBottomRightCorner
, dimensions
, inBox
, boxIntersects
, boxCenter
, boxEdge
, module Linear.V2
-- * Unit math
, Scalar(..)
, Per(..)
, invertRate
, invertedRate
, (|+|)
, (|*|)
, (|/|)
, (:+:)
, (:*:)
, (:/:)
, (:**:)(..)
, Ticks(..)
, Tiles(..)
, TicksPerTile
, TilesPerTick
, timesTiles
, Square(..)
, squared
, Cubic(..)
, Grams
, Meters
, Uno(..)
, Unit(..)
, UnitSymbol(..)
-- *
, Dimensions'(..)
, Dimensions
, HasWidth(..)
, HasHeight(..)
-- *
, Direction(..)
, move
, asPosition
, directionOf
, Cardinal(..)
-- *
, Corner(..)
, Edge(..)
, cornerEdges
-- *
, Neighbors(..)
, edges
, neighborDirections
, neighborPositions
, neighborCells
, arrayNeighbors
, rotations
, HasTopLeft(..)
, HasTop(..)
, HasTopRight(..)
, HasLeft(..)
, HasRight(..)
, HasBottomLeft(..)
, HasBottom(..)
, HasBottomRight(..)
-- *
, Hitpoints(..)
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding (Left, Down, Right, (.=), elements)
--------------------------------------------------------------------------------
import Linear.V2 hiding (_x, _y)
import qualified Linear.V2 as L
import Linear.V4 hiding (_x, _y)
import Test.QuickCheck (CoArbitrary, Function, elements)
import Test.QuickCheck.Arbitrary.Generic
import Data.Group
import Brick (Location(Location), Edges(..))
import Data.Monoid (Product(..), Sum(..))
import Data.Array.IArray
import Data.Aeson.Generic.DerivingVia
import Data.Aeson
( ToJSON(..), FromJSON(..), object, (.=), (.:), withObject)
import Data.Random (Distribution)
import Data.Coerce
import Data.Proxy (Proxy(Proxy))
--------------------------------------------------------------------------------
import Xanthous.Util (EqEqProp(..), EqProp, between)
import Xanthous.Orphans ()
import Xanthous.Util.Graphics
import qualified Linear.Metric as Metric
--------------------------------------------------------------------------------
-- | opposite ∘ opposite ≡ id
class Opposite x where
opposite :: x -> x
--------------------------------------------------------------------------------
-- fromScalar ∘ scalar ≡ id
class Scalar a where
scalar :: a -> Double
fromScalar :: Double -> a
instance Scalar Double where
scalar = id
fromScalar = id
newtype ScalarIntegral a = ScalarIntegral a
deriving newtype (Eq, Ord, Num, Enum, Real, Integral)
instance Integral a => Scalar (ScalarIntegral a) where
scalar = fromIntegral
fromScalar = floor
deriving via (ScalarIntegral Integer) instance Scalar Integer
deriving via (ScalarIntegral Word) instance Scalar Word
-- | Units of measure
class Unit a where
unitSuffix :: Text
type UnitSymbol :: Symbol -> Type -> Type
newtype UnitSymbol suffix a = UnitSymbol a
instance KnownSymbol suffix => Unit (UnitSymbol suffix a) where
unitSuffix = pack $ symbolVal @suffix Proxy
newtype ShowUnitSuffix a b = ShowUnitSuffix a
instance (Show b, Unit a, Coercible a b) => Show (ShowUnitSuffix a b) where
show a = show (coerce @_ @b a) <> " " <> unpack (unitSuffix @a)
--------------------------------------------------------------------------------
data Position' a where
Position :: { _x :: a
, _y :: a
} -> (Position' a)
deriving stock (Show, Eq, Generic, Ord, Functor, Foldable, Traversable)
deriving anyclass (NFData, Hashable, CoArbitrary, Function)
deriving EqProp via EqEqProp (Position' a)
deriving (ToJSON, FromJSON)
via WithOptions '[ FieldLabelModifier '[Drop 1] ]
(Position' a)
x, y :: Lens' (Position' a) a
x = lens (\(Position xx _) -> xx) (\(Position _ yy) xx -> Position xx yy)
y = lens (\(Position _ yy) -> yy) (\(Position xx _) yy -> Position xx yy)
type Position = Position' Int
instance (Arg (Position' a) a, Arbitrary a) => Arbitrary (Position' a) where
arbitrary = genericArbitrary
shrink (Position px py) = Position <$> shrink px <*> shrink py
instance Num a => Semigroup (Position' a) where
(Position x₁ y₁) <> (Position x₂ y₂) = Position (x₁ + x₂) (y₁ + y₂)
instance Num a => Monoid (Position' a) where
mempty = Position 0 0
instance Num a => Group (Position' a) where
invert (Position px py) = Position (negate px) (negate py)
-- | Positions convert to scalars by discarding their orientation and just
-- measuring the length from the origin
instance (Ord a, Num a, Scalar a) => Scalar (Position' a) where
scalar = fromIntegral . length . line 0 . view _Position
fromScalar n = Position (fromScalar n) (fromScalar n)
data Positioned a where
Positioned :: Position -> a -> Positioned a
deriving stock (Show, Eq, Ord, Functor, Foldable, Traversable, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
type role Positioned representational
_Positioned :: Iso (Position, a) (Position, b) (Positioned a) (Positioned b)
_Positioned = iso hither yon
where
hither (pos, a) = Positioned pos a
yon (Positioned pos b) = (pos, b)
instance Arbitrary a => Arbitrary (Positioned a) where
arbitrary = Positioned <$> arbitrary <*> arbitrary
instance ToJSON a => ToJSON (Positioned a) where
toJSON (Positioned pos val) = object
[ "position" .= pos
, "data" .= val
]
instance FromJSON a => FromJSON (Positioned a) where
parseJSON = withObject "Positioned" $ \obj ->
Positioned <$> obj .: "position" <*> obj .: "data"
position :: Lens' (Positioned a) Position
position = lens
(\(Positioned pos _) -> pos)
(\(Positioned _ a) pos -> Positioned pos a)
positioned :: Lens (Positioned a) (Positioned b) a b
positioned = lens
(\(Positioned _ x') -> x')
(\(Positioned pos _) x' -> Positioned pos x')
loc :: Iso' Position Location
loc = iso hither yon
where
hither (Position px py) = Location (px, py)
yon (Location (lx, ly)) = Position lx ly
_Position :: Iso' (Position' a) (V2 a)
_Position = iso hither yon
where
hither (Position px py) = V2 px py
yon (V2 lx ly) = Position lx ly
positionFromPair :: (Num a, Integral i, Integral j) => (i, j) -> Position' a
positionFromPair (i, j) = Position (fromIntegral i) (fromIntegral j)
positionFromV2 :: (Num a, Integral i) => V2 i -> Position' a
positionFromV2 (V2 xx yy) = Position (fromIntegral xx) (fromIntegral yy)
-- | Add two positions
--
-- Operation for the additive group on positions
addPositions :: Num a => Position' a -> Position' a -> Position' a
addPositions = (<>)
-- | Subtract two positions.
--
-- diffPositions pos₁ pos₂ = pos₁ `addPositions` (invert pos₂)
diffPositions :: Num a => Position' a -> Position' a -> Position' a
diffPositions (Position x₁ y₁) (Position x₂ y₂) = Position (x₁ - x₂) (y₁ - y₂)
-- | Is this position a unit position? or: When taken as a difference, does this
-- position represent a step of one tile?
--
-- ∀ dir :: Direction. isUnit ('asPosition' dir)
isUnit :: (Eq a, Num a) => Position' a -> Bool
isUnit (Position px py) =
abs px `elem` [0,1] && abs py `elem` [0, 1] && (px, py) /= (0, 0)
--------------------------------------------------------------------------------
data Dimensions' a = Dimensions
{ _width :: a
, _height :: a
}
deriving stock (Show, Eq, Functor, Generic)
deriving anyclass (CoArbitrary, Function)
makeFieldsNoPrefix ''Dimensions'
instance Arbitrary a => Arbitrary (Dimensions' a) where
arbitrary = Dimensions <$> arbitrary <*> arbitrary
type Dimensions = Dimensions' Word
--------------------------------------------------------------------------------
data Direction where
Up :: Direction
Down :: Direction
Left :: Direction
Right :: Direction
UpLeft :: Direction
UpRight :: Direction
DownLeft :: Direction
DownRight :: Direction
Here :: Direction
deriving stock (Show, Eq, Ord, Generic)
deriving anyclass (CoArbitrary, Function, NFData, ToJSON, FromJSON, Hashable)
deriving via (GenericArbitrary Direction) instance Arbitrary Direction
instance Opposite Direction where
opposite Up = Down
opposite Down = Up
opposite Left = Right
opposite Right = Left
opposite UpLeft = DownRight
opposite UpRight = DownLeft
opposite DownLeft = UpRight
opposite DownRight = UpLeft
opposite Here = Here
move :: Num a => Direction -> Position' a -> Position' a
move Up = y -~ 1
move Down = y +~ 1
move Left = x -~ 1
move Right = x +~ 1
move UpLeft = move Up . move Left
move UpRight = move Up . move Right
move DownLeft = move Down . move Left
move DownRight = move Down . move Right
move Here = id
asPosition :: Direction -> Position
asPosition dir = move dir mempty
-- | Returns the direction that a given position is from a given source position
directionOf
:: Position -- ^ Source
-> Position -- ^ Target
-> Direction
directionOf (Position x₁ y₁) (Position x₂ y₂) =
case (x₁ `compare` x₂, y₁ `compare` y₂) of
(EQ, EQ) -> Here
(EQ, LT) -> Down
(EQ, GT) -> Up
(LT, EQ) -> Right
(GT, EQ) -> Left
(LT, LT) -> DownRight
(GT, LT) -> DownLeft
(LT, GT) -> UpRight
(GT, GT) -> UpLeft
-- | Take one (potentially diagonal) step towards the given position
--
-- ∀ src tgt. isUnit (src `diffPositions` (src `stepTowards tgt`))
stepTowards
:: Position -- ^ Source
-> Position -- ^ Target
-> Position
stepTowards (view _Position -> p₁) (view _Position -> p₂)
| p₁ == p₂ = _Position # p₁
| otherwise =
let (_:p:_) = line p₁ p₂
in _Position # p
-- | Newtype controlling arbitrary generation to only include cardinal
-- directions ('Up', 'Down', 'Left', 'Right')
newtype Cardinal = Cardinal { getCardinal :: Direction }
deriving stock (Eq, Show, Ord, Generic)
deriving anyclass (NFData, Function, CoArbitrary)
deriving newtype (Opposite)
instance Arbitrary Cardinal where
arbitrary = Cardinal <$> elements [Up, Down, Left, Right]
--------------------------------------------------------------------------------
data Corner
= TopLeft
| TopRight
| BottomLeft
| BottomRight
deriving stock (Show, Eq, Ord, Enum, Bounded, Generic)
deriving Arbitrary via GenericArbitrary Corner
instance Opposite Corner where
opposite TopLeft = BottomRight
opposite TopRight = BottomLeft
opposite BottomLeft = TopRight
opposite BottomRight = TopLeft
data Edge
= TopEdge
| LeftEdge
| RightEdge
| BottomEdge
deriving stock (Show, Eq, Ord, Enum, Bounded, Generic)
deriving Arbitrary via GenericArbitrary Edge
instance Opposite Edge where
opposite TopEdge = BottomEdge
opposite BottomEdge = TopEdge
opposite LeftEdge = RightEdge
opposite RightEdge = LeftEdge
cornerEdges :: Corner -> (Edge, Edge)
cornerEdges TopLeft = (TopEdge, LeftEdge)
cornerEdges TopRight = (TopEdge, RightEdge)
cornerEdges BottomLeft = (BottomEdge, LeftEdge)
cornerEdges BottomRight = (BottomEdge, RightEdge)
--------------------------------------------------------------------------------
data Neighbors a = Neighbors
{ _topLeft
, _top
, _topRight
, _left
, _right
, _bottomLeft
, _bottom
, _bottomRight :: a
}
deriving stock (Show, Eq, Ord, Functor, Foldable, Traversable, Generic)
deriving anyclass (NFData, CoArbitrary, Function, MonoFoldable)
deriving via (GenericArbitrary (Neighbors a)) instance (Arg (Neighbors a) a, Arbitrary a) => Arbitrary (Neighbors a)
type instance Element (Neighbors a) = a
makeFieldsNoPrefix ''Neighbors
instance Applicative Neighbors where
pure α = Neighbors
{ _topLeft = α
, _top = α
, _topRight = α
, _left = α
, _right = α
, _bottomLeft = α
, _bottom = α
, _bottomRight = α
}
nf <*> nx = Neighbors
{ _topLeft = nf ^. topLeft $ nx ^. topLeft
, _top = nf ^. top $ nx ^. top
, _topRight = nf ^. topRight $ nx ^. topRight
, _left = nf ^. left $ nx ^. left
, _right = nf ^. right $ nx ^. right
, _bottomLeft = nf ^. bottomLeft $ nx ^. bottomLeft
, _bottom = nf ^. bottom $ nx ^. bottom
, _bottomRight = nf ^. bottomRight $ nx ^. bottomRight
}
edges :: Neighbors a -> Edges a
edges neighs = Edges
{ eTop = neighs ^. top
, eBottom = neighs ^. bottom
, eLeft = neighs ^. left
, eRight = neighs ^. right
}
neighborDirections :: Neighbors Direction
neighborDirections = Neighbors
{ _topLeft = UpLeft
, _top = Up
, _topRight = UpRight
, _left = Left
, _right = Right
, _bottomLeft = DownLeft
, _bottom = Down
, _bottomRight = DownRight
}
neighborPositions :: Num a => Position' a -> Neighbors (Position' a)
neighborPositions pos = (`move` pos) <$> neighborDirections
neighborCells :: Num a => V2 a -> Neighbors (V2 a)
neighborCells = map (view _Position) . neighborPositions . review _Position
arrayNeighbors
:: (IArray a e, Ix i, Num i)
=> a (V2 i) e
-> V2 i
-> Neighbors (Maybe e)
arrayNeighbors arr center = arrLookup <$> neighborPositions (_Position # center)
where
arrLookup (view _Position -> pos)
| inRange (bounds arr) pos = Just $ arr ! pos
| otherwise = Nothing
-- | Returns a list of all 4 90-degree rotations of the given neighbors
rotations :: Neighbors a -> V4 (Neighbors a)
rotations orig@(Neighbors tl t tr l r bl b br) = V4
orig -- tl t tr
-- l r
-- bl b br
(Neighbors bl l tl b t br r tr) -- bl l tl
-- b t
-- br r tr
(Neighbors br b bl r l tr t tl) -- br b bl
-- r l
-- tr t tl
(Neighbors tr r br t b tl l bl) -- tr r br
-- t b
-- tl l bl
--------------------------------------------------------------------------------
newtype Per a b = Rate Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON)
via Double
deriving (Semigroup, Monoid) via Product Double
deriving Show via ShowUnitSuffix (Per a b) Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Per a b)
instance (Unit a, Unit b) => Unit (a `Per` b) where
unitSuffix = unitSuffix @a <> "/" <> unitSuffix @b
invertRate :: a `Per` b -> b `Per` a
invertRate (Rate p) = Rate $ 1 / p
invertedRate :: Iso (a `Per` b) (b' `Per` a') (b `Per` a) (a' `Per` b')
invertedRate = iso invertRate invertRate
type (:+:) :: Type -> Type -> Type
type family (:+:) a b where
a :+: a = a
a :+: (Uno b) = a
infixl 6 |+|
class AddUnit a b where
(|+|) :: a -> b -> a :+: b
instance Scalar a => AddUnit a a where
x' |+| y' = fromScalar $ scalar x' + scalar y'
instance (Scalar a, Scalar b) => AddUnit a (Uno b) where
x' |+| y' = fromScalar $ scalar x' + scalar y'
type (:*:) :: Type -> Type -> Type
type family (:*:) a b where
(a `Per` b) :*: b = a
(Square a) :*: a = Cubic a
a :*: a = Square a
a :*: Uno b = a
a :*: b = a :**: b
infixl 7 |*|
class MulUnit a b where
(|*|) :: a -> b -> a :*: b
instance (Scalar a, Scalar b) => MulUnit (a `Per` b) b where
(Rate rate) |*| b = fromScalar $ rate * scalar b
instance forall a. (Scalar a, a :*: a ~ Square a) => MulUnit a a where
x' |*| y' = Square @a . fromScalar $ scalar x' * scalar y'
instance forall a. (Scalar a) => MulUnit (Square a) a where
x' |*| y' = Cubic @a . fromScalar $ scalar x' * scalar y'
instance {-# INCOHERENT #-} forall a b.
(Scalar a, Scalar b, Scalar (a :*: Uno b))
=> MulUnit a (Uno b) where
x' |*| y' = fromScalar $ scalar x' * scalar y'
type (:/:) :: Type -> Type -> Type
type family (:/:) a b where
(Square a) :/: a = a
(Cubic a) :/: a = Square a
(Cubic a) :/: (Square a) = a
(a :**: b) :/: b = a
(a :**: b) :/: a = b
a :/: Uno b = a
a :/: b = a `Per` b
infixl 7 |/|
class DivUnit a b where
(|/|) :: a -> b -> a :/: b
instance Scalar a => DivUnit (Square a) a where
(Square a) |/| b = fromScalar $ scalar a / scalar b
instance Scalar a => DivUnit (Cubic a) a where
(Cubic a) |/| b = fromScalar $ scalar a / scalar b
instance (Scalar a, Cubic a :/: Square a ~ a)
=> DivUnit (Cubic a) (Square a) where
(Cubic a) |/| (Square b) = fromScalar $ scalar a / scalar b
instance (Scalar a, Scalar b) => DivUnit (a :**: b) b where
(Times a) |/| b = fromScalar $ scalar a / scalar b
instance (Scalar a, Scalar b) => DivUnit (a :**: b) a where
(Times a) |/| b = fromScalar $ scalar a / scalar b
instance {-# INCOHERENT #-} forall a b.
(Scalar a, Scalar b, Scalar (a :/: Uno b))
=> DivUnit a (Uno b) where
x' |/| y' = fromScalar $ scalar x' / scalar y'
-- | Dimensionless quantitites (mass per unit mass, radians, etc)
--
-- see <https://en.wikipedia.org/wiki/Parts-per_notation#Uno>
newtype Uno a = Uno a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar, Show
)
via a
deriving Unit via UnitSymbol "" (Uno a)
newtype Square a = Square a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar
)
via a
deriving via (a :: Type)
instance ( Distribution d a
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Square a)
instance Unit a => Unit (Square a) where
unitSuffix = unitSuffix @a <> "²"
instance Show a => Show (Square a) where
show (Square n) = show n <> "²"
squared :: (Scalar a, a :*: a ~ Square a) => a -> Square a
squared v = v |*| v
newtype Cubic a = Cubic a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar
)
via a
deriving via (a :: Type)
instance ( Distribution d a
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Cubic a)
instance Unit a => Unit (Cubic a) where
unitSuffix = unitSuffix @a <> "³"
instance Show a => Show (Cubic a) where
show (Cubic n) = show n <> "³"
newtype (:**:) a b = Times Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON)
via Double
deriving (Semigroup, Monoid) via Sum Double
deriving Show via ShowUnitSuffix (a :**: b) Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (a :**: b)
instance (Unit a, Unit b) => Unit (a :**: b) where
unitSuffix = unitSuffix @a <> " " <> unitSuffix @b
--------------------------------------------------------------------------------
newtype Ticks = Ticks Word
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Num, Ord, Bounded, Enum, Integral, Real, ToJSON, FromJSON) via Word
deriving (Semigroup, Monoid) via (Sum Word)
deriving Scalar via ScalarIntegral Ticks
deriving Arbitrary via GenericArbitrary Ticks
deriving Unit via UnitSymbol "ticks" Ticks
deriving Show via ShowUnitSuffix Ticks Word
deriving via Word
instance ( Distribution d Word
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d Ticks
newtype Tiles = Tiles Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Num, Ord, Enum, Real, ToJSON, FromJSON, Scalar) via Double
deriving (Semigroup, Monoid) via (Sum Double)
deriving Arbitrary via GenericArbitrary Tiles
deriving Unit via UnitSymbol "m" Tiles
deriving Show via ShowUnitSuffix Tiles Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d Tiles
type TicksPerTile = Ticks `Per` Tiles
type TilesPerTick = Tiles `Per` Ticks
timesTiles :: TicksPerTile -> Tiles -> Ticks
timesTiles = (|*|)
-- | Calculate the (cartesian) distance between two 'Position's, floored and
-- represented as a number of 'Tile's
--
-- Note that this is imprecise, and may be different than the length of a
-- bresenham's line between the points
distance :: Position -> Position -> Tiles
distance
= (fromScalar .) . (Metric.distance `on` (fmap fromIntegral . view _Position))
--------------------------------------------------------------------------------
newtype Hitpoints = Hitpoints Word
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Bounded, Enum, Integral, Real, Scalar
, ToJSON, FromJSON
)
via Word
deriving (Semigroup, Monoid) via Sum Word
deriving Unit via UnitSymbol "hp" Hitpoints
deriving Show via ShowUnitSuffix Hitpoints Word
--------------------------------------------------------------------------------
-- | Grams, the fundamental measure of weight in Xanthous.
newtype Grams = Grams Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Floating, Fractional, RealFloat
, RealFrac, Scalar, ToJSON, FromJSON
)
via Double
deriving (Semigroup, Monoid) via Sum Double
deriving Unit via UnitSymbol "g" Grams
deriving Show via ShowUnitSuffix Grams Double
-- | Every tile is 1 meter
type Meters = Tiles
--------------------------------------------------------------------------------
data Box a = Box
{ _topLeftCorner :: V2 a
, _dimensions :: V2 a
}
deriving stock (Show, Eq, Ord, Functor, Generic)
makeFieldsNoPrefix ''Box
-- It seems to be necessary to have an `Arg (V2 a) a` constraint, as a is passed
-- to V2 internally, in order to make GHC figure out this deriving via correctly.
deriving via (GenericArbitrary (Box a)) instance (Arg (V2 a) a, Arbitrary a) => Arbitrary (Box a)
bottomRightCorner :: Num a => Box a -> V2 a
bottomRightCorner box =
V2 (box ^. topLeftCorner . L._x + box ^. dimensions . L._x)
(box ^. topLeftCorner . L._y + box ^. dimensions . L._y)
setBottomRightCorner :: (Num a, Ord a) => Box a -> V2 a -> Box a
setBottomRightCorner box br@(V2 brx bry)
| brx < box ^. topLeftCorner . L._x || bry < box ^. topLeftCorner . L._y
= box & topLeftCorner .~ br
& dimensions . L._x .~ ((box ^. topLeftCorner . L._x) - brx)
& dimensions . L._y .~ ((box ^. topLeftCorner . L._y) - bry)
| otherwise
= box & dimensions . L._x .~ (brx - (box ^. topLeftCorner . L._x))
& dimensions . L._y .~ (bry - (box ^. topLeftCorner . L._y))
inBox :: (Ord a, Num a) => Box a -> V2 a -> Bool
inBox box pt = flip all [L._x, L._y] $ \component ->
between (box ^. topLeftCorner . component)
(box ^. to bottomRightCorner . component)
(pt ^. component)
boxIntersects :: (Ord a, Num a) => Box a -> Box a -> Bool
boxIntersects box₁ box₂
= any (inBox box₁) [box₂ ^. topLeftCorner, bottomRightCorner box₂]
boxCenter :: (Fractional a) => Box a -> V2 a
boxCenter box = V2 cx cy
where
cx = box ^. topLeftCorner . L._x + (box ^. dimensions . L._x / 2)
cy = box ^. topLeftCorner . L._y + (box ^. dimensions . L._y / 2)
boxEdge :: (Enum a, Num a) => Box a -> Edge -> [V2 a]
boxEdge box LeftEdge =
V2 (box ^. topLeftCorner . L._x)
<$> [box ^. topLeftCorner . L._y .. box ^. to bottomRightCorner . L._y]
boxEdge box RightEdge =
V2 (box ^. to bottomRightCorner . L._x)
<$> [box ^. to bottomRightCorner . L._y .. box ^. to bottomRightCorner . L._y]
boxEdge box TopEdge =
flip V2 (box ^. topLeftCorner . L._y)
<$> [box ^. topLeftCorner . L._x .. box ^. to bottomRightCorner . L._x]
boxEdge box BottomEdge =
flip V2 (box ^. to bottomRightCorner . L._y)
<$> [box ^. topLeftCorner . L._x .. box ^. to bottomRightCorner . L._x]