about summary refs log tree commit diff
path: root/users/Profpatsch/my-prelude/src/MyPrelude.hs
blob: 880983c47e92ef09966d6a2fcd06e214aaad5905 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
{-# LANGUAGE ImplicitParams #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ViewPatterns #-}

module MyPrelude
  ( -- * Text conversions
    Text,
    ByteString,
    Word8,
    fmt,
    textToString,
    stringToText,
    stringToBytesUtf8,
    showToText,
    textToBytesUtf8,
    textToBytesUtf8Lazy,
    bytesToTextUtf8,
    bytesToTextUtf8Lazy,
    bytesToTextUtf8Lenient,
    bytesToTextUtf8LenientLazy,
    bytesToTextUtf8Unsafe,
    bytesToTextUtf8UnsafeLazy,
    toStrict,
    toLazy,
    toStrictBytes,
    toLazyBytes,
    charToWordUnsafe,

    -- * IO
    putStrLn,
    putStderrLn,
    exitWithMessage,

    -- * WIP code
    todo,

    -- * Records
    HasField,

    -- * Control flow
    doAs,
    (&),
    (<&>),
    (<|>),
    foldMap1,
    foldMap',
    join,
    when,
    unless,
    guard,
    ExceptT (..),
    runExceptT,
    MonadThrow,
    throwM,
    MonadIO,
    liftIO,
    MonadReader,
    asks,
    Bifunctor,
    first,
    second,
    bimap,
    both,
    foldMap,
    fold,
    foldl',
    fromMaybe,
    mapMaybe,
    findMaybe,
    Traversable,
    for,
    for_,
    traverse,
    traverse_,
    traverseFold,
    traverseFold1,
    traverseFoldDefault,
    MonadTrans,
    lift,

    -- * Data types
    Coercible,
    coerce,
    Proxy (Proxy),
    Map,
    annotate,
    Validation (Success, Failure),
    failure,
    successes,
    failures,
    traverseValidate,
    traverseValidateM,
    traverseValidateM_,
    eitherToValidation,
    eitherToListValidation,
    validationToEither,
    These (This, That, These),
    eitherToThese,
    eitherToListThese,
    validationToThese,
    thenThese,
    thenValidate,
    thenValidateM,
    NonEmpty ((:|)),
    pattern IsEmpty,
    pattern IsNonEmpty,
    singleton,
    nonEmpty,
    nonEmptyDef,
    overNonEmpty,
    zipNonEmpty,
    zipWithNonEmpty,
    zip3NonEmpty,
    zipWith3NonEmpty,
    zip4NonEmpty,
    toList,
    lengthNatural,
    maximum1,
    minimum1,
    maximumBy1,
    minimumBy1,
    Vector,
    Generic,
    Lift,
    Semigroup,
    sconcat,
    Monoid,
    mconcat,
    ifTrue,
    ifExists,
    Void,
    absurd,
    Identity (Identity, runIdentity),
    Natural,
    intToNatural,
    Scientific,
    Contravariant,
    contramap,
    (>$<),
    (>&<),
    Profunctor,
    dimap,
    lmap,
    rmap,
    Semigroupoid,
    Category,
    (>>>),
    (&>>),
    Any,

    -- * Enum definition
    inverseFunction,
    inverseMap,
    enumerateAll,

    -- * Map helpers
    mapFromListOn,
    mapFromListOnMerge,

    -- * Error handling
    HasCallStack,
    module Data.Error,
  )
where

import Control.Applicative ((<|>))
import Control.Category (Category, (>>>))
import Control.Foldl.NonEmpty qualified as Foldl1
import Control.Monad (guard, join, unless, when)
import Control.Monad.Catch (MonadThrow (throwM))
import Control.Monad.Except
  ( ExceptT (..),
    runExceptT,
  )
import Control.Monad.IO.Class (MonadIO, liftIO)
import Control.Monad.Identity (Identity (Identity))
import Control.Monad.Reader (MonadReader, asks)
import Control.Monad.Trans (MonadTrans (lift))
import Data.Bifunctor (Bifunctor, bimap, first, second)
import Data.ByteString
  ( ByteString,
  )
import Data.ByteString.Lazy qualified
import Data.Char qualified
import Data.Coerce (Coercible, coerce)
import Data.Data (Proxy (Proxy))
import Data.Error
import Data.Foldable (Foldable (foldMap', toList), fold, foldl', for_, sequenceA_, traverse_)
import Data.Foldable qualified as Foldable
import Data.Function ((&))
import Data.Functor ((<&>))
import Data.Functor.Contravariant (Contravariant (contramap), (>$<))
import Data.Functor.Identity (Identity (runIdentity))
import Data.List (zip4)
import Data.List.NonEmpty (NonEmpty ((:|)), nonEmpty)
import Data.List.NonEmpty qualified as NonEmpty
import Data.Map.Strict
  ( Map,
  )
import Data.Map.Strict qualified as Map
import Data.Maybe (fromMaybe, mapMaybe)
import Data.Maybe qualified as Maybe
import Data.Profunctor (Profunctor, dimap, lmap, rmap)
import Data.Scientific (Scientific)
import Data.Semigroup (sconcat)
import Data.Semigroup.Foldable (Foldable1 (fold1), foldMap1)
import Data.Semigroup.Traversable (Traversable1)
import Data.Semigroupoid (Semigroupoid (o))
import Data.Text
  ( Text,
  )
import Data.Text qualified
import Data.Text.Encoding qualified
import Data.Text.Encoding.Error qualified
import Data.Text.Lazy qualified
import Data.Text.Lazy.Encoding qualified
import Data.These (These (That, These, This))
import Data.Traversable (for)
import Data.Vector (Vector)
import Data.Void (Void, absurd)
import Data.Word (Word8)
import GHC.Exception (errorCallWithCallStackException)
import GHC.Exts (Any, RuntimeRep, TYPE, raise#)
import GHC.Generics (Generic)
import GHC.Natural (Natural)
import GHC.Records (HasField)
import GHC.Stack (HasCallStack)
import GHC.Utils.Encoding qualified as GHC
import Language.Haskell.TH.Syntax (Lift)
import PyF (fmt)
import System.Exit qualified
import System.IO qualified
import Validation
  ( Validation (Failure, Success),
    eitherToValidation,
    failure,
    failures,
    successes,
    validationToEither,
  )

-- | Mark a `do`-block with the type of the Monad/Applicativ it uses.
-- Only intended for reading ease and making code easier to understand,
-- especially do-blocks that use unconventional monads (like Maybe or List).
--
-- Example:
--
-- @
-- doAs @Maybe $ do
--  a <- Just 'a'
--  b <- Just 'b'
--  pure (a, b)
-- @
doAs :: forall m a. m a -> m a
doAs = id

-- | Forward-applying 'contramap', like '&'/'$' and '<&>'/'<$>' but for '>$<'.
(>&<) :: (Contravariant f) => f b -> (a -> b) -> f a
(>&<) = flip contramap

infixl 5 >&<

-- | Forward semigroupoid application. The same as '(>>>)', but 'Semigroupoid' is not a superclass of 'Category' (yet).
--
-- Specialized examples:
--
-- @
-- for functions : (a -> b) -> (b -> c) -> (a -> c)
-- for Folds: Fold a b -> Fold b c -> Fold a c
-- @
(&>>) :: (Semigroupoid s) => s a b -> s b c -> s a c
(&>>) = flip Data.Semigroupoid.o

-- like >>>
infixr 1 &>>

-- | encode a Text to a UTF-8 encoded Bytestring
textToBytesUtf8 :: Text -> ByteString
textToBytesUtf8 = Data.Text.Encoding.encodeUtf8

-- | encode a lazy Text to a UTF-8 encoded lazy Bytestring
textToBytesUtf8Lazy :: Data.Text.Lazy.Text -> Data.ByteString.Lazy.ByteString
textToBytesUtf8Lazy = Data.Text.Lazy.Encoding.encodeUtf8

bytesToTextUtf8 :: ByteString -> Either Error Text
bytesToTextUtf8 = first exceptionToError . Data.Text.Encoding.decodeUtf8'

bytesToTextUtf8Lazy :: Data.ByteString.Lazy.ByteString -> Either Error Data.Text.Lazy.Text
bytesToTextUtf8Lazy = first exceptionToError . Data.Text.Lazy.Encoding.decodeUtf8'

-- | decode a Text from a ByteString that is assumed to be UTF-8 (crash if that is not the case)
bytesToTextUtf8Unsafe :: ByteString -> Text
bytesToTextUtf8Unsafe = Data.Text.Encoding.decodeUtf8

-- | decode a Text from a ByteString that is assumed to be UTF-8 (crash if that is not the case)
bytesToTextUtf8UnsafeLazy :: Data.ByteString.Lazy.ByteString -> Data.Text.Lazy.Text
bytesToTextUtf8UnsafeLazy = Data.Text.Lazy.Encoding.decodeUtf8

-- | decode a Text from a ByteString that is assumed to be UTF-8,
-- replace non-UTF-8 characters with the replacment char U+FFFD.
bytesToTextUtf8Lenient :: Data.ByteString.ByteString -> Data.Text.Text
bytesToTextUtf8Lenient =
  Data.Text.Encoding.decodeUtf8With Data.Text.Encoding.Error.lenientDecode

-- | decode a lazy Text from a lazy ByteString that is assumed to be UTF-8,
-- replace non-UTF-8 characters with the replacment char U+FFFD.
bytesToTextUtf8LenientLazy :: Data.ByteString.Lazy.ByteString -> Data.Text.Lazy.Text
bytesToTextUtf8LenientLazy =
  Data.Text.Lazy.Encoding.decodeUtf8With Data.Text.Encoding.Error.lenientDecode

-- | Make a lazy 'Text' strict.
toStrict :: Data.Text.Lazy.Text -> Text
toStrict = Data.Text.Lazy.toStrict

-- | Make a strict 'Text' lazy.
toLazy :: Text -> Data.Text.Lazy.Text
toLazy = Data.Text.Lazy.fromStrict

-- | Make a lazy 'ByteString' strict.
toStrictBytes :: Data.ByteString.Lazy.ByteString -> ByteString
toStrictBytes = Data.ByteString.Lazy.toStrict

-- | Make a strict 'ByteString' lazy.
toLazyBytes :: ByteString -> Data.ByteString.Lazy.ByteString
toLazyBytes = Data.ByteString.Lazy.fromStrict

-- | Convert a (performant) 'Text' into an (imperformant) list-of-char 'String'.
--
-- Some libraries (like @time@ or @network-uri@) still use the `String` as their interface. We only want to convert to string at the edges, otherwise use 'Text'.
--
-- ATTN: Don’t use `String` in code if you can avoid it, prefer `Text` instead.
textToString :: Text -> String
textToString = Data.Text.unpack

-- | Convert an (imperformant) list-of-char 'String' into a (performant) 'Text' .
--
-- Some libraries (like @time@ or @network-uri@) still use the `String` as their interface. We want to convert 'String' to 'Text' as soon as possible and only use 'Text' in our code.
--
-- ATTN: Don’t use `String` in code if you can avoid it, prefer `Text` instead.
stringToText :: String -> Text
stringToText = Data.Text.pack

-- | Encode a String to an UTF-8 encoded Bytestring
--
-- ATTN: Don’t use `String` in code if you can avoid it, prefer `Text` instead.
stringToBytesUtf8 :: String -> ByteString
-- TODO(Profpatsch): use a stable interface
stringToBytesUtf8 = GHC.utf8EncodeByteString

-- | Like `show`, but generate a 'Text'
--
-- ATTN: This goes via `String` and thus is fairly inefficient.
-- We should add a good display library at one point.
--
-- ATTN: unlike `show`, this forces the whole @'a
-- so only use if you want to display the whole thing.
showToText :: (Show a) => a -> Text
showToText = stringToText . show

-- | Unsafe conversion between 'Char' and 'Word8'. This is a no-op and
-- silently truncates to 8 bits Chars > '\255'. It is provided as
-- convenience for ByteString construction.
--
-- Use if you want to get the 'Word8' representation of a character literal.
-- Don’t use on arbitrary characters!
--
-- >>> charToWordUnsafe ','
-- 44
charToWordUnsafe :: Char -> Word8
{-# INLINE charToWordUnsafe #-}
charToWordUnsafe = fromIntegral . Data.Char.ord

pattern IsEmpty :: [a]
pattern IsEmpty <- (null -> True)
  where
    IsEmpty = []

pattern IsNonEmpty :: NonEmpty a -> [a]
pattern IsNonEmpty n <- (nonEmpty -> Just n)
  where
    IsNonEmpty n = toList n

{-# COMPLETE IsEmpty, IsNonEmpty #-}

-- | Single element in a (non-empty) list.
singleton :: a -> NonEmpty a
singleton a = a :| []

-- | If the given list is empty, use the given default element and return a non-empty list.
nonEmptyDef :: a -> [a] -> NonEmpty a
nonEmptyDef def xs =
  xs & nonEmpty & \case
    Nothing -> def :| []
    Just ne -> ne

-- | If the list is not empty, run the given function with a NonEmpty list, otherwise just return []
overNonEmpty :: (Applicative f) => (NonEmpty a -> f [b]) -> [a] -> f [b]
overNonEmpty f xs = case xs of
  IsEmpty -> pure []
  IsNonEmpty xs' -> f xs'

-- | Zip two non-empty lists.
zipNonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty (a, b)
{-# INLINE zipNonEmpty #-}
zipNonEmpty ~(a :| as) ~(b :| bs) = (a, b) :| zip as bs

-- | Zip two non-empty lists, combining them with the given function
zipWithNonEmpty :: (a -> b -> c) -> NonEmpty a -> NonEmpty b -> NonEmpty c
{-# INLINE zipWithNonEmpty #-}
zipWithNonEmpty = NonEmpty.zipWith

-- | Zip three non-empty lists.
zip3NonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty (a, b, c)
{-# INLINE zip3NonEmpty #-}
zip3NonEmpty ~(a :| as) ~(b :| bs) ~(c :| cs) = (a, b, c) :| zip3 as bs cs

-- | Zip three non-empty lists, combining them with the given function
zipWith3NonEmpty :: (a -> b -> c -> d) -> NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty d
{-# INLINE zipWith3NonEmpty #-}
zipWith3NonEmpty f ~(x :| xs) ~(y :| ys) ~(z :| zs) = f x y z :| zipWith3 f xs ys zs

-- | Zip four non-empty lists
zip4NonEmpty :: NonEmpty a -> NonEmpty b -> NonEmpty c -> NonEmpty d -> NonEmpty (a, b, c, d)
{-# INLINE zip4NonEmpty #-}
zip4NonEmpty ~(a :| as) ~(b :| bs) ~(c :| cs) ~(d :| ds) = (a, b, c, d) :| zip4 as bs cs ds

-- | We don’t want to use Foldable’s `length`, because it is too polymorphic and can lead to bugs.
-- Only list-y things should have a length.
class (Foldable f) => Lengthy f

instance Lengthy []

instance Lengthy NonEmpty

instance Lengthy Vector

lengthNatural :: (Lengthy f) => f a -> Natural
lengthNatural xs =
  xs
    & Foldable.length
    -- length can never be negative or something went really, really wrong
    & fromIntegral @Int @Natural

-- | @O(n)@. Get the maximum element from a non-empty structure (strict).
maximum1 :: (Foldable1 f, Ord a) => f a -> a
maximum1 = Foldl1.fold1 Foldl1.maximum

-- | @O(n)@. Get the maximum element from a non-empty structure, using the given comparator (strict).
maximumBy1 :: (Foldable1 f) => (a -> a -> Ordering) -> f a -> a
maximumBy1 f = Foldl1.fold1 (Foldl1.maximumBy f)

-- | @O(n)@. Get the minimum element from a non-empty structure (strict).
minimum1 :: (Foldable1 f, Ord a) => f a -> a
minimum1 = Foldl1.fold1 Foldl1.minimum

-- | @O(n)@. Get the minimum element from a non-empty structure, using the given comparator (strict).
minimumBy1 :: (Foldable1 f) => (a -> a -> Ordering) -> f a -> a
minimumBy1 f = Foldl1.fold1 (Foldl1.minimumBy f)

-- | Annotate a 'Maybe' with an error message and turn it into an 'Either'.
annotate :: err -> Maybe a -> Either err a
annotate err = \case
  Nothing -> Left err
  Just a -> Right a

-- | Map the same function over both sides of a Bifunctor (e.g. a tuple).
both :: (Bifunctor bi) => (a -> b) -> bi a a -> bi b b
both f = bimap f f

-- | Find the first element for which pred returns `Just a`, and return the `a`.
--
-- Example:
-- @
-- >>> :set -XTypeApplications
-- >>> import qualified Text.Read
--
-- >>> findMaybe (Text.Read.readMaybe @Int) ["foo"]
-- Nothing
-- >>> findMaybe (Text.Read.readMaybe @Int) ["foo", "34.40", "34", "abc"]
-- Just 34
findMaybe :: (Foldable t) => (a -> Maybe b) -> t a -> Maybe b
findMaybe mPred list =
  let pred' x = Maybe.isJust $ mPred x
   in case Foldable.find pred' list of
        Just a -> mPred a
        Nothing -> Nothing

-- | 'traverse' with a function returning 'Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it won’t only return the first error that happens, but rather all of them.
traverseValidate :: forall t a err b. (Traversable t) => (a -> Either err b) -> t a -> Either (NonEmpty err) (t b)
traverseValidate f as =
  as
    & traverse @t @(Validation _) (eitherToListValidation . f)
    & validationToEither

-- | 'traverse' with a function returning 'm Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it won’t only return the first error that happens, but rather all of them.
traverseValidateM :: forall t m a err b. (Traversable t, Applicative m) => (a -> m (Either err b)) -> t a -> m (Either (NonEmpty err) (t b))
traverseValidateM f as =
  as
    & traverse @t @m (\a -> a & f <&> eitherToListValidation)
    <&> sequenceA @t @(Validation _)
    <&> validationToEither

-- | 'traverse_' with a function returning 'm Either' and collect all errors that happen, if they happen.
--
-- Does not shortcut on error, so will always traverse the whole list/'Traversable' structure.
--
-- This is a useful error handling function in many circumstances,
-- because it won’t only return the first error that happens, but rather all of them.
traverseValidateM_ :: forall t m a err. (Traversable t, Applicative m) => (a -> m (Either err ())) -> t a -> m (Either (NonEmpty err) ())
traverseValidateM_ f as =
  as
    & traverse @t @m (\a -> a & f <&> eitherToListValidation)
    <&> sequenceA_ @t @(Validation _)
    <&> validationToEither

-- | Like 'eitherToValidation', but puts the Error side into a NonEmpty list
-- to make it combine with other validations.
--
-- See also 'validateEithers', if you have a list of Either and want to collect all errors.
eitherToListValidation :: Either a c -> Validation (NonEmpty a) c
eitherToListValidation = first singleton . eitherToValidation

-- | Convert an 'Either' to a 'These'.
eitherToThese :: Either err a -> These err a
eitherToThese (Left err) = This err
eitherToThese (Right a) = That a

-- | Like 'eitherToThese', but puts the Error side into a NonEmpty list
-- to make it combine with other theses.
eitherToListThese :: Either err a -> These (NonEmpty err) a
eitherToListThese (Left e) = This (singleton e)
eitherToListThese (Right a) = That a

-- | Convert a 'Validation' to a 'These'.
validationToThese :: Validation err a -> These err a
validationToThese (Failure err) = This err
validationToThese (Success a) = That a

-- | Nested '>>=' of a These inside some other @m@.
--
-- Use if you want to collect errors and successes, and want to chain multiple function returning 'These'.
thenThese ::
  (Monad m, Semigroup err) =>
  (a -> m (These err b)) ->
  m (These err a) ->
  m (These err b)
thenThese f x = do
  th <- x
  join <$> traverse f th

-- | Nested validating bind-like combinator.
--
-- Use if you want to collect errors, and want to chain multiple functions returning 'Validation'.
thenValidate ::
  (a -> Validation err b) ->
  Validation err a ->
  Validation err b
thenValidate f = \case
  Success a -> f a
  Failure err -> Failure err

-- | Nested validating bind-like combinator inside some other @m@.
--
-- Use if you want to collect errors, and want to chain multiple functions returning 'Validation'.
thenValidateM ::
  (Monad m) =>
  (a -> m (Validation err b)) ->
  m (Validation err a) ->
  m (Validation err b)
thenValidateM f x =
  eitherToValidation <$> do
    x' <- validationToEither <$> x
    case x' of
      Left err -> pure $ Left err
      Right a -> validationToEither <$> f a

-- | Put the text to @stderr@.
putStderrLn :: Text -> IO ()
putStderrLn msg =
  System.IO.hPutStrLn System.IO.stderr $ textToString msg

exitWithMessage :: Text -> IO a
exitWithMessage msg = do
  putStderrLn msg
  System.Exit.exitWith $ System.Exit.ExitFailure (-1)

-- | Run some function producing applicative over a traversable data structure,
-- then collect the results in a Monoid.
--
-- Very helpful with side-effecting functions returning @(Validation err a)@:
--
-- @
-- let
--   f :: Text -> IO (Validation (NonEmpty Error) Text)
--   f t = pure $ if t == "foo" then Success t else Failure (singleton ("not foo: " <> t))
--
-- in traverseFold f [ "foo", "bar", "baz" ]
--   == Failure ("not foo bar" :| ["not foo baz"])
-- @
--
-- … since @(Semigroup err => Validation err a)@ is a @Semigroup@/@Monoid@ itself.
traverseFold :: (Applicative ap, Traversable t, Monoid m) => (a -> ap m) -> t a -> ap m
{-# INLINE traverseFold #-}
traverseFold f xs =
  -- note: could be weakened to (Foldable t) via `getAp . foldMap (Ap . f)`
  fold <$> traverse f xs

-- | Like 'traverseFold', but fold over a semigroup instead of a Monoid, by providing a starting element.
traverseFoldDefault :: (Applicative ap, Traversable t, Semigroup m) => m -> (a -> ap m) -> t a -> ap m
{-# INLINE traverseFoldDefault #-}
traverseFoldDefault def f xs = foldDef def <$> traverse f xs
  where
    foldDef = foldr (<>)

-- | Same as 'traverseFold', but with a 'Semigroup' and 'Traversable1' restriction.
traverseFold1 :: (Applicative ap, Traversable1 t, Semigroup s) => (a -> ap s) -> t a -> ap s
{-# INLINE traverseFold1 #-}
-- note: cannot be weakened to (Foldable1 t) because there is no `Ap` for Semigroup (No `Apply` typeclass)
traverseFold1 f xs = fold1 <$> traverse f xs

-- | Use this in places where the code is still to be implemented.
--
-- It always type-checks and will show a warning at compile time if it was forgotten in the code.
--
-- Use instead of 'error' and 'undefined' for code that hasn’t been written.
--
-- Uses the same trick as https://hackage.haskell.org/package/protolude-0.3.0/docs/src/Protolude.Error.html#error
{-# WARNING todo "'todo' (undefined code) remains in code" #-}
todo :: forall (r :: RuntimeRep). forall (a :: TYPE r). (HasCallStack) => a
todo = raise# (errorCallWithCallStackException "This code was not yet implemented: TODO" ?callStack)

-- | Convert an integer to a 'Natural' if possible
--
-- Named the same as the function from "GHC.Natural", but does not crash.
intToNatural :: (Integral a) => a -> Maybe Natural
intToNatural i =
  if i < 0
    then Nothing
    else Just $ fromIntegral i

-- | @inverseFunction f@ creates a function that is the inverse of a given function
-- @f@. It does so by constructing 'M.Map' internally for each value @f a@. The
-- implementation makes sure that the 'M.Map' is constructed only once and then
-- shared for every call.
--
-- __Memory usage note:__ don't inverse functions that have types like 'Int'
-- as their result. In this case the created 'M.Map' will have huge size.
--
-- The complexity of reversed mapping is \(\mathcal{O}(\log n)\).
--
-- __Performance note:__ make sure to specialize monomorphic type of your functions
-- that use 'inverseFunction' to avoid 'M.Map' reconstruction.
--
-- One of the common 'inverseFunction' use-case is inverting the 'show' or a 'show'-like
-- function.
--
-- >>> data Color = Red | Green | Blue deriving (Show, Enum, Bounded)
-- >>> parse = inverseFunction show :: String -> Maybe Color
-- >>> parse "Red"
-- Just Red
-- >>> parse "Black"
-- Nothing
--
-- __Correctness note:__ 'inverseFunction' expects /injective function/ as its argument,
-- i.e. the function must map distinct arguments to distinct values.
--
-- Typical usage of this function looks like this:
--
-- @
-- __data__ GhcVer
--    = Ghc802
--    | Ghc822
--    | Ghc844
--    | Ghc865
--    | Ghc881
--    __deriving__ ('Eq', 'Ord', 'Show', 'Enum', 'Bounded')
--
-- showGhcVer :: GhcVer -> 'Text'
-- showGhcVer = \\__case__
--    Ghc802 -> "8.0.2"
--    Ghc822 -> "8.2.2"
--    Ghc844 -> "8.4.4"
--    Ghc865 -> "8.6.5"
--    Ghc881 -> "8.8.1"
--
-- parseGhcVer :: 'Text' -> 'Maybe' GhcVer
-- parseGhcVer = 'inverseFunction' showGhcVer
--
-- Taken from relude’s @Relude.Extra.Enum@.
inverseFunction ::
  forall a k.
  (Bounded a, Enum a, Ord k) =>
  (a -> k) ->
  (k -> Maybe a)
inverseFunction f k = Map.lookup k $ inverseMap f

-- | Like `inverseFunction`, but instead of returning the function
-- it returns a mapping from all possible outputs to their possible inputs.
--
-- This has the same restrictions of 'inverseFunction'.
inverseMap :: forall a k. (Bounded a, Enum a, Ord k) => (a -> k) -> Map k a
inverseMap f = enumerateAll <&> (\a -> (f a, a)) & Map.fromList

-- | All possible values in this enum.
enumerateAll :: (Enum a, Bounded a) => [a]
enumerateAll = [minBound .. maxBound]

-- | Create a 'Map' from a list of values, extracting the map key from each value. Like 'Map.fromList'.
--
-- Attention: if the key is not unique, the earliest value with the key will be in the map.
mapFromListOn :: (Ord key) => (a -> key) -> [a] -> Map key a
mapFromListOn f xs = xs <&> (\x -> (f x, x)) & Map.fromList

-- | Create a 'Map' from a list of values, merging multiple values at the same key with '<>' (left-to-right)
--
-- `f` has to extract the key and value. Value must be mergable.
--
-- Attention: if the key is not unique, the earliest value with the key will be in the map.
mapFromListOnMerge :: (Ord key, Semigroup s) => (a -> (key, s)) -> [a] -> Map key s
mapFromListOnMerge f xs =
  xs
    <&> (\x -> f x)
    & Map.fromListWith
      -- we have to flip (`<>`) because `Map.fromListWith` merges its values “the other way around”
      (flip (<>))

-- | If the predicate is true, return the @m@, else 'mempty'.
--
-- This can be used (together with `ifExists`) to e.g. create lists with optional elements:
--
-- >>> import Data.Monoid (Sum(..))
--
-- >>> :{ mconcat [
--   ifTrue (1 == 1) [1],
--   [2, 3, 4],
--   ifTrue False [5],
-- ]
-- :}
-- [1,2,3,4]
--
-- Or any other Monoid:
--
-- >>> mconcat [ Sum 1, ifTrue (1 == 1) (Sum 2), Sum 3 ]

-- Sum {getSum = 6}

ifTrue :: (Monoid m) => Bool -> m -> m
ifTrue pred' m = if pred' then m else mempty

-- | If the given @Maybe@ is @Just@, return the result of `f` wrapped in `pure`, else return `mempty`.

-- This can be used (together with `ifTrue`) to e.g. create lists with optional elements:
--
-- >>> import Data.Monoid (Sum(..))
--
-- >>> :{ mconcat [
-- unknown command '{'
--
-- Or any other Monoid:
--
-- >>> mconcat [ Sum 1, ifExists id (Just 2), Sum 3 ]
-- Sum {getSum = 6}

ifExists :: (Monoid (f b), Applicative f) => (a -> b) -> Maybe a -> f b
ifExists f m = m & foldMap @Maybe (pure . f)