about summary refs log tree commit diff
path: root/tvix/eval/src/vm.rs
blob: 3afda7a966ebf27535fb3d8dea34938be553081e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.

use std::rc::Rc;

use crate::{
    chunk::Chunk,
    errors::{Error, EvalResult},
    opcode::OpCode,
    value::{NixAttrs, NixList, Value},
};

pub struct VM {
    ip: usize,
    chunk: Chunk,
    stack: Vec<Value>,
}

macro_rules! arithmetic_op {
    ( $self:ident, $op:tt ) => {{
        let result = arithmetic_op!($self.pop(), $self.pop(), $op);
        $self.push(result);
    }};

    ( $b:expr, $a:expr, $op:tt ) => {{
        let b = $b;
        let a = $a;

        match (a, b) {
            (Value::Integer(i1), Value::Integer(i2)) => Value::Integer(i1 $op i2),
            (Value::Float(f1), Value::Float(f2)) => Value::Float(f1 $op f2),
            (Value::Integer(i1), Value::Float(f2)) => Value::Float(i1 as f64 $op f2),
            (Value::Float(f1), Value::Integer(i2)) => Value::Float(f1 $op i2 as f64),

            (v1, v2) => return Err(Error::TypeError {
                expected: "number (either int or float)",
                actual: if v1.is_number() {
                    v2.type_of()
                } else {
                    v1.type_of()
                },
            }),
        }
    }};
}

impl VM {
    fn inc_ip(&mut self) -> OpCode {
        let op = self.chunk.code[self.ip];
        self.ip += 1;
        op
    }

    fn pop(&mut self) -> Value {
        self.stack.pop().expect("TODO")
    }

    fn push(&mut self, value: Value) {
        self.stack.push(value)
    }

    fn run(&mut self) -> EvalResult<Value> {
        loop {
            match self.inc_ip() {
                OpCode::OpConstant(idx) => {
                    let c = self.chunk.constant(idx).clone();
                    self.push(c);
                }

                OpCode::OpAdd => arithmetic_op!(self, +),
                OpCode::OpSub => arithmetic_op!(self, -),
                OpCode::OpMul => arithmetic_op!(self, *),
                OpCode::OpDiv => arithmetic_op!(self, /),

                OpCode::OpInvert => {
                    let v = self.pop().as_bool()?;
                    self.push(Value::Bool(!v));
                }

                OpCode::OpNegate => match self.pop() {
                    Value::Integer(i) => self.push(Value::Integer(-i)),
                    Value::Float(f) => self.push(Value::Float(-f)),
                    v => {
                        return Err(Error::TypeError {
                            expected: "number (either int or float)",
                            actual: v.type_of(),
                        })
                    }
                },

                OpCode::OpEqual => {
                    let v2 = self.pop();
                    let v1 = self.pop();

                    let eq = match (v1, v2) {
                        (Value::Float(f), Value::Integer(i))
                        | (Value::Integer(i), Value::Float(f)) => f == (i as f64),

                        (v1, v2) => v1 == v2,
                    };

                    self.push(Value::Bool(eq))
                }

                OpCode::OpNull => self.push(Value::Null),
                OpCode::OpTrue => self.push(Value::Bool(true)),
                OpCode::OpFalse => self.push(Value::Bool(false)),
                OpCode::OpAttrs(count) => self.run_attrset(count)?,
                OpCode::OpAttrPath(count) => self.run_attr_path(count)?,
                OpCode::OpList(count) => self.run_list(count)?,
                OpCode::OpInterpolate(count) => self.run_interpolate(count)?,
            }

            if self.ip == self.chunk.code.len() {
                return Ok(self.pop());
            }
        }
    }

    // Construct runtime representation of an attr path (essentially
    // just a list of strings).
    //
    // The difference to the list construction operation is that this
    // forces all elements into strings, as attribute set keys are
    // required to be strict in Nix.
    fn run_attr_path(&mut self, count: usize) -> EvalResult<()> {
        debug_assert!(count > 1, "AttrPath needs at least two fragments");
        let mut path = Vec::with_capacity(count);

        for _ in 0..count {
            path.push(self.pop().as_string()?);
        }

        self.push(Value::AttrPath(path));
        Ok(())
    }

    fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
        let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))?;
        self.push(Value::Attrs(Rc::new(attrs)));
        Ok(())
    }

    // Interpolate string fragments by popping the specified number of
    // fragments of the stack, evaluating them to strings, and pushing
    // the concatenated result string back on the stack.
    fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
        let mut out = String::new();

        for _ in 0..count {
            out.push_str(&self.pop().as_string()?.as_str());
        }

        self.push(Value::String(out.into()));
        Ok(())
    }

    // Construct runtime representation of a list. Because the list
    // items are on the stack in reverse order, the vector is created
    // initialised and elements are directly assigned to their
    // respective indices.
    fn run_list(&mut self, count: usize) -> EvalResult<()> {
        let mut list = vec![Value::Null; count];

        for idx in 0..count {
            list[count - idx - 1] = self.pop();
        }

        self.push(Value::List(NixList(list)));
        Ok(())
    }
}

pub fn run_chunk(chunk: Chunk) -> EvalResult<Value> {
    let mut vm = VM {
        chunk,
        ip: 0,
        stack: vec![],
    };

    vm.run()
}