1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
|
//! Imports from an archive (tarballs)
use std::collections::HashMap;
use petgraph::graph::{DiGraph, NodeIndex};
use petgraph::visit::{DfsPostOrder, EdgeRef};
use petgraph::Direction;
use tokio::io::AsyncRead;
use tokio_stream::StreamExt;
use tokio_tar::Archive;
use tracing::{instrument, warn, Level};
use crate::blobservice::BlobService;
use crate::directoryservice::DirectoryService;
use crate::import::{ingest_entries, IngestionEntry, IngestionError};
use crate::proto::node::Node;
use super::blobs::{self, ConcurrentBlobUploader};
type TarPathBuf = std::path::PathBuf;
#[derive(Debug, thiserror::Error)]
pub enum Error {
#[error("unable to construct stream of entries: {0}")]
Entries(std::io::Error),
#[error("unable to read next entry: {0}")]
NextEntry(std::io::Error),
#[error("unable to read path for entry: {0}")]
PathRead(std::io::Error),
#[error("unable to convert path {0} for entry: {1}")]
PathConvert(TarPathBuf, std::io::Error),
#[error("unable to read size field for {0}: {1}")]
Size(TarPathBuf, std::io::Error),
#[error("unable to read mode field for {0}: {1}")]
Mode(TarPathBuf, std::io::Error),
#[error("unable to read link name field for {0}: {1}")]
LinkName(TarPathBuf, std::io::Error),
#[error("unsupported tar entry {0} type: {1:?}")]
EntryType(TarPathBuf, tokio_tar::EntryType),
#[error("symlink missing target {0}")]
MissingSymlinkTarget(TarPathBuf),
#[error("unexpected number of top level directory entries")]
UnexpectedNumberOfTopLevelEntries,
#[error(transparent)]
BlobUploadError(#[from] blobs::Error),
}
/// Ingests elements from the given tar [`Archive`] into a the passed [`BlobService`] and
/// [`DirectoryService`].
#[instrument(skip_all, ret(level = Level::TRACE), err)]
pub async fn ingest_archive<BS, DS, R>(
blob_service: BS,
directory_service: DS,
mut archive: Archive<R>,
) -> Result<Node, IngestionError<Error>>
where
BS: BlobService + Clone + 'static,
DS: DirectoryService,
R: AsyncRead + Unpin,
{
// Since tarballs can have entries in any arbitrary order, we need to
// buffer all of the directory metadata so we can reorder directory
// contents and entries to meet the requires of the castore.
// In the first phase, collect up all the regular files and symlinks.
let mut nodes = IngestionEntryGraph::new();
let mut blob_uploader = ConcurrentBlobUploader::new(blob_service);
let mut entries_iter = archive.entries().map_err(Error::Entries)?;
while let Some(mut entry) = entries_iter.try_next().await.map_err(Error::NextEntry)? {
let tar_path: TarPathBuf = entry.path().map_err(Error::PathRead)?.into();
// construct a castore PathBuf, which we use in the produced IngestionEntry.
let path = crate::path::PathBuf::from_host_path(tar_path.as_path(), true)
.map_err(|e| Error::PathConvert(tar_path.clone(), e))?;
let header = entry.header();
let entry = match header.entry_type() {
tokio_tar::EntryType::Regular
| tokio_tar::EntryType::GNUSparse
| tokio_tar::EntryType::Continuous => {
let size = header
.size()
.map_err(|e| Error::Size(tar_path.clone(), e))?;
let digest = blob_uploader
.upload(&path, size, &mut entry)
.await
.map_err(Error::BlobUploadError)?;
let executable = entry
.header()
.mode()
.map_err(|e| Error::Mode(tar_path, e))?
& 64
!= 0;
IngestionEntry::Regular {
path,
size,
executable,
digest,
}
}
tokio_tar::EntryType::Symlink => IngestionEntry::Symlink {
target: entry
.link_name()
.map_err(|e| Error::LinkName(tar_path.clone(), e))?
.ok_or_else(|| Error::MissingSymlinkTarget(tar_path.clone()))?
.into_owned()
.into_os_string()
.into_encoded_bytes(),
path,
},
// Push a bogus directory marker so we can make sure this directoy gets
// created. We don't know the digest and size until after reading the full
// tarball.
tokio_tar::EntryType::Directory => IngestionEntry::Dir { path },
tokio_tar::EntryType::XGlobalHeader | tokio_tar::EntryType::XHeader => continue,
entry_type => return Err(Error::EntryType(tar_path, entry_type).into()),
};
nodes.add(entry)?;
}
blob_uploader.join().await.map_err(Error::BlobUploadError)?;
let root_node = ingest_entries(
directory_service,
futures::stream::iter(nodes.finalize()?.into_iter().map(Ok)),
)
.await?;
Ok(root_node)
}
/// Keep track of the directory structure of a file tree being ingested. This is used
/// for ingestion sources which do not provide any ordering or uniqueness guarantees
/// like tarballs.
///
/// If we ingest multiple entries with the same paths and both entries are not directories,
/// the newer entry will replace the latter entry, disconnecting the old node's children
/// from the graph.
///
/// Once all nodes are ingested a call to [IngestionEntryGraph::finalize] will return
/// a list of entries compute by performaing a DFS post order traversal of the graph
/// from the top-level directory entry.
///
/// This expects the directory structure to contain a single top-level directory entry.
/// An error is returned if this is not the case and ingestion will fail.
struct IngestionEntryGraph {
graph: DiGraph<IngestionEntry, ()>,
path_to_index: HashMap<crate::path::PathBuf, NodeIndex>,
root_node: Option<NodeIndex>,
}
impl Default for IngestionEntryGraph {
fn default() -> Self {
Self::new()
}
}
impl IngestionEntryGraph {
/// Creates a new ingestion entry graph.
pub fn new() -> Self {
IngestionEntryGraph {
graph: DiGraph::new(),
path_to_index: HashMap::new(),
root_node: None,
}
}
/// Adds a new entry to the graph. Parent directories are automatically inserted.
/// If a node exists in the graph with the same name as the new entry and both the old
/// and new nodes are not directories, the node is replaced and is disconnected from its
/// children.
pub fn add(&mut self, entry: IngestionEntry) -> Result<NodeIndex, Error> {
let path = entry.path().to_owned();
let index = match self.path_to_index.get(entry.path()) {
Some(&index) => {
// If either the old entry or new entry are not directories, we'll replace the old
// entry.
if !entry.is_dir() || !self.get_node(index).is_dir() {
self.replace_node(index, entry);
}
index
}
None => self.graph.add_node(entry),
};
// for archives, a path with 1 component is the root node
if path.components().count() == 1 {
// We expect archives to contain a single root node, if there is another root node
// entry with a different path name, this is unsupported.
if let Some(root_node) = self.root_node {
if self.get_node(root_node).path() != path.as_ref() {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
}
}
self.root_node = Some(index)
} else if let Some(parent_path) = path.parent() {
// Recursively add the parent node until it hits the root node.
let parent_index = self.add(IngestionEntry::Dir {
path: parent_path.to_owned(),
})?;
// Insert an edge from the parent directory to the child entry.
self.graph.add_edge(parent_index, index, ());
}
self.path_to_index.insert(path, index);
Ok(index)
}
/// Traverses the graph in DFS post order and collects the entries into a [Vec<IngestionEntry>].
///
/// Unreachable parts of the graph are not included in the result.
pub fn finalize(self) -> Result<Vec<IngestionEntry>, Error> {
// There must be a root node.
let Some(root_node_index) = self.root_node else {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
};
// The root node must be a directory.
if !self.get_node(root_node_index).is_dir() {
return Err(Error::UnexpectedNumberOfTopLevelEntries);
}
let mut traversal = DfsPostOrder::new(&self.graph, root_node_index);
let mut nodes = Vec::with_capacity(self.graph.node_count());
while let Some(node_index) = traversal.next(&self.graph) {
nodes.push(self.get_node(node_index).clone());
}
Ok(nodes)
}
/// Replaces the node with the specified entry. The node's children are disconnected.
///
/// This should never be called if both the old and new nodes are directories.
fn replace_node(&mut self, index: NodeIndex, new_entry: IngestionEntry) {
let entry = self
.graph
.node_weight_mut(index)
.expect("Tvix bug: missing node entry");
debug_assert!(!(entry.is_dir() && new_entry.is_dir()));
// Replace the node itself.
warn!(
"saw duplicate entry in archive at path {:?}. old: {:?} new: {:?}",
entry.path(),
&entry,
&new_entry
);
*entry = new_entry;
// Remove any outgoing edges to disconnect the old node's children.
let edges = self
.graph
.edges_directed(index, Direction::Outgoing)
.map(|edge| edge.id())
.collect::<Vec<_>>();
for edge in edges {
self.graph.remove_edge(edge);
}
}
fn get_node(&self, index: NodeIndex) -> &IngestionEntry {
self.graph
.node_weight(index)
.expect("Tvix bug: missing node entry")
}
}
#[cfg(test)]
mod test {
use crate::import::IngestionEntry;
use crate::B3Digest;
use super::{Error, IngestionEntryGraph};
use lazy_static::lazy_static;
use rstest::rstest;
lazy_static! {
pub static ref EMPTY_DIGEST: B3Digest = blake3::hash(&[]).as_bytes().into();
pub static ref DIR_A: IngestionEntry = IngestionEntry::Dir {
path: "a".parse().unwrap()
};
pub static ref DIR_B: IngestionEntry = IngestionEntry::Dir {
path: "b".parse().unwrap()
};
pub static ref DIR_A_B: IngestionEntry = IngestionEntry::Dir {
path: "a/b".parse().unwrap()
};
pub static ref FILE_A: IngestionEntry = IngestionEntry::Regular {
path: "a".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
pub static ref FILE_A_B: IngestionEntry = IngestionEntry::Regular {
path: "a/b".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
pub static ref FILE_A_B_C: IngestionEntry = IngestionEntry::Regular {
path: "a/b/c".parse().unwrap(),
size: 0,
executable: false,
digest: EMPTY_DIGEST.clone(),
};
}
#[rstest]
#[case::implicit_directories(&[&*FILE_A_B_C], &[&*FILE_A_B_C, &*DIR_A_B, &*DIR_A])]
#[case::explicit_directories(&[&*DIR_A, &*DIR_A_B, &*FILE_A_B_C], &[&*FILE_A_B_C, &*DIR_A_B, &*DIR_A])]
#[case::inaccesible_tree(&[&*DIR_A, &*DIR_A_B, &*FILE_A_B], &[&*FILE_A_B, &*DIR_A])]
fn node_ingestion_success(
#[case] in_entries: &[&IngestionEntry],
#[case] exp_entries: &[&IngestionEntry],
) {
let mut nodes = IngestionEntryGraph::new();
for entry in in_entries {
nodes.add((*entry).clone()).expect("failed to add entry");
}
let entries = nodes.finalize().expect("invalid entries");
let exp_entries: Vec<IngestionEntry> =
exp_entries.iter().map(|entry| (*entry).clone()).collect();
assert_eq!(entries, exp_entries);
}
#[rstest]
#[case::no_top_level_entries(&[], Error::UnexpectedNumberOfTopLevelEntries)]
#[case::multiple_top_level_dirs(&[&*DIR_A, &*DIR_B], Error::UnexpectedNumberOfTopLevelEntries)]
#[case::top_level_file_entry(&[&*FILE_A], Error::UnexpectedNumberOfTopLevelEntries)]
fn node_ingestion_error(#[case] in_entries: &[&IngestionEntry], #[case] exp_error: Error) {
let mut nodes = IngestionEntryGraph::new();
let result = (|| {
for entry in in_entries {
nodes.add((*entry).clone())?;
}
nodes.finalize()
})();
let error = result.expect_err("expected error");
assert_eq!(error.to_string(), exp_error.to_string());
}
}
|