about summary refs log tree commit diff
path: root/third_party/nix/src/libutil/thread-pool.hh
blob: 71006238b3639ed29624365d182e9abd250d7d37 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#pragma once

#include <atomic>
#include <functional>
#include <map>
#include <queue>
#include <thread>

#include "libutil/sync.hh"
#include "libutil/util.hh"

namespace nix {

MakeError(ThreadPoolShutDown, Error);

/* A simple thread pool that executes a queue of work items
   (lambdas). */
class ThreadPool {
 public:
  ThreadPool(size_t maxThreads = 0);

  ~ThreadPool();

  // FIXME: use std::packaged_task?
  typedef std::function<void()> work_t;

  /* Enqueue a function to be executed by the thread pool. */
  void enqueue(const work_t& t);

  /* Execute work items until the queue is empty. Note that work
     items are allowed to add new items to the queue; this is
     handled correctly. Queue processing stops prematurely if any
     work item throws an exception. This exception is propagated to
     the calling thread. If multiple work items throw an exception
     concurrently, only one item is propagated; the others are
     printed on stderr and otherwise ignored. */
  void process();

 private:
  size_t maxThreads;

  struct State {
    std::queue<work_t> pending;
    size_t active = 0;
    std::exception_ptr exception;
    std::vector<std::thread> workers;
    bool draining = false;
  };

  std::atomic_bool quit{false};

  Sync<State> state_;

  std::condition_variable work;

  void doWork(bool mainThread);

  void shutdown();
};

/* Process in parallel a set of items of type T that have a partial
   ordering between them. Thus, any item is only processed after all
   its dependencies have been processed. */
template <typename T>
void processGraph(ThreadPool& pool, const std::set<T>& nodes,
                  std::function<std::set<T>(const T&)> getEdges,
                  std::function<void(const T&)> processNode) {
  struct Graph {
    std::set<T> left;
    std::map<T, std::set<T>> refs, rrefs;
  };

  Sync<Graph> graph_(Graph{nodes, {}, {}});

  std::function<void(const T&)> worker;

  worker = [&](const T& node) {
    {
      auto graph(graph_.lock());
      auto i = graph->refs.find(node);
      if (i == graph->refs.end()) {
        goto getRefs;
      }
      goto doWork;
    }

  getRefs : {
    auto refs = getEdges(node);
    refs.erase(node);

    {
      auto graph(graph_.lock());
      for (auto& ref : refs)
        if (graph->left.count(ref)) {
          graph->refs[node].insert(ref);
          graph->rrefs[ref].insert(node);
        }
      if (graph->refs[node].empty()) {
        goto doWork;
      }
    }
  }

    return;

  doWork:
    processNode(node);

    /* Enqueue work for all nodes that were waiting on this one
       and have no unprocessed dependencies. */
    {
      auto graph(graph_.lock());
      for (auto& rref : graph->rrefs[node]) {
        auto& refs(graph->refs[rref]);
        auto i = refs.find(node);
        assert(i != refs.end());
        refs.erase(i);
        if (refs.empty()) {
          pool.enqueue(std::bind(worker, rref));
        }
      }
      graph->left.erase(node);
      graph->refs.erase(node);
      graph->rrefs.erase(node);
    }
  };

  for (auto& node : nodes) {
    pool.enqueue(std::bind(worker, std::ref(node)));
  }

  pool.process();

  if (!graph_.lock()->left.empty())
    throw Error("graph processing incomplete (cyclic reference?)");
}

}  // namespace nix