about summary refs log tree commit diff
path: root/third_party/immer/immer/flex_vector.hpp
blob: d03c3f7e458509ec7f044e9618b1e8b26bc10682 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//

#pragma once

#include <immer/detail/rbts/rrbtree.hpp>
#include <immer/detail/rbts/rrbtree_iterator.hpp>
#include <immer/memory_policy.hpp>

namespace immer {

template <typename T,
          typename MP,
          detail::rbts::bits_t B,
          detail::rbts::bits_t BL>
class vector;

template <typename T,
          typename MP,
          detail::rbts::bits_t B,
          detail::rbts::bits_t BL>
class flex_vector_transient;

/*!
 * Immutable sequential container supporting both random access,
 * structural sharing and efficient concatenation and slicing.
 *
 * @tparam T The type of the values to be stored in the container.
 * @tparam MemoryPolicy Memory management policy. See @ref
 *         memory_policy.
 *
 * @rst
 *
 * This container is very similar to `vector`_ but also supports
 * :math:`O(log(size))` *concatenation*, *slicing* and *insertion* at
 * any point. Its performance characteristics are almost identical
 * until one of these operations is performed.  After that,
 * performance is degraded by a constant factor that usually oscilates
 * in the range :math:`[1, 2)` depending on the operation and the
 * amount of flexible operations that have been performed.
 *
 * .. tip:: A `vector`_ can be converted to a `flex_vector`_ in
 *    constant time without any allocation.  This is so because the
 *    internal structure of a *vector* is a strict subset of the
 *    internal structure of a *flexible vector*.  You can take
 *    advantage of this property by creating normal vectors as long as
 *    the flexible operations are not needed, and convert later in
 *    your processing pipeline once and if these are needed.
 *
 * @endrst
 */
template <typename T,
          typename MemoryPolicy  = default_memory_policy,
          detail::rbts::bits_t B = default_bits,
          detail::rbts::bits_t BL =
              detail::rbts::derive_bits_leaf<T, MemoryPolicy, B>>
class flex_vector
{
    using impl_t = detail::rbts::rrbtree<T, MemoryPolicy, B, BL>;

    using move_t =
        std::integral_constant<bool, MemoryPolicy::use_transient_rvalues>;

public:
    static constexpr auto bits      = B;
    static constexpr auto bits_leaf = BL;
    using memory_policy             = MemoryPolicy;

    using value_type      = T;
    using reference       = const T&;
    using size_type       = detail::rbts::size_t;
    using difference_type = std::ptrdiff_t;
    using const_reference = const T&;

    using iterator = detail::rbts::rrbtree_iterator<T, MemoryPolicy, B, BL>;
    using const_iterator   = iterator;
    using reverse_iterator = std::reverse_iterator<iterator>;

    using transient_type = flex_vector_transient<T, MemoryPolicy, B, BL>;

    /*!
     * Default constructor.  It creates a flex_vector of `size() == 0`.
     * It does not allocate memory and its complexity is @f$ O(1) @f$.
     */
    flex_vector() = default;

    /*!
     * Constructs a flex_vector containing the elements in `values`.
     */
    flex_vector(std::initializer_list<T> values)
        : impl_{impl_t::from_initializer_list(values)}
    {}

    /*!
     * Constructs a flex_vector containing the elements in the range
     * defined by the input iterator `first` and range sentinel `last`.
     */
    template <typename Iter,
              typename Sent,
              std::enable_if_t<detail::compatible_sentinel_v<Iter, Sent>,
                               bool> = true>
    flex_vector(Iter first, Sent last)
        : impl_{impl_t::from_range(first, last)}
    {}

    /*!
     * Constructs a vector containing the element `val` repeated `n`
     * times.
     */
    flex_vector(size_type n, T v = {})
        : impl_{impl_t::from_fill(n, v)}
    {}

    /*!
     * Default constructor.  It creates a flex_vector with the same
     * contents as `v`.  It does not allocate memory and is
     * @f$ O(1) @f$.
     */
    flex_vector(vector<T, MemoryPolicy, B, BL> v)
        : impl_{v.impl_.size,
                v.impl_.shift,
                v.impl_.root->inc(),
                v.impl_.tail->inc()}
    {}

    /*!
     * Returns an iterator pointing at the first element of the
     * collection. It does not allocate memory and its complexity is
     * @f$ O(1) @f$.
     */
    IMMER_NODISCARD iterator begin() const { return {impl_}; }

    /*!
     * Returns an iterator pointing just after the last element of the
     * collection. It does not allocate and its complexity is @f$ O(1) @f$.
     */
    IMMER_NODISCARD iterator end() const
    {
        return {impl_, typename iterator::end_t{}};
    }

    /*!
     * Returns an iterator that traverses the collection backwards,
     * pointing at the first element of the reversed collection. It
     * does not allocate memory and its complexity is @f$ O(1) @f$.
     */
    IMMER_NODISCARD reverse_iterator rbegin() const
    {
        return reverse_iterator{end()};
    }

    /*!
     * Returns an iterator that traverses the collection backwards,
     * pointing after the last element of the reversed collection. It
     * does not allocate memory and its complexity is @f$ O(1) @f$.
     */
    IMMER_NODISCARD reverse_iterator rend() const
    {
        return reverse_iterator{begin()};
    }

    /*!
     * Returns the number of elements in the container.  It does
     * not allocate memory and its complexity is @f$ O(1) @f$.
     */
    IMMER_NODISCARD size_type size() const { return impl_.size; }

    /*!
     * Returns `true` if there are no elements in the container.  It
     * does not allocate memory and its complexity is @f$ O(1) @f$.
     */
    IMMER_NODISCARD bool empty() const { return impl_.size == 0; }

    /*!
     * Access the last element.
     */
    IMMER_NODISCARD const T& back() const { return impl_.back(); }

    /*!
     * Access the first element.
     */
    IMMER_NODISCARD const T& front() const { return impl_.front(); }

    /*!
     * Returns a `const` reference to the element at position `index`.
     * It is undefined when @f$ 0 index \geq size() @f$.  It does not
     * allocate memory and its complexity is *effectively* @f$ O(1)
     * @f$.
     */
    IMMER_NODISCARD reference operator[](size_type index) const
    {
        return impl_.get(index);
    }

    /*!
     * Returns a `const` reference to the element at position
     * `index`. It throws an `std::out_of_range` exception when @f$
     * index \geq size() @f$.  It does not allocate memory and its
     * complexity is *effectively* @f$ O(1) @f$.
     */
    reference at(size_type index) const { return impl_.get_check(index); }

    /*!
     * Returns whether the vectors are equal.
     */
    IMMER_NODISCARD bool operator==(const flex_vector& other) const
    {
        return impl_.equals(other.impl_);
    }
    IMMER_NODISCARD bool operator!=(const flex_vector& other) const
    {
        return !(*this == other);
    }

    /*!
     * Returns a flex_vector with `value` inserted at the end.  It may
     * allocate memory and its complexity is *effectively* @f$ O(1) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: push-back/start
     *      :end-before:  push-back/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector push_back(value_type value) const&
    {
        return impl_.push_back(std::move(value));
    }

    IMMER_NODISCARD decltype(auto) push_back(value_type value) &&
    {
        return push_back_move(move_t{}, std::move(value));
    }

    /*!
     * Returns a flex_vector with `value` inserted at the frony.  It may
     * allocate memory and its complexity is @f$ O(log(size)) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: push-front/start
     *      :end-before:  push-front/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector push_front(value_type value) const
    {
        return flex_vector{}.push_back(value) + *this;
    }

    /*!
     * Returns a flex_vector containing value `value` at position `index`.
     * Undefined for `index >= size()`.
     * It may allocate memory and its complexity is
     * *effectively* @f$ O(1) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: set/start
     *      :end-before:  set/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector set(size_type index, value_type value) const&
    {
        return impl_.assoc(index, std::move(value));
    }

    IMMER_NODISCARD decltype(auto) set(size_type index, value_type value) &&
    {
        return set_move(move_t{}, index, std::move(value));
    }

    /*!
     * Returns a vector containing the result of the expression
     * `fn((*this)[idx])` at position `idx`.
     * Undefined for `index >= size()`.
     * It may allocate memory and its complexity is
     * *effectively* @f$ O(1) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: update/start
     *      :end-before:  update/end
     *
     * @endrst

     */
    template <typename FnT>
    IMMER_NODISCARD flex_vector update(size_type index, FnT&& fn) const&
    {
        return impl_.update(index, std::forward<FnT>(fn));
    }

    template <typename FnT>
    IMMER_NODISCARD decltype(auto) update(size_type index, FnT&& fn) &&
    {
        return update_move(move_t{}, index, std::forward<FnT>(fn));
    }

    /*!
     * Returns a vector containing only the first `min(elems, size())`
     * elements. It may allocate memory and its complexity is
     * *effectively* @f$ O(1) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: take/start
     *      :end-before:  take/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector take(size_type elems) const&
    {
        return impl_.take(elems);
    }

    IMMER_NODISCARD decltype(auto) take(size_type elems) &&
    {
        return take_move(move_t{}, elems);
    }

    /*!
     * Returns a vector without the first `min(elems, size())`
     * elements. It may allocate memory and its complexity is
     * *effectively* @f$ O(1) @f$.
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: drop/start
     *      :end-before:  drop/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector drop(size_type elems) const&
    {
        return impl_.drop(elems);
    }

    IMMER_NODISCARD decltype(auto) drop(size_type elems) &&
    {
        return drop_move(move_t{}, elems);
    }

    /*!
     * Concatenation operator. Returns a flex_vector with the contents
     * of `l` followed by those of `r`.  It may allocate memory
     * and its complexity is @f$ O(log(max(size_r, size_l))) @f$
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: concat/start
     *      :end-before:  concat/end
     *
     * @endrst
     */
    IMMER_NODISCARD friend flex_vector operator+(const flex_vector& l,
                                                 const flex_vector& r)
    {
        return l.impl_.concat(r.impl_);
    }

    IMMER_NODISCARD friend decltype(auto) operator+(flex_vector&& l,
                                                    const flex_vector& r)
    {
        return concat_move(move_t{}, std::move(l), r);
    }

    IMMER_NODISCARD friend decltype(auto) operator+(const flex_vector& l,
                                                    flex_vector&& r)
    {
        return concat_move(move_t{}, l, std::move(r));
    }

    IMMER_NODISCARD friend decltype(auto) operator+(flex_vector&& l,
                                                    flex_vector&& r)
    {
        return concat_move(move_t{}, std::move(l), std::move(r));
    }

    /*!
     * Returns a flex_vector with the `value` inserted at index
     * `pos`. It may allocate memory and its complexity is @f$
     * O(log(size)) @f$
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: insert/start
     *      :end-before:  insert/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector insert(size_type pos, T value) const&
    {
        return take(pos).push_back(std::move(value)) + drop(pos);
    }
    IMMER_NODISCARD decltype(auto) insert(size_type pos, T value) &&
    {
        using std::move;
        auto rs = drop(pos);
        return std::move(*this).take(pos).push_back(std::move(value)) +
               std::move(rs);
    }

    IMMER_NODISCARD flex_vector insert(size_type pos, flex_vector value) const&
    {
        return take(pos) + std::move(value) + drop(pos);
    }
    IMMER_NODISCARD decltype(auto) insert(size_type pos, flex_vector value) &&
    {
        using std::move;
        auto rs = drop(pos);
        return std::move(*this).take(pos) + std::move(value) + std::move(rs);
    }

    /*!
     * Returns a flex_vector without the element at index `pos`. It
     * may allocate memory and its complexity is @f$ O(log(size)) @f$
     *
     * @rst
     *
     * **Example**
     *   .. literalinclude:: ../example/flex-vector/flex-vector.cpp
     *      :language: c++
     *      :dedent: 8
     *      :start-after: erase/start
     *      :end-before:  erase/end
     *
     * @endrst
     */
    IMMER_NODISCARD flex_vector erase(size_type pos) const&
    {
        return take(pos) + drop(pos + 1);
    }
    IMMER_NODISCARD decltype(auto) erase(size_type pos) &&
    {
        auto rs = drop(pos + 1);
        return std::move(*this).take(pos) + std::move(rs);
    }

    IMMER_NODISCARD flex_vector erase(size_type pos, size_type lpos) const&
    {
        return lpos > pos ? take(pos) + drop(lpos) : *this;
    }
    IMMER_NODISCARD decltype(auto) erase(size_type pos, size_type lpos) &&
    {
        if (lpos > pos) {
            auto rs = drop(lpos);
            return std::move(*this).take(pos) + std::move(rs);
        } else {
            return std::move(*this);
        }
    }

    /*!
     * Returns an @a transient form of this container, an
     * `immer::flex_vector_transient`.
     */
    IMMER_NODISCARD transient_type transient() const&
    {
        return transient_type{impl_};
    }
    IMMER_NODISCARD transient_type transient() &&
    {
        return transient_type{std::move(impl_)};
    }

    // Semi-private
    const impl_t& impl() const { return impl_; }

#if IMMER_DEBUG_PRINT
    void debug_print(std::ostream& out = std::cerr) const
    {
        impl_.debug_print(out);
    }
#endif

private:
    friend transient_type;

    flex_vector(impl_t impl)
        : impl_(std::move(impl))
    {
#if IMMER_DEBUG_PRINT
        // force the compiler to generate debug_print, so we can call
        // it from a debugger
        [](volatile auto) {}(&flex_vector::debug_print);
#endif
    }

    flex_vector&& push_back_move(std::true_type, value_type value)
    {
        impl_.push_back_mut({}, std::move(value));
        return std::move(*this);
    }
    flex_vector push_back_move(std::false_type, value_type value)
    {
        return impl_.push_back(std::move(value));
    }

    flex_vector&& set_move(std::true_type, size_type index, value_type value)
    {
        impl_.assoc_mut({}, index, std::move(value));
        return std::move(*this);
    }
    flex_vector set_move(std::false_type, size_type index, value_type value)
    {
        return impl_.assoc(index, std::move(value));
    }

    template <typename Fn>
    flex_vector&& update_move(std::true_type, size_type index, Fn&& fn)
    {
        impl_.update_mut({}, index, std::forward<Fn>(fn));
        return std::move(*this);
    }
    template <typename Fn>
    flex_vector update_move(std::false_type, size_type index, Fn&& fn)
    {
        return impl_.update(index, std::forward<Fn>(fn));
    }

    flex_vector&& take_move(std::true_type, size_type elems)
    {
        impl_.take_mut({}, elems);
        return std::move(*this);
    }
    flex_vector take_move(std::false_type, size_type elems)
    {
        return impl_.take(elems);
    }

    flex_vector&& drop_move(std::true_type, size_type elems)
    {
        impl_.drop_mut({}, elems);
        return std::move(*this);
    }
    flex_vector drop_move(std::false_type, size_type elems)
    {
        return impl_.drop(elems);
    }

    static flex_vector&&
    concat_move(std::true_type, flex_vector&& l, const flex_vector& r)
    {
        concat_mut_l(l.impl_, {}, r.impl_);
        return std::move(l);
    }
    static flex_vector&&
    concat_move(std::true_type, const flex_vector& l, flex_vector&& r)
    {
        concat_mut_r(l.impl_, r.impl_, {});
        return std::move(r);
    }
    static flex_vector&&
    concat_move(std::true_type, flex_vector&& l, flex_vector&& r)
    {
        concat_mut_lr_l(l.impl_, {}, r.impl_, {});
        return std::move(l);
    }
    static flex_vector
    concat_move(std::false_type, const flex_vector& l, const flex_vector& r)
    {
        return l.impl_.concat(r.impl_);
    }

    impl_t impl_ = impl_t::empty();
};

} // namespace immer