about summary refs log tree commit diff
path: root/third_party/immer/immer/detail/util.hpp
blob: fb2a520fc78fe231adfe9180cff52c2b4865dac2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//

#pragma once

#include <immer/config.hpp>

#include <cstddef>
#include <memory>
#include <new>
#include <type_traits>

#include <immer/detail/type_traits.hpp>

#if defined(_MSC_VER)
#include <intrin.h> // for __lzcnt*
#endif

namespace immer {
namespace detail {

template <typename T>
using aligned_storage_for =
    typename std::aligned_storage<sizeof(T), alignof(T)>::type;

template <typename T>
T& auto_const_cast(const T& x)
{
    return const_cast<T&>(x);
}
template <typename T>
T&& auto_const_cast(const T&& x)
{
    return const_cast<T&&>(std::move(x));
}

template <typename Iter1, typename Iter2>
auto uninitialized_move(Iter1 in1, Iter1 in2, Iter2 out)
{
    return std::uninitialized_copy(
        std::make_move_iterator(in1), std::make_move_iterator(in2), out);
}

template <class T>
void destroy(T* first, T* last)
{
    for (; first != last; ++first)
        first->~T();
}

template <class T, class Size>
void destroy_n(T* p, Size n)
{
    auto e = p + n;
    for (; p != e; ++p)
        p->~T();
}

template <typename Heap, typename T, typename... Args>
T* make(Args&&... args)
{
    auto ptr = Heap::allocate(sizeof(T));
    try {
        return new (ptr) T{std::forward<Args>(args)...};
    } catch (...) {
        Heap::deallocate(sizeof(T), ptr);
        throw;
    }
}

struct not_supported_t
{};
struct empty_t
{};

template <typename T>
struct exact_t
{
    T value;
    exact_t(T v)
        : value{v} {};
};

template <typename T>
inline constexpr auto clz_(T) -> not_supported_t
{
    IMMER_UNREACHABLE;
    return {};
}
#if defined(_MSC_VER)
// inline auto clz_(unsigned short x) { return __lzcnt16(x); }
// inline auto clz_(unsigned int x) { return __lzcnt(x); }
// inline auto clz_(unsigned __int64 x) { return __lzcnt64(x); }
#else
inline constexpr auto clz_(unsigned int x) { return __builtin_clz(x); }
inline constexpr auto clz_(unsigned long x) { return __builtin_clzl(x); }
inline constexpr auto clz_(unsigned long long x) { return __builtin_clzll(x); }
#endif

template <typename T>
inline constexpr T log2_aux(T x, T r = 0)
{
    return x <= 1 ? r : log2_aux(x >> 1, r + 1);
}

template <typename T>
inline constexpr auto log2(T x) -> std::
    enable_if_t<!std::is_same<decltype(clz_(x)), not_supported_t>::value, T>
{
    return x == 0 ? 0 : sizeof(std::size_t) * 8 - 1 - clz_(x);
}

template <typename T>
inline constexpr auto log2(T x)
    -> std::enable_if_t<std::is_same<decltype(clz_(x)), not_supported_t>::value,
                        T>
{
    return log2_aux(x);
}

template <bool b, typename F>
auto static_if(F&& f) -> std::enable_if_t<b>
{
    std::forward<F>(f)(empty_t{});
}
template <bool b, typename F>
auto static_if(F&& f) -> std::enable_if_t<!b>
{}

template <bool b, typename R = void, typename F1, typename F2>
auto static_if(F1&& f1, F2&& f2) -> std::enable_if_t<b, R>
{
    return std::forward<F1>(f1)(empty_t{});
}
template <bool b, typename R = void, typename F1, typename F2>
auto static_if(F1&& f1, F2&& f2) -> std::enable_if_t<!b, R>
{
    return std::forward<F2>(f2)(empty_t{});
}

template <typename T, T value>
struct constantly
{
    template <typename... Args>
    T operator()(Args&&...) const
    {
        return value;
    }
};

/*!
 * An alias to `std::distance`
 */
template <typename Iterator,
          typename Sentinel,
          std::enable_if_t<detail::std_distance_supports_v<Iterator, Sentinel>,
                           bool> = true>
typename std::iterator_traits<Iterator>::difference_type
distance(Iterator first, Sentinel last)
{
    return std::distance(first, last);
}

/*!
 * Equivalent of the `std::distance` applied to the sentinel-delimited
 * forward range @f$ [first, last) @f$
 */
template <typename Iterator,
          typename Sentinel,
          std::enable_if_t<
              (!detail::std_distance_supports_v<Iterator, Sentinel>) &&detail::
                      is_forward_iterator_v<Iterator> &&
                  detail::compatible_sentinel_v<Iterator, Sentinel> &&
                  (!detail::is_subtractable_v<Sentinel, Iterator>),
              bool> = true>
typename std::iterator_traits<Iterator>::difference_type
distance(Iterator first, Sentinel last)
{
    std::size_t result = 0;
    while (first != last) {
        ++first;
        ++result;
    }
    return result;
}

/*!
 * Equivalent of the `std::distance` applied to the sentinel-delimited
 * random access range @f$ [first, last) @f$
 */
template <typename Iterator,
          typename Sentinel,
          std::enable_if_t<
              (!detail::std_distance_supports_v<Iterator, Sentinel>) &&detail::
                      is_forward_iterator_v<Iterator> &&
                  detail::compatible_sentinel_v<Iterator, Sentinel> &&
                  detail::is_subtractable_v<Sentinel, Iterator>,
              bool> = true>
typename std::iterator_traits<Iterator>::difference_type
distance(Iterator first, Sentinel last)
{
    return last - first;
}

/*!
 * An alias to `std::uninitialized_copy`
 */
template <
    typename Iterator,
    typename Sentinel,
    typename SinkIter,
    std::enable_if_t<
        detail::std_uninitialized_copy_supports_v<Iterator, Sentinel, SinkIter>,
        bool> = true>
SinkIter uninitialized_copy(Iterator first, Sentinel last, SinkIter d_first)
{
    return std::uninitialized_copy(first, last, d_first);
}

/*!
 * Equivalent of the `std::uninitialized_copy` applied to the
 * sentinel-delimited forward range @f$ [first, last) @f$
 */
template <typename SourceIter,
          typename Sent,
          typename SinkIter,
          std::enable_if_t<
              (!detail::std_uninitialized_copy_supports_v<SourceIter,
                                                          Sent,
                                                          SinkIter>) &&detail::
                      compatible_sentinel_v<SourceIter, Sent> &&
                  detail::is_forward_iterator_v<SinkIter>,
              bool> = true>
SinkIter uninitialized_copy(SourceIter first, Sent last, SinkIter d_first)
{
    auto current = d_first;
    try {
        while (first != last) {
            *current++ = *first;
            ++first;
        }
    } catch (...) {
        using Value = typename std::iterator_traits<SinkIter>::value_type;
        for (; d_first != current; ++d_first) {
            d_first->~Value();
        }
        throw;
    }
    return current;
}

} // namespace detail
} // namespace immer