about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/tests/Utilities.hs
blob: 86a4f2c32462bd94629722f453b696055217fabb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
{-# LANGUAGE FlexibleInstances, GADTs #-}
module Utilities where

import Test.QuickCheck

import qualified Data.Vector as DV
import qualified Data.Vector.Generic as DVG
import qualified Data.Vector.Primitive as DVP
import qualified Data.Vector.Storable as DVS
import qualified Data.Vector.Unboxed as DVU
import qualified Data.Vector.Fusion.Bundle as S

import Control.Monad (foldM, foldM_, zipWithM, zipWithM_)
import Control.Monad.Trans.Writer
import Data.Function (on)
import Data.Functor.Identity
import Data.List ( sortBy )
import Data.Monoid
import Data.Maybe (catMaybes)

instance Show a => Show (S.Bundle v a) where
    show s = "Data.Vector.Fusion.Bundle.fromList " ++ show (S.toList s)


instance Arbitrary a => Arbitrary (DV.Vector a) where
    arbitrary = fmap DV.fromList arbitrary

instance CoArbitrary a => CoArbitrary (DV.Vector a) where
    coarbitrary = coarbitrary . DV.toList

instance (Arbitrary a, DVP.Prim a) => Arbitrary (DVP.Vector a) where
    arbitrary = fmap DVP.fromList arbitrary

instance (CoArbitrary a, DVP.Prim a) => CoArbitrary (DVP.Vector a) where
    coarbitrary = coarbitrary . DVP.toList

instance (Arbitrary a, DVS.Storable a) => Arbitrary (DVS.Vector a) where
    arbitrary = fmap DVS.fromList arbitrary

instance (CoArbitrary a, DVS.Storable a) => CoArbitrary (DVS.Vector a) where
    coarbitrary = coarbitrary . DVS.toList

instance (Arbitrary a, DVU.Unbox a) => Arbitrary (DVU.Vector a) where
    arbitrary = fmap DVU.fromList arbitrary

instance (CoArbitrary a, DVU.Unbox a) => CoArbitrary (DVU.Vector a) where
    coarbitrary = coarbitrary . DVU.toList

instance Arbitrary a => Arbitrary (S.Bundle v a) where
    arbitrary = fmap S.fromList arbitrary

instance CoArbitrary a => CoArbitrary (S.Bundle v a) where
    coarbitrary = coarbitrary . S.toList

instance (Arbitrary a, Arbitrary b) => Arbitrary (Writer a b) where
    arbitrary = do b <- arbitrary
                   a <- arbitrary
                   return $ writer (b,a)

instance CoArbitrary a => CoArbitrary (Writer a ()) where
    coarbitrary = coarbitrary . runWriter

class (Testable (EqTest a), Conclusion (EqTest a)) => TestData a where
  type Model a
  model :: a -> Model a
  unmodel :: Model a -> a

  type EqTest a
  equal :: a -> a -> EqTest a

instance Eq a => TestData (S.Bundle v a) where
  type Model (S.Bundle v a) = [a]
  model = S.toList
  unmodel = S.fromList

  type EqTest (S.Bundle v a) = Property
  equal x y = property (x == y)

instance Eq a => TestData (DV.Vector a) where
  type Model (DV.Vector a) = [a]
  model = DV.toList
  unmodel = DV.fromList

  type EqTest (DV.Vector a) = Property
  equal x y = property (x == y)

instance (Eq a, DVP.Prim a) => TestData (DVP.Vector a) where
  type Model (DVP.Vector a) = [a]
  model = DVP.toList
  unmodel = DVP.fromList

  type EqTest (DVP.Vector a) = Property
  equal x y = property (x == y)

instance (Eq a, DVS.Storable a) => TestData (DVS.Vector a) where
  type Model (DVS.Vector a) = [a]
  model = DVS.toList
  unmodel = DVS.fromList

  type EqTest (DVS.Vector a) = Property
  equal x y = property (x == y)

instance (Eq a, DVU.Unbox a) => TestData (DVU.Vector a) where
  type Model (DVU.Vector a) = [a]
  model = DVU.toList
  unmodel = DVU.fromList

  type EqTest (DVU.Vector a) = Property
  equal x y = property (x == y)

#define id_TestData(ty) \
instance TestData ty where { \
  type Model ty = ty;        \
  model = id;                \
  unmodel = id;              \
                             \
  type EqTest ty = Property; \
  equal x y = property (x == y) }

id_TestData(())
id_TestData(Bool)
id_TestData(Int)
id_TestData(Float)
id_TestData(Double)
id_TestData(Ordering)

-- Functorish models
-- All of these need UndecidableInstances although they are actually well founded. Oh well.
instance (Eq a, TestData a) => TestData (Maybe a) where
  type Model (Maybe a) = Maybe (Model a)
  model = fmap model
  unmodel = fmap unmodel

  type EqTest (Maybe a) = Property
  equal x y = property (x == y)

instance (Eq a, TestData a) => TestData [a] where
  type Model [a] = [Model a]
  model = fmap model
  unmodel = fmap unmodel

  type EqTest [a] = Property
  equal x y = property (x == y)

instance (Eq a, TestData a) => TestData (Identity a) where
  type Model (Identity a) = Identity (Model a)
  model = fmap model
  unmodel = fmap unmodel

  type EqTest (Identity a) = Property
  equal = (property .) . on (==) runIdentity

instance (Eq a, TestData a, Eq b, TestData b, Monoid a) => TestData (Writer a b) where
  type Model (Writer a b) = Writer (Model a) (Model b)
  model = mapWriter model
  unmodel = mapWriter unmodel

  type EqTest (Writer a b) = Property
  equal = (property .) . on (==) runWriter

instance (Eq a, Eq b, TestData a, TestData b) => TestData (a,b) where
  type Model (a,b) = (Model a, Model b)
  model (a,b) = (model a, model b)
  unmodel (a,b) = (unmodel a, unmodel b)

  type EqTest (a,b) = Property
  equal x y = property (x == y)

instance (Eq a, Eq b, Eq c, TestData a, TestData b, TestData c) => TestData (a,b,c) where
  type Model (a,b,c) = (Model a, Model b, Model c)
  model (a,b,c) = (model a, model b, model c)
  unmodel (a,b,c) = (unmodel a, unmodel b, unmodel c)

  type EqTest (a,b,c) = Property
  equal x y = property (x == y)

instance (Arbitrary a, Show a, TestData a, TestData b) => TestData (a -> b) where
  type Model (a -> b) = Model a -> Model b
  model f = model . f . unmodel
  unmodel f = unmodel . f . model

  type EqTest (a -> b) = a -> EqTest b
  equal f g x = equal (f x) (g x)

newtype P a = P { unP :: EqTest a }

instance TestData a => Testable (P a) where
  property (P a) = property a

infix 4 `eq`
eq :: TestData a => a -> Model a -> P a
eq x y = P (equal x (unmodel y))

class Conclusion p where
  type Predicate p

  predicate :: Predicate p -> p -> p

instance Conclusion Property where
  type Predicate Property = Bool

  predicate = (==>)

instance Conclusion p => Conclusion (a -> p) where
  type Predicate (a -> p) = a -> Predicate p

  predicate f p = \x -> predicate (f x) (p x)

infixr 0 ===>
(===>) :: TestData a => Predicate (EqTest a) -> P a -> P a
p ===> P a = P (predicate p a)

notNull2 _ xs = not $ DVG.null xs
notNullS2 _ s = not $ S.null s

-- Generators
index_value_pairs :: Arbitrary a => Int -> Gen [(Int,a)]
index_value_pairs 0 = return []
index_value_pairs m = sized $ \n ->
  do
    len <- choose (0,n)
    is <- sequence [choose (0,m-1) | i <- [1..len]]
    xs <- vector len
    return $ zip is xs

indices :: Int -> Gen [Int]
indices 0 = return []
indices m = sized $ \n ->
  do
    len <- choose (0,n)
    sequence [choose (0,m-1) | i <- [1..len]]


-- Additional list functions
singleton x = [x]
snoc xs x = xs ++ [x]
generate n f = [f i | i <- [0 .. n-1]]
slice i n xs = take n (drop i xs)
backpermute xs is = map (xs!!) is
prescanl f z = init . scanl f z
postscanl f z = tail . scanl f z
prescanr f z = tail . scanr f z
postscanr f z = init . scanr f z

accum :: (a -> b -> a) -> [a] -> [(Int,b)] -> [a]
accum f xs ps = go xs ps' 0
  where
    ps' = sortBy (\p q -> compare (fst p) (fst q)) ps

    go (x:xs) ((i,y) : ps) j
      | i == j     = go (f x y : xs) ps j
    go (x:xs) ps j = x : go xs ps (j+1)
    go [] _ _      = []

(//) :: [a] -> [(Int, a)] -> [a]
xs // ps = go xs ps' 0
  where
    ps' = sortBy (\p q -> compare (fst p) (fst q)) ps

    go (x:xs) ((i,y) : ps) j
      | i == j     = go (y:xs) ps j
    go (x:xs) ps j = x : go xs ps (j+1)
    go [] _ _      = []


withIndexFirst m f = m (uncurry f) . zip [0..]

imap :: (Int -> a -> a) -> [a] -> [a]
imap = withIndexFirst map

imapM :: Monad m => (Int -> a -> m a) -> [a] -> m [a]
imapM = withIndexFirst mapM

imapM_ :: Monad m => (Int -> a -> m b) -> [a] -> m ()
imapM_ = withIndexFirst mapM_

izipWith :: (Int -> a -> a -> a) -> [a] -> [a] -> [a]
izipWith = withIndexFirst zipWith

izipWithM :: Monad m => (Int -> a -> a -> m a) -> [a] -> [a] -> m [a]
izipWithM = withIndexFirst zipWithM

izipWithM_ :: Monad m => (Int -> a -> a -> m b) -> [a] -> [a] -> m ()
izipWithM_ = withIndexFirst zipWithM_

izipWith3 :: (Int -> a -> a -> a -> a) -> [a] -> [a] -> [a] -> [a]
izipWith3 = withIndexFirst zipWith3

ifilter :: (Int -> a -> Bool) -> [a] -> [a]
ifilter f = map snd . withIndexFirst filter f

mapMaybe :: (a -> Maybe b) -> [a] -> [b]
mapMaybe f = catMaybes . map f

imapMaybe :: (Int -> a -> Maybe b) -> [a] -> [b]
imapMaybe f = catMaybes . withIndexFirst map f

indexedLeftFold fld f z = fld (uncurry . f) z . zip [0..]

ifoldl :: (a -> Int -> a -> a) -> a -> [a] -> a
ifoldl = indexedLeftFold foldl

iscanl :: (Int -> a -> b -> a) -> a -> [b] -> [a]
iscanl f z = scanl (\a (i, b) -> f i a b) z . zip [0..]

iscanr :: (Int -> a -> b -> b) -> b -> [a] -> [b]
iscanr f z = scanr (uncurry f) z . zip [0..]

ifoldr :: (Int -> a -> b -> b) -> b -> [a] -> b
ifoldr f z = foldr (uncurry f) z . zip [0..]

ifoldM :: Monad m => (a -> Int -> a -> m a) -> a -> [a] -> m a
ifoldM = indexedLeftFold foldM

ifoldM_ :: Monad m => (b -> Int -> a -> m b) -> b -> [a] -> m ()
ifoldM_ = indexedLeftFold foldM_

minIndex :: Ord a => [a] -> Int
minIndex = fst . foldr1 imin . zip [0..]
  where
    imin (i,x) (j,y) | x <= y    = (i,x)
                     | otherwise = (j,y)

maxIndex :: Ord a => [a] -> Int
maxIndex = fst . foldr1 imax . zip [0..]
  where
    imax (i,x) (j,y) | x >= y    = (i,x)
                     | otherwise = (j,y)

iterateNM :: Monad m => Int -> (a -> m a) -> a -> m [a]
iterateNM n f x
    | n <= 0    = return []
    | n == 1    = return [x]
    | otherwise =  do x' <- f x
                      xs <- iterateNM (n-1) f x'
                      return (x : xs)

unfoldrM :: Monad m => (b -> m (Maybe (a,b))) -> b -> m [a]
unfoldrM step b0 = do
    r <- step b0
    case r of
      Nothing    -> return []
      Just (a,b) -> do as <- unfoldrM step b
                       return (a : as)


limitUnfolds f (theirs, ours)
    | ours >= 0
    , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
    | otherwise                       = Nothing