about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Generic/Mutable.hs
blob: 89bebf360765dad30212c3ef36451f8b533d7cee (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
{-# LANGUAGE CPP, MultiParamTypeClasses, FlexibleContexts, BangPatterns, TypeFamilies, ScopedTypeVariables #-}
-- |
-- Module      : Data.Vector.Generic.Mutable
-- Copyright   : (c) Roman Leshchinskiy 2008-2010
-- License     : BSD-style
--
-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
-- Stability   : experimental
-- Portability : non-portable
--
-- Generic interface to mutable vectors
--

module Data.Vector.Generic.Mutable (
  -- * Class of mutable vector types
  MVector(..),

  -- * Accessors

  -- ** Length information
  length, null,

  -- ** Extracting subvectors
  slice, init, tail, take, drop, splitAt,
  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,

  -- ** Overlapping
  overlaps,

  -- * Construction

  -- ** Initialisation
  new, unsafeNew, replicate, replicateM, clone,

  -- ** Growing
  grow, unsafeGrow,
  growFront, unsafeGrowFront,

  -- ** Restricting memory usage
  clear,

  -- * Accessing individual elements
  read, write, modify, swap, exchange,
  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap, unsafeExchange,

  -- * Modifying vectors
  nextPermutation,

  -- ** Filling and copying
  set, copy, move, unsafeCopy, unsafeMove,

  -- * Internal operations
  mstream, mstreamR,
  unstream, unstreamR, vunstream,
  munstream, munstreamR,
  transform, transformR,
  fill, fillR,
  unsafeAccum, accum, unsafeUpdate, update, reverse,
  unstablePartition, unstablePartitionBundle, partitionBundle
) where

import           Data.Vector.Generic.Mutable.Base
import qualified Data.Vector.Generic.Base as V

import qualified Data.Vector.Fusion.Bundle      as Bundle
import           Data.Vector.Fusion.Bundle      ( Bundle, MBundle, Chunk(..) )
import qualified Data.Vector.Fusion.Bundle.Monadic as MBundle
import           Data.Vector.Fusion.Stream.Monadic ( Stream )
import qualified Data.Vector.Fusion.Stream.Monadic as Stream
import           Data.Vector.Fusion.Bundle.Size
import           Data.Vector.Fusion.Util        ( delay_inline )

import Control.Monad.Primitive ( PrimMonad, PrimState )

import Prelude hiding ( length, null, replicate, reverse, map, read,
                        take, drop, splitAt, init, tail )

#include "vector.h"

{-
type family Immutable (v :: * -> * -> *) :: * -> *

-- | Class of mutable vectors parametrised with a primitive state token.
--
class MBundle.Pointer u a => MVector v a where
  -- | Length of the mutable vector. This method should not be
  -- called directly, use 'length' instead.
  basicLength       :: v s a -> Int

  -- | Yield a part of the mutable vector without copying it. This method
  -- should not be called directly, use 'unsafeSlice' instead.
  basicUnsafeSlice :: Int  -- ^ starting index
                   -> Int  -- ^ length of the slice
                   -> v s a
                   -> v s a

  -- Check whether two vectors overlap. This method should not be
  -- called directly, use 'overlaps' instead.
  basicOverlaps    :: v s a -> v s a -> Bool

  -- | Create a mutable vector of the given length. This method should not be
  -- called directly, use 'unsafeNew' instead.
  basicUnsafeNew   :: PrimMonad m => Int -> m (v (PrimState m) a)

  -- | Create a mutable vector of the given length and fill it with an
  -- initial value. This method should not be called directly, use
  -- 'replicate' instead.
  basicUnsafeReplicate :: PrimMonad m => Int -> a -> m (v (PrimState m) a)

  -- | Yield the element at the given position. This method should not be
  -- called directly, use 'unsafeRead' instead.
  basicUnsafeRead  :: PrimMonad m => v (PrimState m) a -> Int -> m a

  -- | Replace the element at the given position. This method should not be
  -- called directly, use 'unsafeWrite' instead.
  basicUnsafeWrite :: PrimMonad m => v (PrimState m) a -> Int -> a -> m ()

  -- | Reset all elements of the vector to some undefined value, clearing all
  -- references to external objects. This is usually a noop for unboxed
  -- vectors. This method should not be called directly, use 'clear' instead.
  basicClear       :: PrimMonad m => v (PrimState m) a -> m ()

  -- | Set all elements of the vector to the given value. This method should
  -- not be called directly, use 'set' instead.
  basicSet         :: PrimMonad m => v (PrimState m) a -> a -> m ()

  basicUnsafeCopyPointer :: PrimMonad m => v (PrimState m) a
                                        -> Immutable v a
                                        -> m ()

  -- | Copy a vector. The two vectors may not overlap. This method should not
  -- be called directly, use 'unsafeCopy' instead.
  basicUnsafeCopy  :: PrimMonad m => v (PrimState m) a   -- ^ target
                                  -> v (PrimState m) a   -- ^ source
                                  -> m ()

  -- | Move the contents of a vector. The two vectors may overlap. This method
  -- should not be called directly, use 'unsafeMove' instead.
  basicUnsafeMove  :: PrimMonad m => v (PrimState m) a   -- ^ target
                                  -> v (PrimState m) a   -- ^ source
                                  -> m ()

  -- | Grow a vector by the given number of elements. This method should not be
  -- called directly, use 'unsafeGrow' instead.
  basicUnsafeGrow  :: PrimMonad m => v (PrimState m) a -> Int
                                                       -> m (v (PrimState m) a)

  {-# INLINE basicUnsafeReplicate #-}
  basicUnsafeReplicate n x
    = do
        v <- basicUnsafeNew n
        basicSet v x
        return v

  {-# INLINE basicClear #-}
  basicClear _ = return ()

  {-# INLINE basicSet #-}
  basicSet !v x
    | n == 0    = return ()
    | otherwise = do
                    basicUnsafeWrite v 0 x
                    do_set 1
    where
      !n = basicLength v

      do_set i | 2*i < n = do basicUnsafeCopy (basicUnsafeSlice i i v)
                                              (basicUnsafeSlice 0 i v)
                              do_set (2*i)
               | otherwise = basicUnsafeCopy (basicUnsafeSlice i (n-i) v)
                                             (basicUnsafeSlice 0 (n-i) v)

  {-# INLINE basicUnsafeCopyPointer #-}
  basicUnsafeCopyPointer !dst !src = do_copy 0 src
    where
      do_copy !i p | Just (x,q) <- MBundle.pget p = do
                                                      basicUnsafeWrite dst i x
                                                      do_copy (i+1) q
                   | otherwise = return ()

  {-# INLINE basicUnsafeCopy #-}
  basicUnsafeCopy !dst !src = do_copy 0
    where
      !n = basicLength src

      do_copy i | i < n = do
                            x <- basicUnsafeRead src i
                            basicUnsafeWrite dst i x
                            do_copy (i+1)
                | otherwise = return ()

  {-# INLINE basicUnsafeMove #-}
  basicUnsafeMove !dst !src
    | basicOverlaps dst src = do
        srcCopy <- clone src
        basicUnsafeCopy dst srcCopy
    | otherwise = basicUnsafeCopy dst src

  {-# INLINE basicUnsafeGrow #-}
  basicUnsafeGrow v by
    = do
        v' <- basicUnsafeNew (n+by)
        basicUnsafeCopy (basicUnsafeSlice 0 n v') v
        return v'
    where
      n = basicLength v
-}

-- ------------------
-- Internal functions
-- ------------------

unsafeAppend1 :: (PrimMonad m, MVector v a)
        => v (PrimState m) a -> Int -> a -> m (v (PrimState m) a)
{-# INLINE_INNER unsafeAppend1 #-}
    -- NOTE: The case distinction has to be on the outside because
    -- GHC creates a join point for the unsafeWrite even when everything
    -- is inlined. This is bad because with the join point, v isn't getting
    -- unboxed.
unsafeAppend1 v i x
  | i < length v = do
                     unsafeWrite v i x
                     return v
  | otherwise    = do
                     v' <- enlarge v
                     INTERNAL_CHECK(checkIndex) "unsafeAppend1" i (length v')
                       $ unsafeWrite v' i x
                     return v'

unsafePrepend1 :: (PrimMonad m, MVector v a)
        => v (PrimState m) a -> Int -> a -> m (v (PrimState m) a, Int)
{-# INLINE_INNER unsafePrepend1 #-}
unsafePrepend1 v i x
  | i /= 0    = do
                  let i' = i-1
                  unsafeWrite v i' x
                  return (v, i')
  | otherwise = do
                  (v', j) <- enlargeFront v
                  let i' = j-1
                  INTERNAL_CHECK(checkIndex) "unsafePrepend1" i' (length v')
                    $ unsafeWrite v' i' x
                  return (v', i')

mstream :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Stream m a
{-# INLINE mstream #-}
mstream v = v `seq` n `seq` (Stream.unfoldrM get 0)
  where
    n = length v

    {-# INLINE_INNER get #-}
    get i | i < n     = do x <- unsafeRead v i
                           return $ Just (x, i+1)
          | otherwise = return $ Nothing

fill :: (PrimMonad m, MVector v a)
     => v (PrimState m) a -> Stream m a -> m (v (PrimState m) a)
{-# INLINE fill #-}
fill v s = v `seq` do
                     n' <- Stream.foldM put 0 s
                     return $ unsafeSlice 0 n' v
  where
    {-# INLINE_INNER put #-}
    put i x = do
                INTERNAL_CHECK(checkIndex) "fill" i (length v)
                  $ unsafeWrite v i x
                return (i+1)

transform
  :: (PrimMonad m, MVector v a)
  => (Stream m a -> Stream m a) -> v (PrimState m) a -> m (v (PrimState m) a)
{-# INLINE_FUSED transform #-}
transform f v = fill v (f (mstream v))

mstreamR :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Stream m a
{-# INLINE mstreamR #-}
mstreamR v = v `seq` n `seq` (Stream.unfoldrM get n)
  where
    n = length v

    {-# INLINE_INNER get #-}
    get i | j >= 0    = do x <- unsafeRead v j
                           return $ Just (x,j)
          | otherwise = return Nothing
      where
        j = i-1

fillR :: (PrimMonad m, MVector v a)
      => v (PrimState m) a -> Stream m a -> m (v (PrimState m) a)
{-# INLINE fillR #-}
fillR v s = v `seq` do
                      i <- Stream.foldM put n s
                      return $ unsafeSlice i (n-i) v
  where
    n = length v

    {-# INLINE_INNER put #-}
    put i x = do
                unsafeWrite v j x
                return j
      where
        j = i-1

transformR
  :: (PrimMonad m, MVector v a)
  => (Stream m a -> Stream m a) -> v (PrimState m) a -> m (v (PrimState m) a)
{-# INLINE_FUSED transformR #-}
transformR f v = fillR v (f (mstreamR v))

-- | Create a new mutable vector and fill it with elements from the 'Bundle'.
-- The vector will grow exponentially if the maximum size of the 'Bundle' is
-- unknown.
unstream :: (PrimMonad m, MVector v a)
         => Bundle u a -> m (v (PrimState m) a)
-- NOTE: replace INLINE_FUSED by INLINE? (also in unstreamR)
{-# INLINE_FUSED unstream #-}
unstream s = munstream (Bundle.lift s)

-- | Create a new mutable vector and fill it with elements from the monadic
-- stream. The vector will grow exponentially if the maximum size of the stream
-- is unknown.
munstream :: (PrimMonad m, MVector v a)
          => MBundle m u a -> m (v (PrimState m) a)
{-# INLINE_FUSED munstream #-}
munstream s = case upperBound (MBundle.size s) of
               Just n  -> munstreamMax     s n
               Nothing -> munstreamUnknown s

-- FIXME: I can't think of how to prevent GHC from floating out
-- unstreamUnknown. That is bad because SpecConstr then generates two
-- specialisations: one for when it is called from unstream (it doesn't know
-- the shape of the vector) and one for when the vector has grown. To see the
-- problem simply compile this:
--
-- fromList = Data.Vector.Unboxed.unstream . Bundle.fromList
--
-- I'm not sure this still applies (19/04/2010)

munstreamMax :: (PrimMonad m, MVector v a)
             => MBundle m u a -> Int -> m (v (PrimState m) a)
{-# INLINE munstreamMax #-}
munstreamMax s n
  = do
      v <- INTERNAL_CHECK(checkLength) "munstreamMax" n
           $ unsafeNew n
      let put i x = do
                       INTERNAL_CHECK(checkIndex) "munstreamMax" i n
                         $ unsafeWrite v i x
                       return (i+1)
      n' <- MBundle.foldM' put 0 s
      return $ INTERNAL_CHECK(checkSlice) "munstreamMax" 0 n' n
             $ unsafeSlice 0 n' v

munstreamUnknown :: (PrimMonad m, MVector v a)
                 => MBundle m u a -> m (v (PrimState m) a)
{-# INLINE munstreamUnknown #-}
munstreamUnknown s
  = do
      v <- unsafeNew 0
      (v', n) <- MBundle.foldM put (v, 0) s
      return $ INTERNAL_CHECK(checkSlice) "munstreamUnknown" 0 n (length v')
             $ unsafeSlice 0 n v'
  where
    {-# INLINE_INNER put #-}
    put (v,i) x = do
                    v' <- unsafeAppend1 v i x
                    return (v',i+1)







-- | Create a new mutable vector and fill it with elements from the 'Bundle'.
-- The vector will grow exponentially if the maximum size of the 'Bundle' is
-- unknown.
vunstream :: (PrimMonad m, V.Vector v a)
         => Bundle v a -> m (V.Mutable v (PrimState m) a)
-- NOTE: replace INLINE_FUSED by INLINE? (also in unstreamR)
{-# INLINE_FUSED vunstream #-}
vunstream s = vmunstream (Bundle.lift s)

-- | Create a new mutable vector and fill it with elements from the monadic
-- stream. The vector will grow exponentially if the maximum size of the stream
-- is unknown.
vmunstream :: (PrimMonad m, V.Vector v a)
           => MBundle m v a -> m (V.Mutable v (PrimState m) a)
{-# INLINE_FUSED vmunstream #-}
vmunstream s = case upperBound (MBundle.size s) of
               Just n  -> vmunstreamMax     s n
               Nothing -> vmunstreamUnknown s

-- FIXME: I can't think of how to prevent GHC from floating out
-- unstreamUnknown. That is bad because SpecConstr then generates two
-- specialisations: one for when it is called from unstream (it doesn't know
-- the shape of the vector) and one for when the vector has grown. To see the
-- problem simply compile this:
--
-- fromList = Data.Vector.Unboxed.unstream . Bundle.fromList
--
-- I'm not sure this still applies (19/04/2010)

vmunstreamMax :: (PrimMonad m, V.Vector v a)
              => MBundle m v a -> Int -> m (V.Mutable v (PrimState m) a)
{-# INLINE vmunstreamMax #-}
vmunstreamMax s n
  = do
      v <- INTERNAL_CHECK(checkLength) "munstreamMax" n
           $ unsafeNew n
      let {-# INLINE_INNER copyChunk #-}
          copyChunk i (Chunk m f) =
            INTERNAL_CHECK(checkSlice) "munstreamMax.copyChunk" i m (length v) $ do
              f (basicUnsafeSlice i m v)
              return (i+m)

      n' <- Stream.foldlM' copyChunk 0 (MBundle.chunks s)
      return $ INTERNAL_CHECK(checkSlice) "munstreamMax" 0 n' n
             $ unsafeSlice 0 n' v

vmunstreamUnknown :: (PrimMonad m, V.Vector v a)
                 => MBundle m v a -> m (V.Mutable v (PrimState m) a)
{-# INLINE vmunstreamUnknown #-}
vmunstreamUnknown s
  = do
      v <- unsafeNew 0
      (v', n) <- Stream.foldlM copyChunk (v,0) (MBundle.chunks s)
      return $ INTERNAL_CHECK(checkSlice) "munstreamUnknown" 0 n (length v')
             $ unsafeSlice 0 n v'
  where
    {-# INLINE_INNER copyChunk #-}
    copyChunk (v,i) (Chunk n f)
      = do
          let j = i+n
          v' <- if basicLength v < j
                  then unsafeGrow v (delay_inline max (enlarge_delta v) (j - basicLength v))
                  else return v
          INTERNAL_CHECK(checkSlice) "munstreamUnknown.copyChunk" i n (length v')
            $ f (basicUnsafeSlice i n v')
          return (v',j)




-- | Create a new mutable vector and fill it with elements from the 'Bundle'
-- from right to left. The vector will grow exponentially if the maximum size
-- of the 'Bundle' is unknown.
unstreamR :: (PrimMonad m, MVector v a)
          => Bundle u a -> m (v (PrimState m) a)
-- NOTE: replace INLINE_FUSED by INLINE? (also in unstream)
{-# INLINE_FUSED unstreamR #-}
unstreamR s = munstreamR (Bundle.lift s)

-- | Create a new mutable vector and fill it with elements from the monadic
-- stream from right to left. The vector will grow exponentially if the maximum
-- size of the stream is unknown.
munstreamR :: (PrimMonad m, MVector v a)
           => MBundle m u a -> m (v (PrimState m) a)
{-# INLINE_FUSED munstreamR #-}
munstreamR s = case upperBound (MBundle.size s) of
               Just n  -> munstreamRMax     s n
               Nothing -> munstreamRUnknown s

munstreamRMax :: (PrimMonad m, MVector v a)
              => MBundle m u a -> Int -> m (v (PrimState m) a)
{-# INLINE munstreamRMax #-}
munstreamRMax s n
  = do
      v <- INTERNAL_CHECK(checkLength) "munstreamRMax" n
           $ unsafeNew n
      let put i x = do
                      let i' = i-1
                      INTERNAL_CHECK(checkIndex) "munstreamRMax" i' n
                        $ unsafeWrite v i' x
                      return i'
      i <- MBundle.foldM' put n s
      return $ INTERNAL_CHECK(checkSlice) "munstreamRMax" i (n-i) n
             $ unsafeSlice i (n-i) v

munstreamRUnknown :: (PrimMonad m, MVector v a)
                  => MBundle m u a -> m (v (PrimState m) a)
{-# INLINE munstreamRUnknown #-}
munstreamRUnknown s
  = do
      v <- unsafeNew 0
      (v', i) <- MBundle.foldM put (v, 0) s
      let n = length v'
      return $ INTERNAL_CHECK(checkSlice) "unstreamRUnknown" i (n-i) n
             $ unsafeSlice i (n-i) v'
  where
    {-# INLINE_INNER put #-}
    put (v,i) x = unsafePrepend1 v i x

-- Length
-- ------

-- | Length of the mutable vector.
length :: MVector v a => v s a -> Int
{-# INLINE length #-}
length = basicLength

-- | Check whether the vector is empty
null :: MVector v a => v s a -> Bool
{-# INLINE null #-}
null v = length v == 0

-- Extracting subvectors
-- ---------------------

-- | Yield a part of the mutable vector without copying it.
slice :: MVector v a => Int -> Int -> v s a -> v s a
{-# INLINE slice #-}
slice i n v = BOUNDS_CHECK(checkSlice) "slice" i n (length v)
            $ unsafeSlice i n v

take :: MVector v a => Int -> v s a -> v s a
{-# INLINE take #-}
take n v = unsafeSlice 0 (min (max n 0) (length v)) v

drop :: MVector v a => Int -> v s a -> v s a
{-# INLINE drop #-}
drop n v = unsafeSlice (min m n') (max 0 (m - n')) v
  where
    n' = max n 0
    m  = length v

{-# INLINE splitAt #-}
splitAt :: MVector v a => Int -> v s a -> (v s a, v s a)
splitAt n v = ( unsafeSlice 0 m v
              , unsafeSlice m (max 0 (len - n')) v
              )
    where
      m   = min n' len
      n'  = max n 0
      len = length v

init :: MVector v a => v s a -> v s a
{-# INLINE init #-}
init v = slice 0 (length v - 1) v

tail :: MVector v a => v s a -> v s a
{-# INLINE tail #-}
tail v = slice 1 (length v - 1) v

-- | Yield a part of the mutable vector without copying it. No bounds checks
-- are performed.
unsafeSlice :: MVector v a => Int  -- ^ starting index
                           -> Int  -- ^ length of the slice
                           -> v s a
                           -> v s a
{-# INLINE unsafeSlice #-}
unsafeSlice i n v = UNSAFE_CHECK(checkSlice) "unsafeSlice" i n (length v)
                  $ basicUnsafeSlice i n v

unsafeInit :: MVector v a => v s a -> v s a
{-# INLINE unsafeInit #-}
unsafeInit v = unsafeSlice 0 (length v - 1) v

unsafeTail :: MVector v a => v s a -> v s a
{-# INLINE unsafeTail #-}
unsafeTail v = unsafeSlice 1 (length v - 1) v

unsafeTake :: MVector v a => Int -> v s a -> v s a
{-# INLINE unsafeTake #-}
unsafeTake n v = unsafeSlice 0 n v

unsafeDrop :: MVector v a => Int -> v s a -> v s a
{-# INLINE unsafeDrop #-}
unsafeDrop n v = unsafeSlice n (length v - n) v

-- Overlapping
-- -----------

-- | Check whether two vectors overlap.
overlaps :: MVector v a => v s a -> v s a -> Bool
{-# INLINE overlaps #-}
overlaps = basicOverlaps

-- Initialisation
-- --------------

-- | Create a mutable vector of the given length.
new :: (PrimMonad m, MVector v a) => Int -> m (v (PrimState m) a)
{-# INLINE new #-}
new n = BOUNDS_CHECK(checkLength) "new" n
      $ unsafeNew n >>= \v -> basicInitialize v >> return v

-- | Create a mutable vector of the given length. The memory is not initialized.
unsafeNew :: (PrimMonad m, MVector v a) => Int -> m (v (PrimState m) a)
{-# INLINE unsafeNew #-}
unsafeNew n = UNSAFE_CHECK(checkLength) "unsafeNew" n
            $ basicUnsafeNew n

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with an initial value.
replicate :: (PrimMonad m, MVector v a) => Int -> a -> m (v (PrimState m) a)
{-# INLINE replicate #-}
replicate n x = basicUnsafeReplicate (delay_inline max 0 n) x

-- | Create a mutable vector of the given length (0 if the length is negative)
-- and fill it with values produced by repeatedly executing the monadic action.
replicateM :: (PrimMonad m, MVector v a) => Int -> m a -> m (v (PrimState m) a)
{-# INLINE replicateM #-}
replicateM n m = munstream (MBundle.replicateM n m)

-- | Create a copy of a mutable vector.
clone :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m (v (PrimState m) a)
{-# INLINE clone #-}
clone v = do
            v' <- unsafeNew (length v)
            unsafeCopy v' v
            return v'

-- Growing
-- -------

-- | Grow a vector by the given number of elements. The number must be
-- positive.
grow :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> Int -> m (v (PrimState m) a)
{-# INLINE grow #-}
grow v by = BOUNDS_CHECK(checkLength) "grow" by
          $ do vnew <- unsafeGrow v by
               basicInitialize $ basicUnsafeSlice (length v) by vnew
               return vnew

growFront :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> Int -> m (v (PrimState m) a)
{-# INLINE growFront #-}
growFront v by = BOUNDS_CHECK(checkLength) "growFront" by
               $ do vnew <- unsafeGrowFront v by
                    basicInitialize $ basicUnsafeSlice 0 by vnew
                    return vnew

enlarge_delta :: MVector v a => v s a -> Int
enlarge_delta v = max (length v) 1

-- | Grow a vector logarithmically
enlarge :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> m (v (PrimState m) a)
{-# INLINE enlarge #-}
enlarge v = do vnew <- unsafeGrow v by
               basicInitialize $ basicUnsafeSlice (length v) by vnew
               return vnew
  where
    by = enlarge_delta v

enlargeFront :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> m (v (PrimState m) a, Int)
{-# INLINE enlargeFront #-}
enlargeFront v = do
                   v' <- unsafeGrowFront v by
                   basicInitialize $ basicUnsafeSlice 0 by v'
                   return (v', by)
  where
    by = enlarge_delta v

-- | Grow a vector by the given number of elements. The number must be
-- positive but this is not checked.
unsafeGrow :: (PrimMonad m, MVector v a)
                        => v (PrimState m) a -> Int -> m (v (PrimState m) a)
{-# INLINE unsafeGrow #-}
unsafeGrow v n = UNSAFE_CHECK(checkLength) "unsafeGrow" n
               $ basicUnsafeGrow v n

unsafeGrowFront :: (PrimMonad m, MVector v a)
                        => v (PrimState m) a -> Int -> m (v (PrimState m) a)
{-# INLINE unsafeGrowFront #-}
unsafeGrowFront v by = UNSAFE_CHECK(checkLength) "unsafeGrowFront" by
                     $ do
                         let n = length v
                         v' <- basicUnsafeNew (by+n)
                         basicUnsafeCopy (basicUnsafeSlice by n v') v
                         return v'

-- Restricting memory usage
-- ------------------------

-- | Reset all elements of the vector to some undefined value, clearing all
-- references to external objects. This is usually a noop for unboxed vectors.
clear :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m ()
{-# INLINE clear #-}
clear = basicClear

-- Accessing individual elements
-- -----------------------------

-- | Yield the element at the given position.
read :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> m a
{-# INLINE read #-}
read v i = BOUNDS_CHECK(checkIndex) "read" i (length v)
         $ unsafeRead v i

-- | Replace the element at the given position.
write :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> a -> m ()
{-# INLINE write #-}
write v i x = BOUNDS_CHECK(checkIndex) "write" i (length v)
            $ unsafeWrite v i x

-- | Modify the element at the given position.
modify :: (PrimMonad m, MVector v a) => v (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE modify #-}
modify v f i = BOUNDS_CHECK(checkIndex) "modify" i (length v)
             $ unsafeModify v f i

-- | Swap the elements at the given positions.
swap :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> Int -> m ()
{-# INLINE swap #-}
swap v i j = BOUNDS_CHECK(checkIndex) "swap" i (length v)
           $ BOUNDS_CHECK(checkIndex) "swap" j (length v)
           $ unsafeSwap v i j

-- | Replace the element at the give position and return the old element.
exchange :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> a -> m a
{-# INLINE exchange #-}
exchange v i x = BOUNDS_CHECK(checkIndex) "exchange" i (length v)
               $ unsafeExchange v i x

-- | Yield the element at the given position. No bounds checks are performed.
unsafeRead :: (PrimMonad m, MVector v a) => v (PrimState m) a -> Int -> m a
{-# INLINE unsafeRead #-}
unsafeRead v i = UNSAFE_CHECK(checkIndex) "unsafeRead" i (length v)
               $ basicUnsafeRead v i

-- | Replace the element at the given position. No bounds checks are performed.
unsafeWrite :: (PrimMonad m, MVector v a)
                                => v (PrimState m) a -> Int -> a -> m ()
{-# INLINE unsafeWrite #-}
unsafeWrite v i x = UNSAFE_CHECK(checkIndex) "unsafeWrite" i (length v)
                  $ basicUnsafeWrite v i x

-- | Modify the element at the given position. No bounds checks are performed.
unsafeModify :: (PrimMonad m, MVector v a) => v (PrimState m) a -> (a -> a) -> Int -> m ()
{-# INLINE unsafeModify #-}
unsafeModify v f i = UNSAFE_CHECK(checkIndex) "unsafeModify" i (length v)
                   $ basicUnsafeRead v i >>= \x ->
                     basicUnsafeWrite v i (f x)

-- | Swap the elements at the given positions. No bounds checks are performed.
unsafeSwap :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> Int -> Int -> m ()
{-# INLINE unsafeSwap #-}
unsafeSwap v i j = UNSAFE_CHECK(checkIndex) "unsafeSwap" i (length v)
                 $ UNSAFE_CHECK(checkIndex) "unsafeSwap" j (length v)
                 $ do
                     x <- unsafeRead v i
                     y <- unsafeRead v j
                     unsafeWrite v i y
                     unsafeWrite v j x

-- | Replace the element at the give position and return the old element. No
-- bounds checks are performed.
unsafeExchange :: (PrimMonad m, MVector v a)
                                => v (PrimState m) a -> Int -> a -> m a
{-# INLINE unsafeExchange #-}
unsafeExchange v i x = UNSAFE_CHECK(checkIndex) "unsafeExchange" i (length v)
                     $ do
                         y <- unsafeRead v i
                         unsafeWrite v i x
                         return y

-- Filling and copying
-- -------------------

-- | Set all elements of the vector to the given value.
set :: (PrimMonad m, MVector v a) => v (PrimState m) a -> a -> m ()
{-# INLINE set #-}
set = basicSet

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap.
copy :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
                                   -> v (PrimState m) a   -- ^ source
                                   -> m ()
{-# INLINE copy #-}
copy dst src = BOUNDS_CHECK(check) "copy" "overlapping vectors"
                                          (not (dst `overlaps` src))
             $ BOUNDS_CHECK(check) "copy" "length mismatch"
                                          (length dst == length src)
             $ unsafeCopy dst src

-- | Move the contents of a vector. The two vectors must have the same
-- length.
--
-- If the vectors do not overlap, then this is equivalent to 'copy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
move :: (PrimMonad m, MVector v a)
                => v (PrimState m) a -> v (PrimState m) a -> m ()
{-# INLINE move #-}
move dst src = BOUNDS_CHECK(check) "move" "length mismatch"
                                          (length dst == length src)
             $ unsafeMove dst src

-- | Copy a vector. The two vectors must have the same length and may not
-- overlap. This is not checked.
unsafeCopy :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
                                         -> v (PrimState m) a   -- ^ source
                                         -> m ()
{-# INLINE unsafeCopy #-}
unsafeCopy dst src = UNSAFE_CHECK(check) "unsafeCopy" "length mismatch"
                                         (length dst == length src)
                   $ UNSAFE_CHECK(check) "unsafeCopy" "overlapping vectors"
                                         (not (dst `overlaps` src))
                   $ (dst `seq` src `seq` basicUnsafeCopy dst src)

-- | Move the contents of a vector. The two vectors must have the same
-- length, but this is not checked.
--
-- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
-- Otherwise, the copying is performed as if the source vector were
-- copied to a temporary vector and then the temporary vector was copied
-- to the target vector.
unsafeMove :: (PrimMonad m, MVector v a) => v (PrimState m) a   -- ^ target
                                         -> v (PrimState m) a   -- ^ source
                                         -> m ()
{-# INLINE unsafeMove #-}
unsafeMove dst src = UNSAFE_CHECK(check) "unsafeMove" "length mismatch"
                                         (length dst == length src)
                   $ (dst `seq` src `seq` basicUnsafeMove dst src)

-- Permutations
-- ------------

accum :: (PrimMonad m, MVector v a)
      => (a -> b -> a) -> v (PrimState m) a -> Bundle u (Int, b) -> m ()
{-# INLINE accum #-}
accum f !v s = Bundle.mapM_ upd s
  where
    {-# INLINE_INNER upd #-}
    upd (i,b) = do
                  a <- BOUNDS_CHECK(checkIndex) "accum" i n
                     $ unsafeRead v i
                  unsafeWrite v i (f a b)

    !n = length v

update :: (PrimMonad m, MVector v a)
                        => v (PrimState m) a -> Bundle u (Int, a) -> m ()
{-# INLINE update #-}
update !v s = Bundle.mapM_ upd s
  where
    {-# INLINE_INNER upd #-}
    upd (i,b) = BOUNDS_CHECK(checkIndex) "update" i n
              $ unsafeWrite v i b

    !n = length v

unsafeAccum :: (PrimMonad m, MVector v a)
            => (a -> b -> a) -> v (PrimState m) a -> Bundle u (Int, b) -> m ()
{-# INLINE unsafeAccum #-}
unsafeAccum f !v s = Bundle.mapM_ upd s
  where
    {-# INLINE_INNER upd #-}
    upd (i,b) = do
                  a <- UNSAFE_CHECK(checkIndex) "accum" i n
                     $ unsafeRead v i
                  unsafeWrite v i (f a b)

    !n = length v

unsafeUpdate :: (PrimMonad m, MVector v a)
                        => v (PrimState m) a -> Bundle u (Int, a) -> m ()
{-# INLINE unsafeUpdate #-}
unsafeUpdate !v s = Bundle.mapM_ upd s
  where
    {-# INLINE_INNER upd #-}
    upd (i,b) = UNSAFE_CHECK(checkIndex) "accum" i n
                  $ unsafeWrite v i b

    !n = length v

reverse :: (PrimMonad m, MVector v a) => v (PrimState m) a -> m ()
{-# INLINE reverse #-}
reverse !v = reverse_loop 0 (length v - 1)
  where
    reverse_loop i j | i < j = do
                                 unsafeSwap v i j
                                 reverse_loop (i + 1) (j - 1)
    reverse_loop _ _ = return ()

unstablePartition :: forall m v a. (PrimMonad m, MVector v a)
                  => (a -> Bool) -> v (PrimState m) a -> m Int
{-# INLINE unstablePartition #-}
unstablePartition f !v = from_left 0 (length v)
  where
    -- NOTE: GHC 6.10.4 panics without the signatures on from_left and
    -- from_right
    from_left :: Int -> Int -> m Int
    from_left i j
      | i == j    = return i
      | otherwise = do
                      x <- unsafeRead v i
                      if f x
                        then from_left (i+1) j
                        else from_right i (j-1)

    from_right :: Int -> Int -> m Int
    from_right i j
      | i == j    = return i
      | otherwise = do
                      x <- unsafeRead v j
                      if f x
                        then do
                               y <- unsafeRead v i
                               unsafeWrite v i x
                               unsafeWrite v j y
                               from_left (i+1) j
                        else from_right i (j-1)

unstablePartitionBundle :: (PrimMonad m, MVector v a)
        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
{-# INLINE unstablePartitionBundle #-}
unstablePartitionBundle f s
  = case upperBound (Bundle.size s) of
      Just n  -> unstablePartitionMax f s n
      Nothing -> partitionUnknown f s

unstablePartitionMax :: (PrimMonad m, MVector v a)
        => (a -> Bool) -> Bundle u a -> Int
        -> m (v (PrimState m) a, v (PrimState m) a)
{-# INLINE unstablePartitionMax #-}
unstablePartitionMax f s n
  = do
      v <- INTERNAL_CHECK(checkLength) "unstablePartitionMax" n
           $ unsafeNew n
      let {-# INLINE_INNER put #-}
          put (i, j) x
            | f x       = do
                            unsafeWrite v i x
                            return (i+1, j)
            | otherwise = do
                            unsafeWrite v (j-1) x
                            return (i, j-1)

      (i,j) <- Bundle.foldM' put (0, n) s
      return (unsafeSlice 0 i v, unsafeSlice j (n-j) v)

partitionBundle :: (PrimMonad m, MVector v a)
        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
{-# INLINE partitionBundle #-}
partitionBundle f s
  = case upperBound (Bundle.size s) of
      Just n  -> partitionMax f s n
      Nothing -> partitionUnknown f s

partitionMax :: (PrimMonad m, MVector v a)
  => (a -> Bool) -> Bundle u a -> Int -> m (v (PrimState m) a, v (PrimState m) a)
{-# INLINE partitionMax #-}
partitionMax f s n
  = do
      v <- INTERNAL_CHECK(checkLength) "unstablePartitionMax" n
         $ unsafeNew n

      let {-# INLINE_INNER put #-}
          put (i,j) x
            | f x       = do
                            unsafeWrite v i x
                            return (i+1,j)

            | otherwise = let j' = j-1 in
                          do
                            unsafeWrite v j' x
                            return (i,j')

      (i,j) <- Bundle.foldM' put (0,n) s
      INTERNAL_CHECK(check) "partitionMax" "invalid indices" (i <= j)
        $ return ()
      let l = unsafeSlice 0 i v
          r = unsafeSlice j (n-j) v
      reverse r
      return (l,r)

partitionUnknown :: (PrimMonad m, MVector v a)
        => (a -> Bool) -> Bundle u a -> m (v (PrimState m) a, v (PrimState m) a)
{-# INLINE partitionUnknown #-}
partitionUnknown f s
  = do
      v1 <- unsafeNew 0
      v2 <- unsafeNew 0
      (v1', n1, v2', n2) <- Bundle.foldM' put (v1, 0, v2, 0) s
      INTERNAL_CHECK(checkSlice) "partitionUnknown" 0 n1 (length v1')
        $ INTERNAL_CHECK(checkSlice) "partitionUnknown" 0 n2 (length v2')
        $ return (unsafeSlice 0 n1 v1', unsafeSlice 0 n2 v2')
  where
    -- NOTE: The case distinction has to be on the outside because
    -- GHC creates a join point for the unsafeWrite even when everything
    -- is inlined. This is bad because with the join point, v isn't getting
    -- unboxed.
    {-# INLINE_INNER put #-}
    put (v1, i1, v2, i2) x
      | f x       = do
                      v1' <- unsafeAppend1 v1 i1 x
                      return (v1', i1+1, v2, i2)
      | otherwise = do
                      v2' <- unsafeAppend1 v2 i2 x
                      return (v1, i1, v2', i2+1)

{-
http://en.wikipedia.org/wiki/Permutation#Algorithms_to_generate_permutations

The following algorithm generates the next permutation lexicographically after
a given permutation. It changes the given permutation in-place.

1. Find the largest index k such that a[k] < a[k + 1]. If no such index exists,
   the permutation is the last permutation.
2. Find the largest index l greater than k such that a[k] < a[l].
3. Swap the value of a[k] with that of a[l].
4. Reverse the sequence from a[k + 1] up to and including the final element a[n]
-}

-- | Compute the next (lexicographically) permutation of given vector in-place.
--   Returns False when input is the last permtuation
nextPermutation :: (PrimMonad m,Ord e,MVector v e) => v (PrimState m) e -> m Bool
nextPermutation v
    | dim < 2 = return False
    | otherwise = do
        val <- unsafeRead v 0
        (k,l) <- loop val (-1) 0 val 1
        if k < 0
         then return False
         else unsafeSwap v k l >>
              reverse (unsafeSlice (k+1) (dim-k-1) v) >>
              return True
    where loop !kval !k !l !prev !i
              | i == dim = return (k,l)
              | otherwise  = do
                  cur <- unsafeRead v i
                  -- TODO: make tuple unboxed
                  let (kval',k') = if prev < cur then (prev,i-1) else (kval,k)
                      l' = if kval' < cur then i else l
                  loop kval' k' l' cur (i+1)
          dim = length v