about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/transformers/Control/Applicative/Lift.hs
blob: 8d35e288c025bc5e42b2ff588f2ab7ba61ca6f05 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
{-# LANGUAGE CPP #-}
#if __GLASGOW_HASKELL__ >= 702
{-# LANGUAGE Safe #-}
#endif
#if __GLASGOW_HASKELL__ >= 710
{-# LANGUAGE AutoDeriveTypeable #-}
#endif
-----------------------------------------------------------------------------
-- |
-- Module      :  Control.Applicative.Lift
-- Copyright   :  (c) Ross Paterson 2010
-- License     :  BSD-style (see the file LICENSE)
--
-- Maintainer  :  R.Paterson@city.ac.uk
-- Stability   :  experimental
-- Portability :  portable
--
-- Adding a new kind of pure computation to an applicative functor.
-----------------------------------------------------------------------------

module Control.Applicative.Lift (
    -- * Lifting an applicative
    Lift(..),
    unLift,
    mapLift,
    elimLift,
    -- * Collecting errors
    Errors,
    runErrors,
    failure,
    eitherToErrors
  ) where

import Data.Functor.Classes

import Control.Applicative
import Data.Foldable (Foldable(foldMap))
import Data.Functor.Constant
import Data.Monoid (Monoid(..))
import Data.Traversable (Traversable(traverse))

-- | Applicative functor formed by adding pure computations to a given
-- applicative functor.
data Lift f a = Pure a | Other (f a)

instance (Eq1 f) => Eq1 (Lift f) where
    liftEq eq (Pure x1) (Pure x2) = eq x1 x2
    liftEq _ (Pure _) (Other _) = False
    liftEq _ (Other _) (Pure _) = False
    liftEq eq (Other y1) (Other y2) = liftEq eq y1 y2
    {-# INLINE liftEq #-}

instance (Ord1 f) => Ord1 (Lift f) where
    liftCompare comp (Pure x1) (Pure x2) = comp x1 x2
    liftCompare _ (Pure _) (Other _) = LT
    liftCompare _ (Other _) (Pure _) = GT
    liftCompare comp (Other y1) (Other y2) = liftCompare comp y1 y2
    {-# INLINE liftCompare #-}

instance (Read1 f) => Read1 (Lift f) where
    liftReadsPrec rp rl = readsData $
        readsUnaryWith rp "Pure" Pure `mappend`
        readsUnaryWith (liftReadsPrec rp rl) "Other" Other

instance (Show1 f) => Show1 (Lift f) where
    liftShowsPrec sp _ d (Pure x) = showsUnaryWith sp "Pure" d x
    liftShowsPrec sp sl d (Other y) =
        showsUnaryWith (liftShowsPrec sp sl) "Other" d y

instance (Eq1 f, Eq a) => Eq (Lift f a) where (==) = eq1
instance (Ord1 f, Ord a) => Ord (Lift f a) where compare = compare1
instance (Read1 f, Read a) => Read (Lift f a) where readsPrec = readsPrec1
instance (Show1 f, Show a) => Show (Lift f a) where showsPrec = showsPrec1

instance (Functor f) => Functor (Lift f) where
    fmap f (Pure x) = Pure (f x)
    fmap f (Other y) = Other (fmap f y)
    {-# INLINE fmap #-}

instance (Foldable f) => Foldable (Lift f) where
    foldMap f (Pure x) = f x
    foldMap f (Other y) = foldMap f y
    {-# INLINE foldMap #-}

instance (Traversable f) => Traversable (Lift f) where
    traverse f (Pure x) = Pure <$> f x
    traverse f (Other y) = Other <$> traverse f y
    {-# INLINE traverse #-}

-- | A combination is 'Pure' only if both parts are.
instance (Applicative f) => Applicative (Lift f) where
    pure = Pure
    {-# INLINE pure #-}
    Pure f <*> Pure x = Pure (f x)
    Pure f <*> Other y = Other (f <$> y)
    Other f <*> Pure x = Other (($ x) <$> f)
    Other f <*> Other y = Other (f <*> y)
    {-# INLINE (<*>) #-}

-- | A combination is 'Pure' only either part is.
instance (Alternative f) => Alternative (Lift f) where
    empty = Other empty
    {-# INLINE empty #-}
    Pure x <|> _ = Pure x
    Other _ <|> Pure y = Pure y
    Other x <|> Other y = Other (x <|> y)
    {-# INLINE (<|>) #-}

-- | Projection to the other functor.
unLift :: (Applicative f) => Lift f a -> f a
unLift (Pure x) = pure x
unLift (Other e) = e
{-# INLINE unLift #-}

-- | Apply a transformation to the other computation.
mapLift :: (f a -> g a) -> Lift f a -> Lift g a
mapLift _ (Pure x) = Pure x
mapLift f (Other e) = Other (f e)
{-# INLINE mapLift #-}

-- | Eliminator for 'Lift'.
--
-- * @'elimLift' f g . 'pure' = f@
--
-- * @'elimLift' f g . 'Other' = g@
--
elimLift :: (a -> r) -> (f a -> r) -> Lift f a -> r
elimLift f _ (Pure x) = f x
elimLift _ g (Other e) = g e
{-# INLINE elimLift #-}

-- | An applicative functor that collects a monoid (e.g. lists) of errors.
-- A sequence of computations fails if any of its components do, but
-- unlike monads made with 'ExceptT' from "Control.Monad.Trans.Except",
-- these computations continue after an error, collecting all the errors.
--
-- * @'pure' f '<*>' 'pure' x = 'pure' (f x)@
--
-- * @'pure' f '<*>' 'failure' e = 'failure' e@
--
-- * @'failure' e '<*>' 'pure' x = 'failure' e@
--
-- * @'failure' e1 '<*>' 'failure' e2 = 'failure' (e1 '<>' e2)@
--
type Errors e = Lift (Constant e)

-- | Extractor for computations with accumulating errors.
--
-- * @'runErrors' ('pure' x) = 'Right' x@
--
-- * @'runErrors' ('failure' e) = 'Left' e@
--
runErrors :: Errors e a -> Either e a
runErrors (Other (Constant e)) = Left e
runErrors (Pure x) = Right x
{-# INLINE runErrors #-}

-- | Report an error.
failure :: e -> Errors e a
failure e = Other (Constant e)
{-# INLINE failure #-}

-- | Convert from 'Either' to 'Errors' (inverse of 'runErrors').
eitherToErrors :: Either e a -> Errors e a
eitherToErrors = either failure Pure