about summary refs log tree commit diff
path: root/nix/buildkite/default.nix
blob: 9abba9408adac88d01dcb37cefb3bdf05d00b748 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
# Logic for generating Buildkite pipelines from Nix build targets read
# by //nix/readTree.
#
# It outputs a "YAML" (actually JSON) file which is evaluated and
# submitted to Buildkite at the start of each build.
#
# The structure of the file that is being created is documented here:
#   https://buildkite.com/docs/pipelines/defining-steps
{ depot, pkgs, ... }:

let
  inherit (builtins)
    attrValues
    concatLists
    concatStringsSep
    elem
    foldl'
    hasAttr
    hashString
    isNull
    isString
    length
    listToAttrs
    mapAttrs
    toJSON
    unsafeDiscardStringContext;

  inherit (pkgs) lib runCommand writeText;
  inherit (depot.nix.readTree) mkLabel;

  inherit (depot.nix) dependency-analyzer;
in
rec {
  # Create a unique key for the buildkite pipeline based on the given derivation
  # or drvPath. A consequence of using such keys is that every derivation may
  # only be exposed as a single, unique step in the pipeline.
  keyForDrv = drvOrPath:
    let
      drvPath =
        if lib.isDerivation drvOrPath then drvOrPath.drvPath
        else if lib.isString drvOrPath then drvOrPath
        else builtins.throw "keyForDrv: expected string or derivation";

      # Only use the drv hash to prevent escaping problems. Buildkite also has a
      # limit of 100 characters on keys.
    in
    "drv-" + (builtins.substring 0 32
      (builtins.baseNameOf (unsafeDiscardStringContext drvPath))
    );

  # Given an arbitrary attribute path generate a Nix expression which obtains
  # this from the root of depot (assumed to be ./.). Attributes may be any
  # Nix strings suitable as attribute names, not just Nix literal-safe strings.
  mkBuildExpr = attrPath:
    let
      descend = expr: attr: "builtins.getAttr \"${attr}\" (${expr})";
    in
    foldl' descend "import ./. {}" attrPath;

  # Determine whether to skip a target if it has not diverged from the
  # HEAD branch.
  shouldSkip = { parentTargetMap ? { }, label, drvPath }:
    if (hasAttr label parentTargetMap) && parentTargetMap."${label}".drvPath == drvPath
    then "Target has not changed."
    else false;

  # Create build command for an attribute path pointing to a derivation.
  mkBuildCommand = { attrPath, drvPath, outLink ? "result" }: concatStringsSep " " [
    # If the nix build fails, the Nix command's exit status should be used.
    "set -o pipefail;"

    # First try to realise the drvPath of the target so we don't evaluate twice.
    # Nix has no concept of depending on a derivation file without depending on
    # at least one of its `outPath`s, so we need to discard the string context
    # if we don't want to build everything during pipeline construction.
    #
    # To make this more uniform with how nix-build(1) works, we call realpath(1)
    # on nix-store(1)'s output since it has the habit of printing the path of the
    # out link, not the store path.
    "(nix-store --realise '${drvPath}' --add-root '${outLink}' --indirect | xargs -r realpath)"

    # Since we don't gcroot the derivation files, they may be deleted by the
    # garbage collector. In that case we can reevaluate and build the attribute
    # using nix-build.
    "|| (test ! -f '${drvPath}' && nix-build -E '${mkBuildExpr attrPath}' --show-trace --out-link '${outLink}')"
  ];

  # Attribute path of a target relative to the depot root. Needs to take into
  # account whether the target is a physical target (which corresponds to a path
  # in the filesystem) or the subtarget of a physical target.
  targetAttrPath = target:
    target.__readTree
    ++ lib.optionals (target ? __subtarget) [ target.__subtarget ];

  # Given a derivation (identified by drvPath) that is part of the list of
  # targets passed to mkPipeline, determine all derivations that it depends on
  # and are also part of the pipeline. Finally, return the keys of the steps
  # that build them. This is used to populate `depends_on` in `mkStep`.
  #
  # See //nix/dependency-analyzer for documentation on the structure of `targetDepMap`.
  getTargetPipelineDeps = targetDepMap: drvPath:
    # Sanity check: We should only call this function on targets explicitly
    # passed to mkPipeline. Thus it should have been passed as a “known” drv to
    # dependency-analyzer.
    assert targetDepMap.${drvPath}.known;
    builtins.map keyForDrv targetDepMap.${drvPath}.knownDeps;

  # Create a pipeline step from a single target.
  mkStep = { headBranch, parentTargetMap, targetDepMap, target, cancelOnBuildFailing }:
    let
      label = mkLabel target;
      drvPath = unsafeDiscardStringContext target.drvPath;
    in
    {
      label = ":nix: " + label;
      key = keyForDrv target;
      skip = shouldSkip { inherit label drvPath parentTargetMap; };
      command = mkBuildCommand {
        attrPath = targetAttrPath target;
        inherit drvPath;
      };
      env.READTREE_TARGET = label;
      cancel_on_build_failing = cancelOnBuildFailing;

      # Add a dependency on the initial static pipeline step which
      # always runs. This allows build steps uploaded in batches to
      # start running before all batches have been uploaded.
      depends_on = [ ":init:" ]
      ++ getTargetPipelineDeps targetDepMap drvPath
      ++ lib.optionals (target ? meta.ci.buildkiteExtraDeps) target.meta.ci.buildkiteExtraDeps;
    } // lib.optionalAttrs (target ? meta.timeout) {
      timeout_in_minutes = target.meta.timeout / 60;
      # Additional arguments to set on the step.
      # Keep in mind these *overwrite* existing step args, not extend. Use with caution.
    } // lib.optionalAttrs (target ? meta.ci.buildkiteExtraStepArgs) target.meta.ci.buildkiteExtraStepArgs;

  # Helper function to inelegantly divide a list into chunks of at
  # most n elements.
  #
  # This works by assigning each element a chunk ID based on its
  # index, and then grouping all elements by their chunk ID.
  chunksOf = n: list:
    let
      chunkId = idx: toString (idx / n + 1);
      assigned = lib.imap1 (idx: value: { inherit value; chunk = chunkId idx; }) list;
      unchunk = mapAttrs (_: elements: map (e: e.value) elements);
    in
    unchunk (lib.groupBy (e: e.chunk) assigned);

  # Define a build pipeline chunk as a JSON file, using the pipeline
  # format documented on
  # https://buildkite.com/docs/pipelines/defining-steps.
  makePipelineChunk = name: chunkId: chunk: rec {
    filename = "${name}-chunk-${chunkId}.json";
    path = writeText filename (toJSON {
      steps = chunk;
    });
  };

  # Split the pipeline into chunks of at most 192 steps at once, which
  # are uploaded sequentially. This is because of a limitation in the
  # Buildkite backend which struggles to process more than a specific
  # number of chunks at once.
  pipelineChunks = name: steps:
    attrValues (mapAttrs (makePipelineChunk name) (chunksOf 192 steps));

  # Create a pipeline structure for the given targets.
  mkPipeline =
    {
      # HEAD branch of the repository on which release steps, GC
      # anchoring and other "mainline only" steps should run.
      headBranch
    , # List of derivations as read by readTree (in most cases just the
      # output of readTree.gather) that should be built in Buildkite.
      #
      # These are scheduled as the first build steps and run as fast as
      # possible, in order, without any concurrency restrictions.
      drvTargets
    , # Derivation map of a parent commit. Only targets which no longer
      # correspond to the content of this map will be built. Passing an
      # empty map will always build all targets.
      parentTargetMap ? { }
    , # A list of plain Buildkite step structures to run alongside the
      # build for all drvTargets, but before proceeding with any
      # post-build actions such as status reporting.
      #
      # Can be used for things like code formatting checks.
      additionalSteps ? [ ]
    , # A list of plain Buildkite step structures to run after all
      # previous steps succeeded.
      #
      # Can be used for status reporting steps and the like.
      postBuildSteps ? [ ]
      # The list of phases known by the current Buildkite
      # pipeline. Dynamic pipeline chunks for each phase are uploaded
      # to Buildkite on execution of static part of the
      # pipeline. Phases selection is hard-coded in the static
      # pipeline.
      #
      # Pipeline generation will fail when an extra step with
      # unregistered phase is added.
      #
      # Common scenarios for different phase:
      #   - "build" - main phase for building all Nix targets
      #   - "release" - pushing artifacts to external repositories
      #   - "deploy" - updating external deployment configurations
    , phases ? [ "build" "release" ]
      # Build phases that are active for this invocation (i.e. their
      # steps should be generated).
      #
      # This can be used to disable outputting parts of a pipeline if,
      # for example, build and release phases are created in separate
      # eval contexts.
      #
      # TODO(tazjin): Fail/warn if unknown phase is requested.
    , activePhases ? phases
      # Setting this attribute to true cancels dynamic pipeline steps
      # as soon as the build is marked as failing.
      #
      # To enable this feature one should enable "Fail Fast" setting
      # at Buildkite pipeline or on organization level.
    , cancelOnBuildFailing ? false
    }:
    let
      # List of phases to include.
      enabledPhases = lib.intersectLists activePhases phases;

      # Is the 'build' phase included? This phase is treated specially
      # because it always contains the plain Nix builds, and some
      # logic/optimisation depends on knowing whether is executing.
      buildEnabled = elem "build" enabledPhases;

      # Dependency relations between the `drvTargets`. See also //nix/dependency-analyzer.
      targetDepMap = dependency-analyzer (dependency-analyzer.drvsToPaths drvTargets);

      # Convert a target into all of its steps, separated by build
      # phase (as phases end up in different chunks).
      targetToSteps = target:
        let
          mkStepArgs = {
            inherit headBranch parentTargetMap targetDepMap target cancelOnBuildFailing;
          };
          step = mkStep mkStepArgs;

          # Same step, but with an override function applied. This is
          # used in mkExtraStep if the extra step needs to modify the
          # parent derivation somehow.
          #
          # Note that this will never affect the label.
          overridable = f: mkStep (mkStepArgs // { target = (f target); });

          # Split extra steps by phase.
          splitExtraSteps = lib.groupBy ({ phase, ... }: phase)
            (attrValues (mapAttrs (normaliseExtraStep phases overridable)
              (target.meta.ci.extraSteps or { })));

          extraSteps = mapAttrs
            (_: steps:
              map (mkExtraStep (targetAttrPath target) buildEnabled) steps)
            splitExtraSteps;
        in
        if !buildEnabled then extraSteps
        else extraSteps // {
          build = [ step ] ++ (extraSteps.build or [ ]);
        };

      # Combine all target steps into step lists per phase.
      #
      # TODO(tazjin): Refactor when configurable phases show up.
      globalSteps = {
        build = additionalSteps;
        release = postBuildSteps;
      };

      phasesWithSteps = lib.zipAttrsWithNames enabledPhases (_: concatLists)
        ((map targetToSteps drvTargets) ++ [ globalSteps ]);

      # Generate pipeline chunks for each phase.
      chunks = foldl'
        (acc: phase:
          let phaseSteps = phasesWithSteps.${phase} or [ ]; in
          if phaseSteps == [ ]
          then acc
          else acc ++ (pipelineChunks phase phaseSteps))
        [ ]
        enabledPhases;

    in
    runCommand "buildkite-pipeline" { } ''
      mkdir $out
      echo "Generated ${toString (length chunks)} pipeline chunks"
      ${
        lib.concatMapStringsSep "\n"
          (chunk: "cp ${chunk.path} $out/${chunk.filename}") chunks
      }
    '';

  # Create a drvmap structure for the given targets, containing the
  # mapping of all target paths to their derivations. The mapping can
  # be persisted for future use.
  mkDrvmap = drvTargets: writeText "drvmap.json" (toJSON (listToAttrs (map
    (target: {
      name = mkLabel target;
      value = {
        drvPath = unsafeDiscardStringContext target.drvPath;

        # Include the attrPath in the output to reconstruct the drv
        # without parsing the human-readable label.
        attrPath = targetAttrPath target;
      };
    })
    drvTargets)));

  # Implementation of extra step logic.
  #
  # Each target extra step is an attribute specified in
  # `meta.ci.extraSteps`. Its attribute name will be used as the step
  # name on Buildkite.
  #
  #   command (required): A command that will be run in the depot
  #     checkout when this step is executed. Should be a derivation
  #     resulting in a single executable file, e.g. through
  #     pkgs.writeShellScript.
  #
  #   label (optional): Human-readable label for this step to display
  #     in the Buildkite UI instead of the attribute name.
  #
  #   prompt (optional): Setting this blocks the step until confirmed
  #     by a human. Should be a string which is displayed for
  #     confirmation. These steps always run after the main build is
  #     done and have no influence on CI status.
  #
  #   needsOutput (optional): If set to true, the parent derivation
  #     will be built in the working directory before running the
  #     command. Output will be available as 'result'.
  #     TODO: Figure out multiple-output derivations.
  #
  #   parentOverride (optional): A function (drv -> drv) to override
  #     the parent's target definition when preparing its output. Only
  #     used in extra steps that use needsOutput.
  #
  #   branches (optional): Git references (branches, tags ... ) on
  #     which this step should be allowed to run. List of strings.
  #
  #   alwaysRun (optional): If set to true, this step will always run,
  #     even if its parent has not been rebuilt.
  #
  # Note that gated steps are independent of each other.

  # Create a gated step in a step group, independent from any other
  # steps.
  mkGatedStep = { step, label, parent, prompt }: {
    inherit (step) depends_on;
    group = label;
    skip = parent.skip or false;

    steps = [
      {
        inherit prompt;
        branches = step.branches or [ ];
        block = ":radio_button: Run ${label}? (from ${parent.env.READTREE_TARGET})";
      }

      # The explicit depends_on of the wrapped step must be removed,
      # otherwise its dependency relationship with the gate step will
      # break.
      (builtins.removeAttrs step [ "depends_on" ])
    ];
  };

  # Validate and normalise extra step configuration before actually
  # generating build steps, in order to use user-provided metadata
  # during the pipeline generation.
  normaliseExtraStep = phases: overridableParent: key:
    { command
    , label ? key
    , needsOutput ? false
    , parentOverride ? (x: x)
    , branches ? null
    , alwaysRun ? false
    , prompt ? false
    , softFail ? false
    , phase ? "build"
    , skip ? false
    , agents ? null
    }:
    let
      parent = overridableParent parentOverride;
      parentLabel = parent.env.READTREE_TARGET;

      validPhase = lib.throwIfNot (elem phase phases) ''
        In step '${label}' (from ${parentLabel}):

        Phase '${phase}' is not valid.

        Known phases: ${concatStringsSep ", " phases}
      ''
        phase;
    in
    {
      inherit
        alwaysRun
        branches
        command
        key
        label
        needsOutput
        parent
        parentLabel
        softFail
        skip
        agents;

      phase = validPhase;

      prompt = lib.throwIf (prompt != false && phase == "build") ''
        In step '${label}' (from ${parentLabel}):

        The 'prompt' feature can not be used by steps in the "build"
        phase, because CI builds should not be gated on manual human
        approvals.
      ''
        prompt;
    };

  # Create the Buildkite configuration for an extra step, optionally
  # wrapping it in a gate group.
  mkExtraStep = parentAttrPath: buildEnabled: cfg:
    let
      # ATTN: needs to match an entry in .gitignore so that the tree won't get dirty
      commandScriptLink = "nix-buildkite-extra-step-command-script";

      step = {
        key = "extra-step-" + hashString "sha1" "${cfg.label}-${cfg.parentLabel}";
        label = ":gear: ${cfg.label} (from ${cfg.parentLabel})";
        skip =
          let
            # When parent doesn't have skip attribute set, default to false
            parentSkip = cfg.parent.skip or false;
            # Extra step skip parameter can be string explaining the
            # skip reason.
            extraStepSkip = if builtins.isString cfg.skip then true else cfg.skip;
            # Don't run if extra step is explicitly set to skip. If
            # parameter is not set or equal to false, follow parent behavior.
            skip' = if extraStepSkip then cfg.skip else parentSkip;
          in
          if cfg.alwaysRun then false else skip';

        depends_on = lib.optional
          (buildEnabled && !cfg.alwaysRun && !cfg.needsOutput)
          cfg.parent.key;

        command = pkgs.writeShellScript "${cfg.key}-script" ''
          set -ueo pipefail
          ${lib.optionalString cfg.needsOutput
            "echo '~~~ Preparing build output of ${cfg.parentLabel}'"
          }
          ${lib.optionalString cfg.needsOutput cfg.parent.command}
          echo '--- Building extra step script'
          command_script="$(${
            # Using command substitution in this way assumes the script drv only has one output
            assert builtins.length cfg.command.outputs == 1;
            mkBuildCommand {
              # script is exposed at <parent>.meta.ci.extraSteps.<key>.command
              attrPath =
                parentAttrPath
                ++ [ "meta" "ci" "extraSteps" cfg.key "command" ];
              drvPath = unsafeDiscardStringContext cfg.command.drvPath;
              # make sure it doesn't conflict with result (from needsOutput)
              outLink = commandScriptLink;
            }
          })"
          echo '+++ Running extra step script'
          exec "$command_script"
        '';

        soft_fail = cfg.softFail;
      } // (lib.optionalAttrs (cfg.agents != null) { inherit (cfg) agents; })
      // (lib.optionalAttrs (cfg.branches != null) {
        branches = lib.concatStringsSep " " cfg.branches;
      });
    in
    if (isString cfg.prompt)
    then
      mkGatedStep
        {
          inherit step;
          inherit (cfg) label parent prompt;
        }
    else step;
}