about summary refs log tree commit diff
path: root/absl/debugging/internal/address_is_readable.cc
blob: 99c4c64be81e21c19fe8dee57bc7675abfb27d79 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// base::AddressIsReadable() probes an address to see whether it is readable,
// without faulting.

#include "absl/debugging/internal/address_is_readable.h"

#if !defined(__linux__) || defined(__ANDROID__)

namespace absl {
namespace debugging_internal {

// On platforms other than Linux, just return true.
bool AddressIsReadable(const void* /* addr */) { return true; }

}  // namespace debugging_internal
}  // namespace absl

#else

#include <fcntl.h>
#include <sys/syscall.h>
#include <unistd.h>
#include <atomic>
#include <cerrno>
#include <cstdint>

#include "absl/base/internal/raw_logging.h"

namespace absl {
namespace debugging_internal {

// Pack a pid and two file descriptors into a 64-bit word,
// using 16, 24, and 24 bits for each respectively.
static uint64_t Pack(uint64_t pid, uint64_t read_fd, uint64_t write_fd) {
  ABSL_RAW_CHECK((read_fd >> 24) == 0 && (write_fd >> 24) == 0,
                 "fd out of range");
  return (pid << 48) | ((read_fd & 0xffffff) << 24) | (write_fd & 0xffffff);
}

// Unpack x into a pid and two file descriptors, where x was created with
// Pack().
static void Unpack(uint64_t x, int *pid, int *read_fd, int *write_fd) {
  *pid = x >> 48;
  *read_fd = (x >> 24) & 0xffffff;
  *write_fd = x & 0xffffff;
}

// Return whether the byte at *addr is readable, without faulting.
// Save and restores errno.   Returns true on systems where
// unimplemented.
// This is a namespace-scoped variable for correct zero-initialization.
static std::atomic<uint64_t> pid_and_fds;  // initially 0, an invalid pid.
bool AddressIsReadable(const void *addr) {
  int save_errno = errno;
  // We test whether a byte is readable by using write().  Normally, this would
  // be done via a cached file descriptor to /dev/null, but linux fails to
  // check whether the byte is readable when the destination is /dev/null, so
  // we use a cached pipe.  We store the pid of the process that created the
  // pipe to handle the case where a process forks, and the child closes all
  // the file descriptors and then calls this routine.  This is not perfect:
  // the child could use the routine, then close all file descriptors and then
  // use this routine again.  But the likely use of this routine is when
  // crashing, to test the validity of pages when dumping the stack.  Beware
  // that we may leak file descriptors, but we're unlikely to leak many.
  int bytes_written;
  int current_pid = getpid() & 0xffff;   // we use only the low order 16 bits
  do {  // until we do not get EBADF trying to use file descriptors
    int pid;
    int read_fd;
    int write_fd;
    uint64_t local_pid_and_fds = pid_and_fds.load(std::memory_order_relaxed);
    Unpack(local_pid_and_fds, &pid, &read_fd, &write_fd);
    while (current_pid != pid) {
      int p[2];
      // new pipe
      if (pipe(p) != 0) {
        ABSL_RAW_LOG(FATAL, "Failed to create pipe, errno=%d", errno);
      }
      fcntl(p[0], F_SETFD, FD_CLOEXEC);
      fcntl(p[1], F_SETFD, FD_CLOEXEC);
      uint64_t new_pid_and_fds = Pack(current_pid, p[0], p[1]);
      if (pid_and_fds.compare_exchange_strong(
              local_pid_and_fds, new_pid_and_fds, std::memory_order_relaxed,
              std::memory_order_relaxed)) {
        local_pid_and_fds = new_pid_and_fds;  // fds exposed to other threads
      } else {  // fds not exposed to other threads; we can close them.
        close(p[0]);
        close(p[1]);
        local_pid_and_fds = pid_and_fds.load(std::memory_order_relaxed);
      }
      Unpack(local_pid_and_fds, &pid, &read_fd, &write_fd);
    }
    errno = 0;
    // Use syscall(SYS_write, ...) instead of write() to prevent ASAN
    // and other checkers from complaining about accesses to arbitrary
    // memory.
    do {
      bytes_written = syscall(SYS_write, write_fd, addr, 1);
    } while (bytes_written == -1 && errno == EINTR);
    if (bytes_written == 1) {   // remove the byte from the pipe
      char c;
      while (read(read_fd, &c, 1) == -1 && errno == EINTR) {
      }
    }
    if (errno == EBADF) {  // Descriptors invalid.
      // If pid_and_fds contains the problematic file descriptors we just used,
      // this call will forget them, and the loop will try again.
      pid_and_fds.compare_exchange_strong(local_pid_and_fds, 0,
                                          std::memory_order_relaxed,
                                          std::memory_order_relaxed);
    }
  } while (errno == EBADF);
  errno = save_errno;
  return bytes_written == 1;
}

}  // namespace debugging_internal
}  // namespace absl

#endif