about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs706
1 files changed, 706 insertions, 0 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
new file mode 100644
index 0000000000..46569d9095
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
@@ -0,0 +1,706 @@
+{-# LANGUAGE ConstraintKinds #-}
+module Tests.Vector (tests) where
+
+import Boilerplater
+import Utilities as Util
+
+import Data.Functor.Identity
+import qualified Data.Traversable as T (Traversable(..))
+import Data.Foldable (Foldable(foldMap))
+
+import qualified Data.Vector.Generic as V
+import qualified Data.Vector
+import qualified Data.Vector.Primitive
+import qualified Data.Vector.Storable
+import qualified Data.Vector.Unboxed
+import qualified Data.Vector.Fusion.Bundle as S
+
+import Test.QuickCheck
+
+import Test.Framework
+import Test.Framework.Providers.QuickCheck2
+
+import Text.Show.Functions ()
+import Data.List
+import Data.Monoid
+import qualified Control.Applicative as Applicative
+import System.Random       (Random)
+
+import Data.Functor.Identity
+import Control.Monad.Trans.Writer
+
+import Control.Monad.Zip
+
+type CommonContext  a v = (VanillaContext a, VectorContext a v)
+type VanillaContext a   = ( Eq a , Show a, Arbitrary a, CoArbitrary a
+                          , TestData a, Model a ~ a, EqTest a ~ Property)
+type VectorContext  a v = ( Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a)
+                          , TestData (v a), Model (v a) ~ [a],  EqTest (v a) ~ Property, V.Vector v a)
+
+-- TODO: implement Vector equivalents of list functions for some of the commented out properties
+
+-- TODO: test and implement some of these other Prelude functions:
+--  mapM *
+--  mapM_ *
+--  sequence
+--  sequence_
+--  sum *
+--  product *
+--  scanl *
+--  scanl1 *
+--  scanr *
+--  scanr1 *
+--  lookup *
+--  lines
+--  words
+--  unlines
+--  unwords
+-- NB: this is an exhaustive list of all Prelude list functions that make sense for vectors.
+-- Ones with *s are the most plausible candidates.
+
+-- TODO: add tests for the other extra functions
+-- IVector exports still needing tests:
+--  copy,
+--  slice,
+--  (//), update, bpermute,
+--  prescanl, prescanl',
+--  new,
+--  unsafeSlice, unsafeIndex,
+--  vlength, vnew
+
+-- TODO: test non-IVector stuff?
+
+#if !MIN_VERSION_base(4,7,0)
+instance Foldable ((,) a) where
+  foldMap f (_, b) = f b
+
+instance T.Traversable ((,) a) where
+  traverse f (a, b) = fmap ((,) a) $ f b
+#endif
+
+testSanity :: forall a v. (CommonContext a v) => v a -> [Test]
+testSanity _ = [
+        testProperty "fromList.toList == id" prop_fromList_toList,
+        testProperty "toList.fromList == id" prop_toList_fromList,
+        testProperty "unstream.stream == id" prop_unstream_stream,
+        testProperty "stream.unstream == id" prop_stream_unstream
+    ]
+  where
+    prop_fromList_toList (v :: v a)        = (V.fromList . V.toList)                        v == v
+    prop_toList_fromList (l :: [a])        = ((V.toList :: v a -> [a]) . V.fromList)        l == l
+    prop_unstream_stream (v :: v a)        = (V.unstream . V.stream)                        v == v
+    prop_stream_unstream (s :: S.Bundle v a) = ((V.stream :: v a -> S.Bundle v a) . V.unstream) s == s
+
+testPolymorphicFunctions :: forall a v. (CommonContext a v, VectorContext Int v) => v a -> [Test]
+testPolymorphicFunctions _ = $(testProperties [
+        'prop_eq,
+
+        -- Length information
+        'prop_length, 'prop_null,
+
+        -- Indexing (FIXME)
+        'prop_index, 'prop_safeIndex, 'prop_head, 'prop_last,
+        'prop_unsafeIndex, 'prop_unsafeHead, 'prop_unsafeLast,
+
+        -- Monadic indexing (FIXME)
+        {- 'prop_indexM, 'prop_headM, 'prop_lastM,
+        'prop_unsafeIndexM, 'prop_unsafeHeadM, 'prop_unsafeLastM, -}
+
+        -- Subvectors (FIXME)
+        'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
+        'prop_splitAt,
+        {- 'prop_unsafeSlice, 'prop_unsafeInit, 'prop_unsafeTail,
+        'prop_unsafeTake, 'prop_unsafeDrop, -}
+
+        -- Initialisation (FIXME)
+        'prop_empty, 'prop_singleton, 'prop_replicate,
+        'prop_generate, 'prop_iterateN, 'prop_iterateNM,
+
+        -- Monadic initialisation (FIXME)
+        'prop_createT,
+        {- 'prop_replicateM, 'prop_generateM, 'prop_create, -}
+
+        -- Unfolding
+        'prop_unfoldr, 'prop_unfoldrN, 'prop_unfoldrM, 'prop_unfoldrNM,
+        'prop_constructN, 'prop_constructrN,
+
+        -- Enumeration? (FIXME?)
+
+        -- Concatenation (FIXME)
+        'prop_cons, 'prop_snoc, 'prop_append,
+        'prop_concat,
+
+        -- Restricting memory usage
+        'prop_force,
+
+
+        -- Bulk updates (FIXME)
+        'prop_upd,
+        {- 'prop_update, 'prop_update_,
+        'prop_unsafeUpd, 'prop_unsafeUpdate, 'prop_unsafeUpdate_, -}
+
+        -- Accumulations (FIXME)
+        'prop_accum,
+        {- 'prop_accumulate, 'prop_accumulate_,
+        'prop_unsafeAccum, 'prop_unsafeAccumulate, 'prop_unsafeAccumulate_, -}
+
+        -- Permutations
+        'prop_reverse, 'prop_backpermute,
+        {- 'prop_unsafeBackpermute, -}
+
+        -- Elementwise indexing
+        {- 'prop_indexed, -}
+
+        -- Mapping
+        'prop_map, 'prop_imap, 'prop_concatMap,
+
+        -- Monadic mapping
+        {- 'prop_mapM, 'prop_mapM_, 'prop_forM, 'prop_forM_, -}
+        'prop_imapM, 'prop_imapM_,
+
+        -- Zipping
+        'prop_zipWith, 'prop_zipWith3, {- ... -}
+        'prop_izipWith, 'prop_izipWith3, {- ... -}
+        'prop_izipWithM, 'prop_izipWithM_,
+        {- 'prop_zip, ... -}
+
+        -- Monadic zipping
+        {- 'prop_zipWithM, 'prop_zipWithM_, -}
+
+        -- Unzipping
+        {- 'prop_unzip, ... -}
+
+        -- Filtering
+        'prop_filter, 'prop_ifilter, {- prop_filterM, -}
+        'prop_uniq,
+        'prop_mapMaybe, 'prop_imapMaybe,
+        'prop_takeWhile, 'prop_dropWhile,
+
+        -- Paritioning
+        'prop_partition, {- 'prop_unstablePartition, -}
+        'prop_span, 'prop_break,
+
+        -- Searching
+        'prop_elem, 'prop_notElem,
+        'prop_find, 'prop_findIndex, 'prop_findIndices,
+        'prop_elemIndex, 'prop_elemIndices,
+
+        -- Folding
+        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
+        'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
+        'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
+        'prop_ifoldM, 'prop_ifoldM', 'prop_ifoldM_, 'prop_ifoldM'_,
+
+        -- Specialised folds
+        'prop_all, 'prop_any,
+        {- 'prop_maximumBy, 'prop_minimumBy,
+        'prop_maxIndexBy, 'prop_minIndexBy, -}
+
+        -- Monadic folds
+        {- ... -}
+
+        -- Monadic sequencing
+        {- ... -}
+
+        -- Scans
+        'prop_prescanl, 'prop_prescanl',
+        'prop_postscanl, 'prop_postscanl',
+        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
+        'prop_iscanl, 'prop_iscanl',
+
+        'prop_prescanr, 'prop_prescanr',
+        'prop_postscanr, 'prop_postscanr',
+        'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
+        'prop_iscanr, 'prop_iscanr'
+    ])
+  where
+    -- Prelude
+    prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)
+
+    prop_length :: P (v a -> Int)     = V.length `eq` length
+    prop_null   :: P (v a -> Bool)    = V.null `eq` null
+
+    prop_empty  :: P (v a)            = V.empty `eq` []
+    prop_singleton :: P (a -> v a)    = V.singleton `eq` singleton
+    prop_replicate :: P (Int -> a -> v a)
+              = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
+    prop_cons      :: P (a -> v a -> v a) = V.cons `eq` (:)
+    prop_snoc      :: P (v a -> a -> v a) = V.snoc `eq` snoc
+    prop_append    :: P (v a -> v a -> v a) = (V.++) `eq` (++)
+    prop_concat    :: P ([v a] -> v a) = V.concat `eq` concat
+    prop_force     :: P (v a -> v a)        = V.force `eq` id
+    prop_generate  :: P (Int -> (Int -> a) -> v a)
+              = (\n _ -> n < 1000) ===> V.generate `eq` Util.generate
+    prop_iterateN  :: P (Int -> (a -> a) -> a -> v a)
+              = (\n _ _ -> n < 1000) ===> V.iterateN `eq` (\n f -> take n . iterate f)
+    prop_iterateNM :: P (Int -> (a -> Writer [Int] a) -> a -> Writer [Int] (v a))
+              = (\n _ _ -> n < 1000) ===> V.iterateNM `eq` Util.iterateNM
+    prop_createT :: P ((a, v a) -> (a, v a))
+    prop_createT = (\v -> V.createT (T.mapM V.thaw v)) `eq` id
+
+    prop_head      :: P (v a -> a) = not . V.null ===> V.head `eq` head
+    prop_last      :: P (v a -> a) = not . V.null ===> V.last `eq` last
+    prop_index        = \xs ->
+                        not (V.null xs) ==>
+                        forAll (choose (0, V.length xs-1)) $ \i ->
+                        unP prop xs i
+      where
+        prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
+    prop_safeIndex :: P (v a -> Int -> Maybe a) = (V.!?) `eq` fn
+      where
+        fn xs i = case drop i xs of
+                    x:_ | i >= 0 -> Just x
+                    _            -> Nothing
+    prop_unsafeHead  :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
+    prop_unsafeLast  :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
+    prop_unsafeIndex  = \xs ->
+                        not (V.null xs) ==>
+                        forAll (choose (0, V.length xs-1)) $ \i ->
+                        unP prop xs i
+      where
+        prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)
+
+    prop_slice        = \xs ->
+                        forAll (choose (0, V.length xs))     $ \i ->
+                        forAll (choose (0, V.length xs - i)) $ \n ->
+                        unP prop i n xs
+      where
+        prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice
+
+    prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
+    prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
+    prop_take :: P (Int -> v a -> v a) = V.take `eq` take
+    prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
+    prop_splitAt :: P (Int -> v a -> (v a, v a)) = V.splitAt `eq` splitAt
+
+    prop_accum = \f xs ->
+                 forAll (index_value_pairs (V.length xs)) $ \ps ->
+                 unP prop f xs ps
+      where
+        prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
+          = V.accum `eq` accum
+
+    prop_upd        = \xs ->
+                        forAll (index_value_pairs (V.length xs)) $ \ps ->
+                        unP prop xs ps
+      where
+        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
+
+    prop_backpermute  = \xs ->
+                        forAll (indices (V.length xs)) $ \is ->
+                        unP prop xs (V.fromList is)
+      where
+        prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute
+
+    prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse
+
+    prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
+    prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
+    prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
+             = V.zipWith3 `eq` zipWith3
+    prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
+    prop_imapM :: P ((Int -> a -> Identity a) -> v a -> Identity (v a))
+            = V.imapM `eq` imapM
+    prop_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
+            = V.imapM_ `eq` imapM_
+    prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
+    prop_izipWithM :: P ((Int -> a -> a -> Identity a) -> v a -> v a -> Identity (v a))
+            = V.izipWithM `eq` izipWithM
+    prop_izipWithM_ :: P ((Int -> a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
+            = V.izipWithM_ `eq` izipWithM_
+    prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
+             = V.izipWith3 `eq` izipWith3
+
+    prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
+    prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
+    prop_mapMaybe :: P ((a -> Maybe a) -> v a -> v a) = V.mapMaybe `eq` mapMaybe
+    prop_imapMaybe :: P ((Int -> a -> Maybe a) -> v a -> v a) = V.imapMaybe `eq` imapMaybe
+    prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
+    prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
+    prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
+      = V.partition `eq` partition
+    prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
+    prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
+
+    prop_elem    :: P (a -> v a -> Bool) = V.elem `eq` elem
+    prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
+    prop_find    :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
+    prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
+      = V.findIndex `eq` findIndex
+    prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
+        = V.findIndices `eq` findIndices
+    prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
+    prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices
+
+    prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
+    prop_foldl1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
+                        V.foldl1 `eq` foldl1
+    prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
+    prop_foldl1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
+                        V.foldl1' `eq` foldl1'
+    prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
+    prop_foldr1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
+                        V.foldr1 `eq` foldr1
+    prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
+    prop_foldr1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
+                        V.foldr1' `eq` foldr1
+    prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
+        = V.ifoldl `eq` ifoldl
+    prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
+        = V.ifoldl' `eq` ifoldl
+    prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
+        = V.ifoldr `eq` ifoldr
+    prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
+        = V.ifoldr' `eq` ifoldr
+    prop_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
+        = V.ifoldM `eq` ifoldM
+    prop_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
+        = V.ifoldM' `eq` ifoldM
+    prop_ifoldM_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
+        = V.ifoldM_ `eq` ifoldM_
+    prop_ifoldM'_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
+        = V.ifoldM'_ `eq` ifoldM_
+
+    prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
+    prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any
+
+    prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.prescanl `eq` prescanl
+    prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.prescanl' `eq` prescanl
+    prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.postscanl `eq` postscanl
+    prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.postscanl' `eq` postscanl
+    prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.scanl `eq` scanl
+    prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
+               = V.scanl' `eq` scanl
+    prop_scanl1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
+                 V.scanl1 `eq` scanl1
+    prop_scanl1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
+                 V.scanl1' `eq` scanl1
+    prop_iscanl :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
+                = V.iscanl `eq` iscanl
+    prop_iscanl' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
+               = V.iscanl' `eq` iscanl
+
+    prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.prescanr `eq` prescanr
+    prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.prescanr' `eq` prescanr
+    prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.postscanr `eq` postscanr
+    prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.postscanr' `eq` postscanr
+    prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
+                = V.scanr `eq` scanr
+    prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
+               = V.scanr' `eq` scanr
+    prop_iscanr :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
+                = V.iscanr `eq` iscanr
+    prop_iscanr' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
+               = V.iscanr' `eq` iscanr
+    prop_scanr1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
+                 V.scanr1 `eq` scanr1
+    prop_scanr1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
+                 V.scanr1' `eq` scanr1
+
+    prop_concatMap    = forAll arbitrary $ \xs ->
+                        forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
+      where
+        prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap
+
+    prop_uniq :: P (v a -> v a)
+      = V.uniq `eq` (map head . group)
+    --prop_span         = (V.span :: (a -> Bool) -> v a -> (v a, v a))  `eq2` span
+    --prop_break        = (V.break :: (a -> Bool) -> v a -> (v a, v a)) `eq2` break
+    --prop_splitAt      = (V.splitAt :: Int -> v a -> (v a, v a))       `eq2` splitAt
+    --prop_all          = (V.all :: (a -> Bool) -> v a -> Bool)         `eq2` all
+    --prop_any          = (V.any :: (a -> Bool) -> v a -> Bool)         `eq2` any
+
+    -- Data.List
+    --prop_findIndices  = V.findIndices `eq2` (findIndices :: (a -> Bool) -> v a -> v Int)
+    --prop_isPrefixOf   = V.isPrefixOf  `eq2` (isPrefixOf  :: v a -> v a -> Bool)
+    --prop_elemIndex    = V.elemIndex   `eq2` (elemIndex   :: a -> v a -> Maybe Int)
+    --prop_elemIndices  = V.elemIndices `eq2` (elemIndices :: a -> v a -> v Int)
+    --
+    --prop_mapAccumL  = eq3
+    --    (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
+    --    (  mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
+    --
+    --prop_mapAccumR  = eq3
+    --    (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
+    --    (  mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
+
+    -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
+    -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
+    limitUnfolds f (theirs, ours)
+        | ours > 0
+        , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
+        | otherwise                       = Nothing
+    limitUnfoldsM f (theirs, ours)
+        | ours >  0 = do r <- f theirs
+                         return $ (\(a,b) -> (a,(b,ours - 1))) `fmap` r
+        | otherwise = return Nothing
+
+
+    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
+         = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
+           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
+    prop_unfoldrN :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
+         = V.unfoldrN `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
+    prop_unfoldrM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
+         = (\n f a -> V.unfoldrM (limitUnfoldsM f) (a,n))
+           `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
+    prop_unfoldrNM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
+         = V.unfoldrNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
+
+    prop_constructN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
+      where
+        prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []
+
+        constructN xs 0 _ = xs
+        constructN xs n f = constructN (xs ++ [f xs]) (n-1) f
+
+    prop_constructrN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
+      where
+        prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []
+
+        constructrN xs 0 _ = xs
+        constructrN xs n f = constructrN (f xs : xs) (n-1) f
+
+testTuplyFunctions:: forall a v. (CommonContext a v, VectorContext (a, a) v, VectorContext (a, a, a) v) => v a -> [Test]
+testTuplyFunctions _ = $(testProperties [ 'prop_zip, 'prop_zip3
+                                        , 'prop_unzip, 'prop_unzip3
+                                        , 'prop_mzip, 'prop_munzip
+                                        ])
+  where
+    prop_zip    :: P (v a -> v a -> v (a, a))           = V.zip `eq` zip
+    prop_zip3   :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
+    prop_unzip  :: P (v (a, a) -> (v a, v a))           = V.unzip `eq` unzip
+    prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a))   = V.unzip3 `eq` unzip3
+    prop_mzip   :: P (Data.Vector.Vector a -> Data.Vector.Vector a -> Data.Vector.Vector (a, a))
+        = mzip `eq` zip
+    prop_munzip :: P (Data.Vector.Vector (a, a) -> (Data.Vector.Vector a, Data.Vector.Vector a))
+        = munzip `eq` unzip
+
+testOrdFunctions :: forall a v. (CommonContext a v, Ord a, Ord (v a)) => v a -> [Test]
+testOrdFunctions _ = $(testProperties
+  ['prop_compare,
+   'prop_maximum, 'prop_minimum,
+   'prop_minIndex, 'prop_maxIndex ])
+  where
+    prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
+    prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
+    prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
+    prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
+    prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
+
+testEnumFunctions :: forall a v. (CommonContext a v, Enum a, Ord a, Num a, Random a) => v a -> [Test]
+testEnumFunctions _ = $(testProperties
+  [ 'prop_enumFromN, 'prop_enumFromThenN,
+    'prop_enumFromTo, 'prop_enumFromThenTo])
+  where
+    prop_enumFromN :: P (a -> Int -> v a)
+      = (\_ n -> n < 1000)
+        ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)
+
+    prop_enumFromThenN :: P (a -> a -> Int -> v a)
+      = (\_ _ n -> n < 1000)
+        ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)
+
+    prop_enumFromTo = \m ->
+                      forAll (choose (-2,100)) $ \n ->
+                      unP prop m (m+n)
+      where
+        prop  :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo
+
+    prop_enumFromThenTo = \i j ->
+                          j /= i ==>
+                          forAll (choose (ks i j)) $ \k ->
+                          unP prop i j k
+      where
+        prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo
+
+        ks i j | j < i     = (i-d*100, i+d*2)
+               | otherwise = (i-d*2, i+d*100)
+          where
+            d = abs (j-i)
+
+testMonoidFunctions :: forall a v. (CommonContext a v, Monoid (v a)) => v a -> [Test]
+testMonoidFunctions _ = $(testProperties
+  [ 'prop_mempty, 'prop_mappend, 'prop_mconcat ])
+  where
+    prop_mempty  :: P (v a)               = mempty `eq` mempty
+    prop_mappend :: P (v a -> v a -> v a) = mappend `eq` mappend
+    prop_mconcat :: P ([v a] -> v a)      = mconcat `eq` mconcat
+
+testFunctorFunctions :: forall a v. (CommonContext a v, Functor v) => v a -> [Test]
+testFunctorFunctions _ = $(testProperties
+  [ 'prop_fmap ])
+  where
+    prop_fmap :: P ((a -> a) -> v a -> v a) = fmap `eq` fmap
+
+testMonadFunctions :: forall a v. (CommonContext a v, Monad v) => v a -> [Test]
+testMonadFunctions _ = $(testProperties
+  [ 'prop_return, 'prop_bind ])
+  where
+    prop_return :: P (a -> v a) = return `eq` return
+    prop_bind   :: P (v a -> (a -> v a) -> v a) = (>>=) `eq` (>>=)
+
+testApplicativeFunctions :: forall a v. (CommonContext a v, V.Vector v (a -> a), Applicative.Applicative v) => v a -> [Test]
+testApplicativeFunctions _ = $(testProperties
+  [ 'prop_applicative_pure, 'prop_applicative_appl ])
+  where
+    prop_applicative_pure :: P (a -> v a)
+      = Applicative.pure `eq` Applicative.pure
+    prop_applicative_appl :: [a -> a] -> P (v a -> v a)
+      = \fs -> (Applicative.<*>) (V.fromList fs) `eq` (Applicative.<*>) fs
+
+testAlternativeFunctions :: forall a v. (CommonContext a v, Applicative.Alternative v) => v a -> [Test]
+testAlternativeFunctions _ = $(testProperties
+  [ 'prop_alternative_empty, 'prop_alternative_or ])
+  where
+    prop_alternative_empty :: P (v a) = Applicative.empty `eq` Applicative.empty
+    prop_alternative_or :: P (v a -> v a -> v a)
+      = (Applicative.<|>) `eq` (Applicative.<|>)
+
+testBoolFunctions :: forall v. (CommonContext Bool v) => v Bool -> [Test]
+testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
+  where
+    prop_and :: P (v Bool -> Bool) = V.and `eq` and
+    prop_or  :: P (v Bool -> Bool) = V.or `eq` or
+
+testNumFunctions :: forall a v. (CommonContext a v, Num a) => v a -> [Test]
+testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
+  where
+    prop_sum     :: P (v a -> a) = V.sum `eq` sum
+    prop_product :: P (v a -> a) = V.product `eq` product
+
+testNestedVectorFunctions :: forall a v. (CommonContext a v) => v a -> [Test]
+testNestedVectorFunctions _ = $(testProperties [])
+  where
+    -- Prelude
+    --prop_concat       = (V.concat :: [v a] -> v a)                    `eq1` concat
+
+    -- Data.List
+    --prop_transpose    = V.transpose   `eq1` (transpose   :: [v a] -> [v a])
+    --prop_group        = V.group       `eq1` (group       :: v a -> [v a])
+    --prop_inits        = V.inits       `eq1` (inits       :: v a -> [v a])
+    --prop_tails        = V.tails       `eq1` (tails       :: v a -> [v a])
+
+testGeneralBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a) => Data.Vector.Vector a -> [Test]
+testGeneralBoxedVector dummy = concatMap ($ dummy) [
+        testSanity,
+        testPolymorphicFunctions,
+        testOrdFunctions,
+        testTuplyFunctions,
+        testNestedVectorFunctions,
+        testMonoidFunctions,
+        testFunctorFunctions,
+        testMonadFunctions,
+        testApplicativeFunctions,
+        testAlternativeFunctions
+    ]
+
+testBoolBoxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralBoxedVector
+  , testBoolFunctions
+  ]
+
+testNumericBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a, Num a, Enum a, Random a) => Data.Vector.Vector a -> [Test]
+testNumericBoxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralBoxedVector
+  , testNumFunctions
+  , testEnumFunctions
+  ]
+
+
+testGeneralPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a) => Data.Vector.Primitive.Vector a -> [Test]
+testGeneralPrimitiveVector dummy = concatMap ($ dummy) [
+        testSanity,
+        testPolymorphicFunctions,
+        testOrdFunctions,
+        testMonoidFunctions
+    ]
+
+testNumericPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a, Num a, Enum a, Random a) => Data.Vector.Primitive.Vector a -> [Test]
+testNumericPrimitiveVector dummy = concatMap ($ dummy)
+ [
+   testGeneralPrimitiveVector
+ , testNumFunctions
+ , testEnumFunctions
+ ]
+
+
+testGeneralStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a) => Data.Vector.Storable.Vector a -> [Test]
+testGeneralStorableVector dummy = concatMap ($ dummy) [
+        testSanity,
+        testPolymorphicFunctions,
+        testOrdFunctions,
+        testMonoidFunctions
+    ]
+
+testNumericStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a, Num a, Enum a, Random a) => Data.Vector.Storable.Vector a -> [Test]
+testNumericStorableVector dummy = concatMap ($ dummy)
+  [
+    testGeneralStorableVector
+  , testNumFunctions
+  , testEnumFunctions
+  ]
+
+
+testGeneralUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
+testGeneralUnboxedVector dummy = concatMap ($ dummy) [
+        testSanity,
+        testPolymorphicFunctions,
+        testOrdFunctions,
+        testMonoidFunctions
+    ]
+
+testUnitUnboxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralUnboxedVector
+  ]
+
+testBoolUnboxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralUnboxedVector
+  , testBoolFunctions
+  ]
+
+testNumericUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a, Num a, Enum a, Random a) => Data.Vector.Unboxed.Vector a -> [Test]
+testNumericUnboxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralUnboxedVector
+  , testNumFunctions
+  , testEnumFunctions
+  ]
+
+testTupleUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
+testTupleUnboxedVector dummy = concatMap ($ dummy)
+  [
+    testGeneralUnboxedVector
+  ]
+
+tests = [
+        testGroup "Data.Vector.Vector (Bool)"           (testBoolBoxedVector      (undefined :: Data.Vector.Vector Bool)),
+        testGroup "Data.Vector.Vector (Int)"            (testNumericBoxedVector   (undefined :: Data.Vector.Vector Int)),
+
+        testGroup "Data.Vector.Primitive.Vector (Int)"    (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Int)),
+        testGroup "Data.Vector.Primitive.Vector (Double)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Double)),
+
+        testGroup "Data.Vector.Storable.Vector (Int)"    (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Int)),
+        testGroup "Data.Vector.Storable.Vector (Double)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Double)),
+
+        testGroup "Data.Vector.Unboxed.Vector ()"       (testUnitUnboxedVector (undefined :: Data.Vector.Unboxed.Vector ())),
+        testGroup "Data.Vector.Unboxed.Vector (Bool)"       (testBoolUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Bool)),
+        testGroup "Data.Vector.Unboxed.Vector (Int)"    (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Int)),
+        testGroup "Data.Vector.Unboxed.Vector (Double)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Double)),
+       testGroup "Data.Vector.Unboxed.Vector (Int,Bool)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool))),
+         testGroup "Data.Vector.Unboxed.Vector (Int,Bool,Int)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool,Int)))
+
+    ]