about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs706
1 files changed, 0 insertions, 706 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs b/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
deleted file mode 100644
index 46569d9095..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/tests/Tests/Vector.hs
+++ /dev/null
@@ -1,706 +0,0 @@
-{-# LANGUAGE ConstraintKinds #-}
-module Tests.Vector (tests) where
-
-import Boilerplater
-import Utilities as Util
-
-import Data.Functor.Identity
-import qualified Data.Traversable as T (Traversable(..))
-import Data.Foldable (Foldable(foldMap))
-
-import qualified Data.Vector.Generic as V
-import qualified Data.Vector
-import qualified Data.Vector.Primitive
-import qualified Data.Vector.Storable
-import qualified Data.Vector.Unboxed
-import qualified Data.Vector.Fusion.Bundle as S
-
-import Test.QuickCheck
-
-import Test.Framework
-import Test.Framework.Providers.QuickCheck2
-
-import Text.Show.Functions ()
-import Data.List
-import Data.Monoid
-import qualified Control.Applicative as Applicative
-import System.Random       (Random)
-
-import Data.Functor.Identity
-import Control.Monad.Trans.Writer
-
-import Control.Monad.Zip
-
-type CommonContext  a v = (VanillaContext a, VectorContext a v)
-type VanillaContext a   = ( Eq a , Show a, Arbitrary a, CoArbitrary a
-                          , TestData a, Model a ~ a, EqTest a ~ Property)
-type VectorContext  a v = ( Eq (v a), Show (v a), Arbitrary (v a), CoArbitrary (v a)
-                          , TestData (v a), Model (v a) ~ [a],  EqTest (v a) ~ Property, V.Vector v a)
-
--- TODO: implement Vector equivalents of list functions for some of the commented out properties
-
--- TODO: test and implement some of these other Prelude functions:
---  mapM *
---  mapM_ *
---  sequence
---  sequence_
---  sum *
---  product *
---  scanl *
---  scanl1 *
---  scanr *
---  scanr1 *
---  lookup *
---  lines
---  words
---  unlines
---  unwords
--- NB: this is an exhaustive list of all Prelude list functions that make sense for vectors.
--- Ones with *s are the most plausible candidates.
-
--- TODO: add tests for the other extra functions
--- IVector exports still needing tests:
---  copy,
---  slice,
---  (//), update, bpermute,
---  prescanl, prescanl',
---  new,
---  unsafeSlice, unsafeIndex,
---  vlength, vnew
-
--- TODO: test non-IVector stuff?
-
-#if !MIN_VERSION_base(4,7,0)
-instance Foldable ((,) a) where
-  foldMap f (_, b) = f b
-
-instance T.Traversable ((,) a) where
-  traverse f (a, b) = fmap ((,) a) $ f b
-#endif
-
-testSanity :: forall a v. (CommonContext a v) => v a -> [Test]
-testSanity _ = [
-        testProperty "fromList.toList == id" prop_fromList_toList,
-        testProperty "toList.fromList == id" prop_toList_fromList,
-        testProperty "unstream.stream == id" prop_unstream_stream,
-        testProperty "stream.unstream == id" prop_stream_unstream
-    ]
-  where
-    prop_fromList_toList (v :: v a)        = (V.fromList . V.toList)                        v == v
-    prop_toList_fromList (l :: [a])        = ((V.toList :: v a -> [a]) . V.fromList)        l == l
-    prop_unstream_stream (v :: v a)        = (V.unstream . V.stream)                        v == v
-    prop_stream_unstream (s :: S.Bundle v a) = ((V.stream :: v a -> S.Bundle v a) . V.unstream) s == s
-
-testPolymorphicFunctions :: forall a v. (CommonContext a v, VectorContext Int v) => v a -> [Test]
-testPolymorphicFunctions _ = $(testProperties [
-        'prop_eq,
-
-        -- Length information
-        'prop_length, 'prop_null,
-
-        -- Indexing (FIXME)
-        'prop_index, 'prop_safeIndex, 'prop_head, 'prop_last,
-        'prop_unsafeIndex, 'prop_unsafeHead, 'prop_unsafeLast,
-
-        -- Monadic indexing (FIXME)
-        {- 'prop_indexM, 'prop_headM, 'prop_lastM,
-        'prop_unsafeIndexM, 'prop_unsafeHeadM, 'prop_unsafeLastM, -}
-
-        -- Subvectors (FIXME)
-        'prop_slice, 'prop_init, 'prop_tail, 'prop_take, 'prop_drop,
-        'prop_splitAt,
-        {- 'prop_unsafeSlice, 'prop_unsafeInit, 'prop_unsafeTail,
-        'prop_unsafeTake, 'prop_unsafeDrop, -}
-
-        -- Initialisation (FIXME)
-        'prop_empty, 'prop_singleton, 'prop_replicate,
-        'prop_generate, 'prop_iterateN, 'prop_iterateNM,
-
-        -- Monadic initialisation (FIXME)
-        'prop_createT,
-        {- 'prop_replicateM, 'prop_generateM, 'prop_create, -}
-
-        -- Unfolding
-        'prop_unfoldr, 'prop_unfoldrN, 'prop_unfoldrM, 'prop_unfoldrNM,
-        'prop_constructN, 'prop_constructrN,
-
-        -- Enumeration? (FIXME?)
-
-        -- Concatenation (FIXME)
-        'prop_cons, 'prop_snoc, 'prop_append,
-        'prop_concat,
-
-        -- Restricting memory usage
-        'prop_force,
-
-
-        -- Bulk updates (FIXME)
-        'prop_upd,
-        {- 'prop_update, 'prop_update_,
-        'prop_unsafeUpd, 'prop_unsafeUpdate, 'prop_unsafeUpdate_, -}
-
-        -- Accumulations (FIXME)
-        'prop_accum,
-        {- 'prop_accumulate, 'prop_accumulate_,
-        'prop_unsafeAccum, 'prop_unsafeAccumulate, 'prop_unsafeAccumulate_, -}
-
-        -- Permutations
-        'prop_reverse, 'prop_backpermute,
-        {- 'prop_unsafeBackpermute, -}
-
-        -- Elementwise indexing
-        {- 'prop_indexed, -}
-
-        -- Mapping
-        'prop_map, 'prop_imap, 'prop_concatMap,
-
-        -- Monadic mapping
-        {- 'prop_mapM, 'prop_mapM_, 'prop_forM, 'prop_forM_, -}
-        'prop_imapM, 'prop_imapM_,
-
-        -- Zipping
-        'prop_zipWith, 'prop_zipWith3, {- ... -}
-        'prop_izipWith, 'prop_izipWith3, {- ... -}
-        'prop_izipWithM, 'prop_izipWithM_,
-        {- 'prop_zip, ... -}
-
-        -- Monadic zipping
-        {- 'prop_zipWithM, 'prop_zipWithM_, -}
-
-        -- Unzipping
-        {- 'prop_unzip, ... -}
-
-        -- Filtering
-        'prop_filter, 'prop_ifilter, {- prop_filterM, -}
-        'prop_uniq,
-        'prop_mapMaybe, 'prop_imapMaybe,
-        'prop_takeWhile, 'prop_dropWhile,
-
-        -- Paritioning
-        'prop_partition, {- 'prop_unstablePartition, -}
-        'prop_span, 'prop_break,
-
-        -- Searching
-        'prop_elem, 'prop_notElem,
-        'prop_find, 'prop_findIndex, 'prop_findIndices,
-        'prop_elemIndex, 'prop_elemIndices,
-
-        -- Folding
-        'prop_foldl, 'prop_foldl1, 'prop_foldl', 'prop_foldl1',
-        'prop_foldr, 'prop_foldr1, 'prop_foldr', 'prop_foldr1',
-        'prop_ifoldl, 'prop_ifoldl', 'prop_ifoldr, 'prop_ifoldr',
-        'prop_ifoldM, 'prop_ifoldM', 'prop_ifoldM_, 'prop_ifoldM'_,
-
-        -- Specialised folds
-        'prop_all, 'prop_any,
-        {- 'prop_maximumBy, 'prop_minimumBy,
-        'prop_maxIndexBy, 'prop_minIndexBy, -}
-
-        -- Monadic folds
-        {- ... -}
-
-        -- Monadic sequencing
-        {- ... -}
-
-        -- Scans
-        'prop_prescanl, 'prop_prescanl',
-        'prop_postscanl, 'prop_postscanl',
-        'prop_scanl, 'prop_scanl', 'prop_scanl1, 'prop_scanl1',
-        'prop_iscanl, 'prop_iscanl',
-
-        'prop_prescanr, 'prop_prescanr',
-        'prop_postscanr, 'prop_postscanr',
-        'prop_scanr, 'prop_scanr', 'prop_scanr1, 'prop_scanr1',
-        'prop_iscanr, 'prop_iscanr'
-    ])
-  where
-    -- Prelude
-    prop_eq :: P (v a -> v a -> Bool) = (==) `eq` (==)
-
-    prop_length :: P (v a -> Int)     = V.length `eq` length
-    prop_null   :: P (v a -> Bool)    = V.null `eq` null
-
-    prop_empty  :: P (v a)            = V.empty `eq` []
-    prop_singleton :: P (a -> v a)    = V.singleton `eq` singleton
-    prop_replicate :: P (Int -> a -> v a)
-              = (\n _ -> n < 1000) ===> V.replicate `eq` replicate
-    prop_cons      :: P (a -> v a -> v a) = V.cons `eq` (:)
-    prop_snoc      :: P (v a -> a -> v a) = V.snoc `eq` snoc
-    prop_append    :: P (v a -> v a -> v a) = (V.++) `eq` (++)
-    prop_concat    :: P ([v a] -> v a) = V.concat `eq` concat
-    prop_force     :: P (v a -> v a)        = V.force `eq` id
-    prop_generate  :: P (Int -> (Int -> a) -> v a)
-              = (\n _ -> n < 1000) ===> V.generate `eq` Util.generate
-    prop_iterateN  :: P (Int -> (a -> a) -> a -> v a)
-              = (\n _ _ -> n < 1000) ===> V.iterateN `eq` (\n f -> take n . iterate f)
-    prop_iterateNM :: P (Int -> (a -> Writer [Int] a) -> a -> Writer [Int] (v a))
-              = (\n _ _ -> n < 1000) ===> V.iterateNM `eq` Util.iterateNM
-    prop_createT :: P ((a, v a) -> (a, v a))
-    prop_createT = (\v -> V.createT (T.mapM V.thaw v)) `eq` id
-
-    prop_head      :: P (v a -> a) = not . V.null ===> V.head `eq` head
-    prop_last      :: P (v a -> a) = not . V.null ===> V.last `eq` last
-    prop_index        = \xs ->
-                        not (V.null xs) ==>
-                        forAll (choose (0, V.length xs-1)) $ \i ->
-                        unP prop xs i
-      where
-        prop :: P (v a -> Int -> a) = (V.!) `eq` (!!)
-    prop_safeIndex :: P (v a -> Int -> Maybe a) = (V.!?) `eq` fn
-      where
-        fn xs i = case drop i xs of
-                    x:_ | i >= 0 -> Just x
-                    _            -> Nothing
-    prop_unsafeHead  :: P (v a -> a) = not . V.null ===> V.unsafeHead `eq` head
-    prop_unsafeLast  :: P (v a -> a) = not . V.null ===> V.unsafeLast `eq` last
-    prop_unsafeIndex  = \xs ->
-                        not (V.null xs) ==>
-                        forAll (choose (0, V.length xs-1)) $ \i ->
-                        unP prop xs i
-      where
-        prop :: P (v a -> Int -> a) = V.unsafeIndex `eq` (!!)
-
-    prop_slice        = \xs ->
-                        forAll (choose (0, V.length xs))     $ \i ->
-                        forAll (choose (0, V.length xs - i)) $ \n ->
-                        unP prop i n xs
-      where
-        prop :: P (Int -> Int -> v a -> v a) = V.slice `eq` slice
-
-    prop_tail :: P (v a -> v a) = not . V.null ===> V.tail `eq` tail
-    prop_init :: P (v a -> v a) = not . V.null ===> V.init `eq` init
-    prop_take :: P (Int -> v a -> v a) = V.take `eq` take
-    prop_drop :: P (Int -> v a -> v a) = V.drop `eq` drop
-    prop_splitAt :: P (Int -> v a -> (v a, v a)) = V.splitAt `eq` splitAt
-
-    prop_accum = \f xs ->
-                 forAll (index_value_pairs (V.length xs)) $ \ps ->
-                 unP prop f xs ps
-      where
-        prop :: P ((a -> a -> a) -> v a -> [(Int,a)] -> v a)
-          = V.accum `eq` accum
-
-    prop_upd        = \xs ->
-                        forAll (index_value_pairs (V.length xs)) $ \ps ->
-                        unP prop xs ps
-      where
-        prop :: P (v a -> [(Int,a)] -> v a) = (V.//) `eq` (//)
-
-    prop_backpermute  = \xs ->
-                        forAll (indices (V.length xs)) $ \is ->
-                        unP prop xs (V.fromList is)
-      where
-        prop :: P (v a -> v Int -> v a) = V.backpermute `eq` backpermute
-
-    prop_reverse :: P (v a -> v a) = V.reverse `eq` reverse
-
-    prop_map :: P ((a -> a) -> v a -> v a) = V.map `eq` map
-    prop_zipWith :: P ((a -> a -> a) -> v a -> v a -> v a) = V.zipWith `eq` zipWith
-    prop_zipWith3 :: P ((a -> a -> a -> a) -> v a -> v a -> v a -> v a)
-             = V.zipWith3 `eq` zipWith3
-    prop_imap :: P ((Int -> a -> a) -> v a -> v a) = V.imap `eq` imap
-    prop_imapM :: P ((Int -> a -> Identity a) -> v a -> Identity (v a))
-            = V.imapM `eq` imapM
-    prop_imapM_ :: P ((Int -> a -> Writer [a] ()) -> v a -> Writer [a] ())
-            = V.imapM_ `eq` imapM_
-    prop_izipWith :: P ((Int -> a -> a -> a) -> v a -> v a -> v a) = V.izipWith `eq` izipWith
-    prop_izipWithM :: P ((Int -> a -> a -> Identity a) -> v a -> v a -> Identity (v a))
-            = V.izipWithM `eq` izipWithM
-    prop_izipWithM_ :: P ((Int -> a -> a -> Writer [a] ()) -> v a -> v a -> Writer [a] ())
-            = V.izipWithM_ `eq` izipWithM_
-    prop_izipWith3 :: P ((Int -> a -> a -> a -> a) -> v a -> v a -> v a -> v a)
-             = V.izipWith3 `eq` izipWith3
-
-    prop_filter :: P ((a -> Bool) -> v a -> v a) = V.filter `eq` filter
-    prop_ifilter :: P ((Int -> a -> Bool) -> v a -> v a) = V.ifilter `eq` ifilter
-    prop_mapMaybe :: P ((a -> Maybe a) -> v a -> v a) = V.mapMaybe `eq` mapMaybe
-    prop_imapMaybe :: P ((Int -> a -> Maybe a) -> v a -> v a) = V.imapMaybe `eq` imapMaybe
-    prop_takeWhile :: P ((a -> Bool) -> v a -> v a) = V.takeWhile `eq` takeWhile
-    prop_dropWhile :: P ((a -> Bool) -> v a -> v a) = V.dropWhile `eq` dropWhile
-    prop_partition :: P ((a -> Bool) -> v a -> (v a, v a))
-      = V.partition `eq` partition
-    prop_span :: P ((a -> Bool) -> v a -> (v a, v a)) = V.span `eq` span
-    prop_break :: P ((a -> Bool) -> v a -> (v a, v a)) = V.break `eq` break
-
-    prop_elem    :: P (a -> v a -> Bool) = V.elem `eq` elem
-    prop_notElem :: P (a -> v a -> Bool) = V.notElem `eq` notElem
-    prop_find    :: P ((a -> Bool) -> v a -> Maybe a) = V.find `eq` find
-    prop_findIndex :: P ((a -> Bool) -> v a -> Maybe Int)
-      = V.findIndex `eq` findIndex
-    prop_findIndices :: P ((a -> Bool) -> v a -> v Int)
-        = V.findIndices `eq` findIndices
-    prop_elemIndex :: P (a -> v a -> Maybe Int) = V.elemIndex `eq` elemIndex
-    prop_elemIndices :: P (a -> v a -> v Int) = V.elemIndices `eq` elemIndices
-
-    prop_foldl :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl `eq` foldl
-    prop_foldl1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldl1 `eq` foldl1
-    prop_foldl' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldl' `eq` foldl'
-    prop_foldl1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldl1' `eq` foldl1'
-    prop_foldr :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr `eq` foldr
-    prop_foldr1 :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldr1 `eq` foldr1
-    prop_foldr' :: P ((a -> a -> a) -> a -> v a -> a) = V.foldr' `eq` foldr
-    prop_foldr1' :: P ((a -> a -> a) -> v a -> a)     = notNull2 ===>
-                        V.foldr1' `eq` foldr1
-    prop_ifoldl :: P ((a -> Int -> a -> a) -> a -> v a -> a)
-        = V.ifoldl `eq` ifoldl
-    prop_ifoldl' :: P ((a -> Int -> a -> a) -> a -> v a -> a)
-        = V.ifoldl' `eq` ifoldl
-    prop_ifoldr :: P ((Int -> a -> a -> a) -> a -> v a -> a)
-        = V.ifoldr `eq` ifoldr
-    prop_ifoldr' :: P ((Int -> a -> a -> a) -> a -> v a -> a)
-        = V.ifoldr' `eq` ifoldr
-    prop_ifoldM :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
-        = V.ifoldM `eq` ifoldM
-    prop_ifoldM' :: P ((a -> Int -> a -> Identity a) -> a -> v a -> Identity a)
-        = V.ifoldM' `eq` ifoldM
-    prop_ifoldM_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
-        = V.ifoldM_ `eq` ifoldM_
-    prop_ifoldM'_ :: P ((() -> Int -> a -> Writer [a] ()) -> () -> v a -> Writer [a] ())
-        = V.ifoldM'_ `eq` ifoldM_
-
-    prop_all :: P ((a -> Bool) -> v a -> Bool) = V.all `eq` all
-    prop_any :: P ((a -> Bool) -> v a -> Bool) = V.any `eq` any
-
-    prop_prescanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanl `eq` prescanl
-    prop_prescanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanl' `eq` prescanl
-    prop_postscanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanl `eq` postscanl
-    prop_postscanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanl' `eq` postscanl
-    prop_scanl :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.scanl `eq` scanl
-    prop_scanl' :: P ((a -> a -> a) -> a -> v a -> v a)
-               = V.scanl' `eq` scanl
-    prop_scanl1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanl1 `eq` scanl1
-    prop_scanl1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanl1' `eq` scanl1
-    prop_iscanl :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-                = V.iscanl `eq` iscanl
-    prop_iscanl' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-               = V.iscanl' `eq` iscanl
-
-    prop_prescanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanr `eq` prescanr
-    prop_prescanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.prescanr' `eq` prescanr
-    prop_postscanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanr `eq` postscanr
-    prop_postscanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.postscanr' `eq` postscanr
-    prop_scanr :: P ((a -> a -> a) -> a -> v a -> v a)
-                = V.scanr `eq` scanr
-    prop_scanr' :: P ((a -> a -> a) -> a -> v a -> v a)
-               = V.scanr' `eq` scanr
-    prop_iscanr :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-                = V.iscanr `eq` iscanr
-    prop_iscanr' :: P ((Int -> a -> a -> a) -> a -> v a -> v a)
-               = V.iscanr' `eq` iscanr
-    prop_scanr1 :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanr1 `eq` scanr1
-    prop_scanr1' :: P ((a -> a -> a) -> v a -> v a) = notNull2 ===>
-                 V.scanr1' `eq` scanr1
-
-    prop_concatMap    = forAll arbitrary $ \xs ->
-                        forAll (sized (\n -> resize (n `div` V.length xs) arbitrary)) $ \f -> unP prop f xs
-      where
-        prop :: P ((a -> v a) -> v a -> v a) = V.concatMap `eq` concatMap
-
-    prop_uniq :: P (v a -> v a)
-      = V.uniq `eq` (map head . group)
-    --prop_span         = (V.span :: (a -> Bool) -> v a -> (v a, v a))  `eq2` span
-    --prop_break        = (V.break :: (a -> Bool) -> v a -> (v a, v a)) `eq2` break
-    --prop_splitAt      = (V.splitAt :: Int -> v a -> (v a, v a))       `eq2` splitAt
-    --prop_all          = (V.all :: (a -> Bool) -> v a -> Bool)         `eq2` all
-    --prop_any          = (V.any :: (a -> Bool) -> v a -> Bool)         `eq2` any
-
-    -- Data.List
-    --prop_findIndices  = V.findIndices `eq2` (findIndices :: (a -> Bool) -> v a -> v Int)
-    --prop_isPrefixOf   = V.isPrefixOf  `eq2` (isPrefixOf  :: v a -> v a -> Bool)
-    --prop_elemIndex    = V.elemIndex   `eq2` (elemIndex   :: a -> v a -> Maybe Int)
-    --prop_elemIndices  = V.elemIndices `eq2` (elemIndices :: a -> v a -> v Int)
-    --
-    --prop_mapAccumL  = eq3
-    --    (V.mapAccumL :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
-    --    (  mapAccumL :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
-    --
-    --prop_mapAccumR  = eq3
-    --    (V.mapAccumR :: (X -> W -> (X,W)) -> X -> B   -> (X, B))
-    --    (  mapAccumR :: (X -> W -> (X,W)) -> X -> [W] -> (X, [W]))
-
-    -- Because the vectors are strict, we need to be totally sure that the unfold eventually terminates. This
-    -- is achieved by injecting our own bit of state into the unfold - the maximum number of unfolds allowed.
-    limitUnfolds f (theirs, ours)
-        | ours > 0
-        , Just (out, theirs') <- f theirs = Just (out, (theirs', ours - 1))
-        | otherwise                       = Nothing
-    limitUnfoldsM f (theirs, ours)
-        | ours >  0 = do r <- f theirs
-                         return $ (\(a,b) -> (a,(b,ours - 1))) `fmap` r
-        | otherwise = return Nothing
-
-
-    prop_unfoldr :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
-         = (\n f a -> V.unfoldr (limitUnfolds f) (a, n))
-           `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
-    prop_unfoldrN :: P (Int -> (Int -> Maybe (a,Int)) -> Int -> v a)
-         = V.unfoldrN `eq` (\n f a -> unfoldr (limitUnfolds f) (a, n))
-    prop_unfoldrM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
-         = (\n f a -> V.unfoldrM (limitUnfoldsM f) (a,n))
-           `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
-    prop_unfoldrNM :: P (Int -> (Int -> Writer [Int] (Maybe (a,Int))) -> Int -> Writer [Int] (v a))
-         = V.unfoldrNM `eq` (\n f a -> Util.unfoldrM (limitUnfoldsM f) (a, n))
-
-    prop_constructN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
-      where
-        prop :: P (Int -> (v a -> a) -> v a) = V.constructN `eq` constructN []
-
-        constructN xs 0 _ = xs
-        constructN xs n f = constructN (xs ++ [f xs]) (n-1) f
-
-    prop_constructrN  = \f -> forAll (choose (0,20)) $ \n -> unP prop n f
-      where
-        prop :: P (Int -> (v a -> a) -> v a) = V.constructrN `eq` constructrN []
-
-        constructrN xs 0 _ = xs
-        constructrN xs n f = constructrN (f xs : xs) (n-1) f
-
-testTuplyFunctions:: forall a v. (CommonContext a v, VectorContext (a, a) v, VectorContext (a, a, a) v) => v a -> [Test]
-testTuplyFunctions _ = $(testProperties [ 'prop_zip, 'prop_zip3
-                                        , 'prop_unzip, 'prop_unzip3
-                                        , 'prop_mzip, 'prop_munzip
-                                        ])
-  where
-    prop_zip    :: P (v a -> v a -> v (a, a))           = V.zip `eq` zip
-    prop_zip3   :: P (v a -> v a -> v a -> v (a, a, a)) = V.zip3 `eq` zip3
-    prop_unzip  :: P (v (a, a) -> (v a, v a))           = V.unzip `eq` unzip
-    prop_unzip3 :: P (v (a, a, a) -> (v a, v a, v a))   = V.unzip3 `eq` unzip3
-    prop_mzip   :: P (Data.Vector.Vector a -> Data.Vector.Vector a -> Data.Vector.Vector (a, a))
-        = mzip `eq` zip
-    prop_munzip :: P (Data.Vector.Vector (a, a) -> (Data.Vector.Vector a, Data.Vector.Vector a))
-        = munzip `eq` unzip
-
-testOrdFunctions :: forall a v. (CommonContext a v, Ord a, Ord (v a)) => v a -> [Test]
-testOrdFunctions _ = $(testProperties
-  ['prop_compare,
-   'prop_maximum, 'prop_minimum,
-   'prop_minIndex, 'prop_maxIndex ])
-  where
-    prop_compare :: P (v a -> v a -> Ordering) = compare `eq` compare
-    prop_maximum :: P (v a -> a) = not . V.null ===> V.maximum `eq` maximum
-    prop_minimum :: P (v a -> a) = not . V.null ===> V.minimum `eq` minimum
-    prop_minIndex :: P (v a -> Int) = not . V.null ===> V.minIndex `eq` minIndex
-    prop_maxIndex :: P (v a -> Int) = not . V.null ===> V.maxIndex `eq` maxIndex
-
-testEnumFunctions :: forall a v. (CommonContext a v, Enum a, Ord a, Num a, Random a) => v a -> [Test]
-testEnumFunctions _ = $(testProperties
-  [ 'prop_enumFromN, 'prop_enumFromThenN,
-    'prop_enumFromTo, 'prop_enumFromThenTo])
-  where
-    prop_enumFromN :: P (a -> Int -> v a)
-      = (\_ n -> n < 1000)
-        ===> V.enumFromN `eq` (\x n -> take n $ scanl (+) x $ repeat 1)
-
-    prop_enumFromThenN :: P (a -> a -> Int -> v a)
-      = (\_ _ n -> n < 1000)
-        ===> V.enumFromStepN `eq` (\x y n -> take n $ scanl (+) x $ repeat y)
-
-    prop_enumFromTo = \m ->
-                      forAll (choose (-2,100)) $ \n ->
-                      unP prop m (m+n)
-      where
-        prop  :: P (a -> a -> v a) = V.enumFromTo `eq` enumFromTo
-
-    prop_enumFromThenTo = \i j ->
-                          j /= i ==>
-                          forAll (choose (ks i j)) $ \k ->
-                          unP prop i j k
-      where
-        prop :: P (a -> a -> a -> v a) = V.enumFromThenTo `eq` enumFromThenTo
-
-        ks i j | j < i     = (i-d*100, i+d*2)
-               | otherwise = (i-d*2, i+d*100)
-          where
-            d = abs (j-i)
-
-testMonoidFunctions :: forall a v. (CommonContext a v, Monoid (v a)) => v a -> [Test]
-testMonoidFunctions _ = $(testProperties
-  [ 'prop_mempty, 'prop_mappend, 'prop_mconcat ])
-  where
-    prop_mempty  :: P (v a)               = mempty `eq` mempty
-    prop_mappend :: P (v a -> v a -> v a) = mappend `eq` mappend
-    prop_mconcat :: P ([v a] -> v a)      = mconcat `eq` mconcat
-
-testFunctorFunctions :: forall a v. (CommonContext a v, Functor v) => v a -> [Test]
-testFunctorFunctions _ = $(testProperties
-  [ 'prop_fmap ])
-  where
-    prop_fmap :: P ((a -> a) -> v a -> v a) = fmap `eq` fmap
-
-testMonadFunctions :: forall a v. (CommonContext a v, Monad v) => v a -> [Test]
-testMonadFunctions _ = $(testProperties
-  [ 'prop_return, 'prop_bind ])
-  where
-    prop_return :: P (a -> v a) = return `eq` return
-    prop_bind   :: P (v a -> (a -> v a) -> v a) = (>>=) `eq` (>>=)
-
-testApplicativeFunctions :: forall a v. (CommonContext a v, V.Vector v (a -> a), Applicative.Applicative v) => v a -> [Test]
-testApplicativeFunctions _ = $(testProperties
-  [ 'prop_applicative_pure, 'prop_applicative_appl ])
-  where
-    prop_applicative_pure :: P (a -> v a)
-      = Applicative.pure `eq` Applicative.pure
-    prop_applicative_appl :: [a -> a] -> P (v a -> v a)
-      = \fs -> (Applicative.<*>) (V.fromList fs) `eq` (Applicative.<*>) fs
-
-testAlternativeFunctions :: forall a v. (CommonContext a v, Applicative.Alternative v) => v a -> [Test]
-testAlternativeFunctions _ = $(testProperties
-  [ 'prop_alternative_empty, 'prop_alternative_or ])
-  where
-    prop_alternative_empty :: P (v a) = Applicative.empty `eq` Applicative.empty
-    prop_alternative_or :: P (v a -> v a -> v a)
-      = (Applicative.<|>) `eq` (Applicative.<|>)
-
-testBoolFunctions :: forall v. (CommonContext Bool v) => v Bool -> [Test]
-testBoolFunctions _ = $(testProperties ['prop_and, 'prop_or])
-  where
-    prop_and :: P (v Bool -> Bool) = V.and `eq` and
-    prop_or  :: P (v Bool -> Bool) = V.or `eq` or
-
-testNumFunctions :: forall a v. (CommonContext a v, Num a) => v a -> [Test]
-testNumFunctions _ = $(testProperties ['prop_sum, 'prop_product])
-  where
-    prop_sum     :: P (v a -> a) = V.sum `eq` sum
-    prop_product :: P (v a -> a) = V.product `eq` product
-
-testNestedVectorFunctions :: forall a v. (CommonContext a v) => v a -> [Test]
-testNestedVectorFunctions _ = $(testProperties [])
-  where
-    -- Prelude
-    --prop_concat       = (V.concat :: [v a] -> v a)                    `eq1` concat
-
-    -- Data.List
-    --prop_transpose    = V.transpose   `eq1` (transpose   :: [v a] -> [v a])
-    --prop_group        = V.group       `eq1` (group       :: v a -> [v a])
-    --prop_inits        = V.inits       `eq1` (inits       :: v a -> [v a])
-    --prop_tails        = V.tails       `eq1` (tails       :: v a -> [v a])
-
-testGeneralBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a) => Data.Vector.Vector a -> [Test]
-testGeneralBoxedVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testTuplyFunctions,
-        testNestedVectorFunctions,
-        testMonoidFunctions,
-        testFunctorFunctions,
-        testMonadFunctions,
-        testApplicativeFunctions,
-        testAlternativeFunctions
-    ]
-
-testBoolBoxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralBoxedVector
-  , testBoolFunctions
-  ]
-
-testNumericBoxedVector :: forall a. (CommonContext a Data.Vector.Vector, Ord a, Num a, Enum a, Random a) => Data.Vector.Vector a -> [Test]
-testNumericBoxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralBoxedVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-
-testGeneralPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a) => Data.Vector.Primitive.Vector a -> [Test]
-testGeneralPrimitiveVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testNumericPrimitiveVector :: forall a. (CommonContext a Data.Vector.Primitive.Vector, Data.Vector.Primitive.Prim a, Ord a, Num a, Enum a, Random a) => Data.Vector.Primitive.Vector a -> [Test]
-testNumericPrimitiveVector dummy = concatMap ($ dummy)
- [
-   testGeneralPrimitiveVector
- , testNumFunctions
- , testEnumFunctions
- ]
-
-
-testGeneralStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a) => Data.Vector.Storable.Vector a -> [Test]
-testGeneralStorableVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testNumericStorableVector :: forall a. (CommonContext a Data.Vector.Storable.Vector, Data.Vector.Storable.Storable a, Ord a, Num a, Enum a, Random a) => Data.Vector.Storable.Vector a -> [Test]
-testNumericStorableVector dummy = concatMap ($ dummy)
-  [
-    testGeneralStorableVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-
-testGeneralUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
-testGeneralUnboxedVector dummy = concatMap ($ dummy) [
-        testSanity,
-        testPolymorphicFunctions,
-        testOrdFunctions,
-        testMonoidFunctions
-    ]
-
-testUnitUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  ]
-
-testBoolUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  , testBoolFunctions
-  ]
-
-testNumericUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a, Num a, Enum a, Random a) => Data.Vector.Unboxed.Vector a -> [Test]
-testNumericUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  , testNumFunctions
-  , testEnumFunctions
-  ]
-
-testTupleUnboxedVector :: forall a. (CommonContext a Data.Vector.Unboxed.Vector, Data.Vector.Unboxed.Unbox a, Ord a) => Data.Vector.Unboxed.Vector a -> [Test]
-testTupleUnboxedVector dummy = concatMap ($ dummy)
-  [
-    testGeneralUnboxedVector
-  ]
-
-tests = [
-        testGroup "Data.Vector.Vector (Bool)"           (testBoolBoxedVector      (undefined :: Data.Vector.Vector Bool)),
-        testGroup "Data.Vector.Vector (Int)"            (testNumericBoxedVector   (undefined :: Data.Vector.Vector Int)),
-
-        testGroup "Data.Vector.Primitive.Vector (Int)"    (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Int)),
-        testGroup "Data.Vector.Primitive.Vector (Double)" (testNumericPrimitiveVector (undefined :: Data.Vector.Primitive.Vector Double)),
-
-        testGroup "Data.Vector.Storable.Vector (Int)"    (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Int)),
-        testGroup "Data.Vector.Storable.Vector (Double)" (testNumericStorableVector (undefined :: Data.Vector.Storable.Vector Double)),
-
-        testGroup "Data.Vector.Unboxed.Vector ()"       (testUnitUnboxedVector (undefined :: Data.Vector.Unboxed.Vector ())),
-        testGroup "Data.Vector.Unboxed.Vector (Bool)"       (testBoolUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Bool)),
-        testGroup "Data.Vector.Unboxed.Vector (Int)"    (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Int)),
-        testGroup "Data.Vector.Unboxed.Vector (Double)" (testNumericUnboxedVector (undefined :: Data.Vector.Unboxed.Vector Double)),
-       testGroup "Data.Vector.Unboxed.Vector (Int,Bool)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool))),
-         testGroup "Data.Vector.Unboxed.Vector (Int,Bool,Int)" (testTupleUnboxedVector (undefined :: Data.Vector.Unboxed.Vector (Int,Bool,Int)))
-
-    ]