about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs543
1 files changed, 0 insertions, 543 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs
deleted file mode 100644
index 29eb2fbfa3..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Storable/Mutable.hs
+++ /dev/null
@@ -1,543 +0,0 @@
-{-# LANGUAGE CPP, DeriveDataTypeable, FlexibleInstances, MagicHash, MultiParamTypeClasses, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Storable.Mutable
--- Copyright   : (c) Roman Leshchinskiy 2009-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Mutable vectors based on Storable.
---
-
-module Data.Vector.Storable.Mutable(
-  -- * Mutable vectors of 'Storable' types
-  MVector(..), IOVector, STVector, Storable,
-
-  -- * Accessors
-
-  -- ** Length information
-  length, null,
-
-  -- ** Extracting subvectors
-  slice, init, tail, take, drop, splitAt,
-  unsafeSlice, unsafeInit, unsafeTail, unsafeTake, unsafeDrop,
-
-  -- ** Overlapping
-  overlaps,
-
-  -- * Construction
-
-  -- ** Initialisation
-  new, unsafeNew, replicate, replicateM, clone,
-
-  -- ** Growing
-  grow, unsafeGrow,
-
-  -- ** Restricting memory usage
-  clear,
-
-  -- * Accessing individual elements
-  read, write, modify, swap,
-  unsafeRead, unsafeWrite, unsafeModify, unsafeSwap,
-
-  -- * Modifying vectors
-
-  -- ** Filling and copying
-  set, copy, move, unsafeCopy, unsafeMove,
-
-  -- * Unsafe conversions
-  unsafeCast,
-
-  -- * Raw pointers
-  unsafeFromForeignPtr, unsafeFromForeignPtr0,
-  unsafeToForeignPtr,   unsafeToForeignPtr0,
-  unsafeWith
-) where
-
-import Control.DeepSeq ( NFData(rnf) )
-
-import qualified Data.Vector.Generic.Mutable as G
-import Data.Vector.Storable.Internal
-
-import Foreign.Storable
-import Foreign.ForeignPtr
-
-#if __GLASGOW_HASKELL__ >= 706
-import GHC.ForeignPtr (mallocPlainForeignPtrAlignedBytes)
-#elif __GLASGOW_HASKELL__ >= 700
-import Data.Primitive.ByteArray (MutableByteArray(..), newAlignedPinnedByteArray,
-                                 unsafeFreezeByteArray)
-import GHC.Prim (byteArrayContents#, unsafeCoerce#)
-import GHC.ForeignPtr
-#endif
-
-import Foreign.Ptr
-import Foreign.Marshal.Array ( advancePtr, copyArray, moveArray )
-
-import Control.Monad.Primitive
-import Data.Primitive.Addr
-import Data.Primitive.Types (Prim)
-
-import GHC.Word (Word8, Word16, Word32, Word64)
-import GHC.Ptr (Ptr(..))
-
-import Prelude hiding ( length, null, replicate, reverse, map, read,
-                        take, drop, splitAt, init, tail )
-
-import Data.Typeable ( Typeable )
-
--- Data.Vector.Internal.Check is not needed
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | Mutable 'Storable'-based vectors
-data MVector s a = MVector {-# UNPACK #-} !Int
-                           {-# UNPACK #-} !(ForeignPtr a)
-        deriving ( Typeable )
-
-type IOVector = MVector RealWorld
-type STVector s = MVector s
-
-instance NFData (MVector s a) where
-  rnf (MVector _ _) = ()
-
-instance Storable a => G.MVector MVector a where
-  {-# INLINE basicLength #-}
-  basicLength (MVector n _) = n
-
-  {-# INLINE basicUnsafeSlice #-}
-  basicUnsafeSlice j m (MVector _ fp) = MVector m (updPtr (`advancePtr` j) fp)
-
-  -- FIXME: this relies on non-portable pointer comparisons
-  {-# INLINE basicOverlaps #-}
-  basicOverlaps (MVector m fp) (MVector n fq)
-    = between p q (q `advancePtr` n) || between q p (p `advancePtr` m)
-    where
-      between x y z = x >= y && x < z
-      p = getPtr fp
-      q = getPtr fq
-
-  {-# INLINE basicUnsafeNew #-}
-  basicUnsafeNew n
-    | n < 0 = error $ "Storable.basicUnsafeNew: negative length: " ++ show n
-    | n > mx = error $ "Storable.basicUnsafeNew: length too large: " ++ show n
-    | otherwise = unsafePrimToPrim $ do
-        fp <- mallocVector n
-        return $ MVector n fp
-    where
-      size = sizeOf (undefined :: a)
-      mx = maxBound `quot` size :: Int
-
-  {-# INLINE basicInitialize #-}
-  basicInitialize = storableZero
-
-  {-# INLINE basicUnsafeRead #-}
-  basicUnsafeRead (MVector _ fp) i
-    = unsafePrimToPrim
-    $ withForeignPtr fp (`peekElemOff` i)
-
-  {-# INLINE basicUnsafeWrite #-}
-  basicUnsafeWrite (MVector _ fp) i x
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p -> pokeElemOff p i x
-
-  {-# INLINE basicSet #-}
-  basicSet = storableSet
-
-  {-# INLINE basicUnsafeCopy #-}
-  basicUnsafeCopy (MVector n fp) (MVector _ fq)
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p ->
-      withForeignPtr fq $ \q ->
-      copyArray p q n
-
-  {-# INLINE basicUnsafeMove #-}
-  basicUnsafeMove (MVector n fp) (MVector _ fq)
-    = unsafePrimToPrim
-    $ withForeignPtr fp $ \p ->
-      withForeignPtr fq $ \q ->
-      moveArray p q n
-
-storableZero :: forall a m. (Storable a, PrimMonad m) => MVector (PrimState m) a -> m ()
-{-# INLINE storableZero #-}
-storableZero (MVector n fp) = unsafePrimToPrim . withForeignPtr fp $ \(Ptr p) -> do
-  let q = Addr p
-  setAddr q byteSize (0 :: Word8)
- where
- x :: a
- x = undefined
-
- byteSize :: Int
- byteSize = n * sizeOf x
-
-storableSet :: (Storable a, PrimMonad m) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE storableSet #-}
-storableSet (MVector n fp) x
-  | n == 0 = return ()
-  | otherwise = unsafePrimToPrim $
-                case sizeOf x of
-                  1 -> storableSetAsPrim n fp x (undefined :: Word8)
-                  2 -> storableSetAsPrim n fp x (undefined :: Word16)
-                  4 -> storableSetAsPrim n fp x (undefined :: Word32)
-                  8 -> storableSetAsPrim n fp x (undefined :: Word64)
-                  _ -> withForeignPtr fp $ \p -> do
-                       poke p x
-
-                       let do_set i
-                             | 2*i < n = do
-                                 copyArray (p `advancePtr` i) p i
-                                 do_set (2*i)
-                             | otherwise = copyArray (p `advancePtr` i) p (n-i)
-
-                       do_set 1
-
-storableSetAsPrim
-  :: (Storable a, Prim b) => Int -> ForeignPtr a -> a -> b -> IO ()
-{-# INLINE [0] storableSetAsPrim #-}
-storableSetAsPrim n fp x y = withForeignPtr fp $ \(Ptr p) -> do
-  poke (Ptr p) x
-  let q = Addr p
-  w <- readOffAddr q 0
-  setAddr (q `plusAddr` sizeOf x) (n-1) (w `asTypeOf` y)
-
-{-# INLINE mallocVector #-}
-mallocVector :: Storable a => Int -> IO (ForeignPtr a)
-mallocVector =
-#if __GLASGOW_HASKELL__ >= 706
-  doMalloc undefined
-  where
-    doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
-    doMalloc dummy size =
-      mallocPlainForeignPtrAlignedBytes (size * sizeOf dummy) (alignment dummy)
-#elif __GLASGOW_HASKELL__ >= 700
-  doMalloc undefined
-  where
-    doMalloc :: Storable b => b -> Int -> IO (ForeignPtr b)
-    doMalloc dummy size = do
-      arr@(MutableByteArray arr#) <- newAlignedPinnedByteArray arrSize arrAlign
-      newConcForeignPtr
-        (Ptr (byteArrayContents# (unsafeCoerce# arr#)))
-        -- Keep reference to mutable byte array until whole ForeignPtr goes out
-        -- of scope.
-        (touch arr)
-      where
-        arrSize  = size * sizeOf dummy
-        arrAlign = alignment dummy
-#else
-    mallocForeignPtrArray
-#endif
-
--- Length information
--- ------------------
-
--- | Length of the mutable vector.
-length :: Storable a => MVector s a -> Int
-{-# INLINE length #-}
-length = G.length
-
--- | Check whether the vector is empty
-null :: Storable a => MVector s a -> Bool
-{-# INLINE null #-}
-null = G.null
-
--- Extracting subvectors
--- ---------------------
-
--- | Yield a part of the mutable vector without copying it.
-slice :: Storable a => Int -> Int -> MVector s a -> MVector s a
-{-# INLINE slice #-}
-slice = G.slice
-
-take :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE take #-}
-take = G.take
-
-drop :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE drop #-}
-drop = G.drop
-
-splitAt :: Storable a => Int -> MVector s a -> (MVector s a, MVector s a)
-{-# INLINE splitAt #-}
-splitAt = G.splitAt
-
-init :: Storable a => MVector s a -> MVector s a
-{-# INLINE init #-}
-init = G.init
-
-tail :: Storable a => MVector s a -> MVector s a
-{-# INLINE tail #-}
-tail = G.tail
-
--- | Yield a part of the mutable vector without copying it. No bounds checks
--- are performed.
-unsafeSlice :: Storable a
-            => Int  -- ^ starting index
-            -> Int  -- ^ length of the slice
-            -> MVector s a
-            -> MVector s a
-{-# INLINE unsafeSlice #-}
-unsafeSlice = G.unsafeSlice
-
-unsafeTake :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeTake #-}
-unsafeTake = G.unsafeTake
-
-unsafeDrop :: Storable a => Int -> MVector s a -> MVector s a
-{-# INLINE unsafeDrop #-}
-unsafeDrop = G.unsafeDrop
-
-unsafeInit :: Storable a => MVector s a -> MVector s a
-{-# INLINE unsafeInit #-}
-unsafeInit = G.unsafeInit
-
-unsafeTail :: Storable a => MVector s a -> MVector s a
-{-# INLINE unsafeTail #-}
-unsafeTail = G.unsafeTail
-
--- Overlapping
--- -----------
-
--- | Check whether two vectors overlap.
-overlaps :: Storable a => MVector s a -> MVector s a -> Bool
-{-# INLINE overlaps #-}
-overlaps = G.overlaps
-
--- Initialisation
--- --------------
-
--- | Create a mutable vector of the given length.
-new :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE new #-}
-new = G.new
-
--- | Create a mutable vector of the given length. The memory is not initialized.
-unsafeNew :: (PrimMonad m, Storable a) => Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeNew #-}
-unsafeNew = G.unsafeNew
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with an initial value.
-replicate :: (PrimMonad m, Storable a) => Int -> a -> m (MVector (PrimState m) a)
-{-# INLINE replicate #-}
-replicate = G.replicate
-
--- | Create a mutable vector of the given length (0 if the length is negative)
--- and fill it with values produced by repeatedly executing the monadic action.
-replicateM :: (PrimMonad m, Storable a) => Int -> m a -> m (MVector (PrimState m) a)
-{-# INLINE replicateM #-}
-replicateM = G.replicateM
-
--- | Create a copy of a mutable vector.
-clone :: (PrimMonad m, Storable a)
-      => MVector (PrimState m) a -> m (MVector (PrimState m) a)
-{-# INLINE clone #-}
-clone = G.clone
-
--- Growing
--- -------
-
--- | Grow a vector by the given number of elements. The number must be
--- positive.
-grow :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE grow #-}
-grow = G.grow
-
--- | Grow a vector by the given number of elements. The number must be
--- positive but this is not checked.
-unsafeGrow :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a -> Int -> m (MVector (PrimState m) a)
-{-# INLINE unsafeGrow #-}
-unsafeGrow = G.unsafeGrow
-
--- Restricting memory usage
--- ------------------------
-
--- | Reset all elements of the vector to some undefined value, clearing all
--- references to external objects. This is usually a noop for unboxed vectors.
-clear :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> m ()
-{-# INLINE clear #-}
-clear = G.clear
-
--- Accessing individual elements
--- -----------------------------
-
--- | Yield the element at the given position.
-read :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE read #-}
-read = G.read
-
--- | Replace the element at the given position.
-write
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE write #-}
-write = G.write
-
--- | Modify the element at the given position.
-modify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE modify #-}
-modify = G.modify
-
--- | Swap the elements at the given positions.
-swap
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE swap #-}
-swap = G.swap
-
-
--- | Yield the element at the given position. No bounds checks are performed.
-unsafeRead :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> m a
-{-# INLINE unsafeRead #-}
-unsafeRead = G.unsafeRead
-
--- | Replace the element at the given position. No bounds checks are performed.
-unsafeWrite
-    :: (PrimMonad m, Storable a) =>  MVector (PrimState m) a -> Int -> a -> m ()
-{-# INLINE unsafeWrite #-}
-unsafeWrite = G.unsafeWrite
-
--- | Modify the element at the given position. No bounds checks are performed.
-unsafeModify :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> (a -> a) -> Int -> m ()
-{-# INLINE unsafeModify #-}
-unsafeModify = G.unsafeModify
-
--- | Swap the elements at the given positions. No bounds checks are performed.
-unsafeSwap
-    :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> Int -> Int -> m ()
-{-# INLINE unsafeSwap #-}
-unsafeSwap = G.unsafeSwap
-
--- Filling and copying
--- -------------------
-
--- | Set all elements of the vector to the given value.
-set :: (PrimMonad m, Storable a) => MVector (PrimState m) a -> a -> m ()
-{-# INLINE set #-}
-set = G.set
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap.
-copy :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a   -- ^ target
-     -> MVector (PrimState m) a   -- ^ source
-     -> m ()
-{-# INLINE copy #-}
-copy = G.copy
-
--- | Copy a vector. The two vectors must have the same length and may not
--- overlap. This is not checked.
-unsafeCopy :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeCopy #-}
-unsafeCopy = G.unsafeCopy
-
--- | Move the contents of a vector. The two vectors must have the same
--- length.
---
--- If the vectors do not overlap, then this is equivalent to 'copy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-move :: (PrimMonad m, Storable a)
-     => MVector (PrimState m) a -> MVector (PrimState m) a -> m ()
-{-# INLINE move #-}
-move = G.move
-
--- | Move the contents of a vector. The two vectors must have the same
--- length, but this is not checked.
---
--- If the vectors do not overlap, then this is equivalent to 'unsafeCopy'.
--- Otherwise, the copying is performed as if the source vector were
--- copied to a temporary vector and then the temporary vector was copied
--- to the target vector.
-unsafeMove :: (PrimMonad m, Storable a)
-           => MVector (PrimState m) a   -- ^ target
-           -> MVector (PrimState m) a   -- ^ source
-           -> m ()
-{-# INLINE unsafeMove #-}
-unsafeMove = G.unsafeMove
-
--- Unsafe conversions
--- ------------------
-
--- | /O(1)/ Unsafely cast a mutable vector from one element type to another.
--- The operation just changes the type of the underlying pointer and does not
--- modify the elements.
---
--- The resulting vector contains as many elements as can fit into the
--- underlying memory block.
---
-unsafeCast :: forall a b s.
-              (Storable a, Storable b) => MVector s a -> MVector s b
-{-# INLINE unsafeCast #-}
-unsafeCast (MVector n fp)
-  = MVector ((n * sizeOf (undefined :: a)) `div` sizeOf (undefined :: b))
-            (castForeignPtr fp)
-
--- Raw pointers
--- ------------
-
--- | Create a mutable vector from a 'ForeignPtr' with an offset and a length.
---
--- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
--- could have been frozen before the modification.
---
---  If your offset is 0 it is more efficient to use 'unsafeFromForeignPtr0'.
-unsafeFromForeignPtr :: Storable a
-                     => ForeignPtr a    -- ^ pointer
-                     -> Int             -- ^ offset
-                     -> Int             -- ^ length
-                     -> MVector s a
-{-# INLINE_FUSED unsafeFromForeignPtr #-}
-unsafeFromForeignPtr fp i n = unsafeFromForeignPtr0 fp' n
-    where
-      fp' = updPtr (`advancePtr` i) fp
-
-{-# RULES
-"unsafeFromForeignPtr fp 0 n -> unsafeFromForeignPtr0 fp n " forall fp n.
-  unsafeFromForeignPtr fp 0 n = unsafeFromForeignPtr0 fp n   #-}
-
-
--- | /O(1)/ Create a mutable vector from a 'ForeignPtr' and a length.
---
--- It is assumed the pointer points directly to the data (no offset).
--- Use `unsafeFromForeignPtr` if you need to specify an offset.
---
--- Modifying data through the 'ForeignPtr' afterwards is unsafe if the vector
--- could have been frozen before the modification.
-unsafeFromForeignPtr0 :: Storable a
-                      => ForeignPtr a    -- ^ pointer
-                      -> Int             -- ^ length
-                      -> MVector s a
-{-# INLINE unsafeFromForeignPtr0 #-}
-unsafeFromForeignPtr0 fp n = MVector n fp
-
--- | Yield the underlying 'ForeignPtr' together with the offset to the data
--- and its length. Modifying the data through the 'ForeignPtr' is
--- unsafe if the vector could have frozen before the modification.
-unsafeToForeignPtr :: Storable a => MVector s a -> (ForeignPtr a, Int, Int)
-{-# INLINE unsafeToForeignPtr #-}
-unsafeToForeignPtr (MVector n fp) = (fp, 0, n)
-
--- | /O(1)/ Yield the underlying 'ForeignPtr' together with its length.
---
--- You can assume the pointer points directly to the data (no offset).
---
--- Modifying the data through the 'ForeignPtr' is unsafe if the vector could
--- have frozen before the modification.
-unsafeToForeignPtr0 :: Storable a => MVector s a -> (ForeignPtr a, Int)
-{-# INLINE unsafeToForeignPtr0 #-}
-unsafeToForeignPtr0 (MVector n fp) = (fp, n)
-
--- | Pass a pointer to the vector's data to the IO action. Modifying data
--- through the pointer is unsafe if the vector could have been frozen before
--- the modification.
-unsafeWith :: Storable a => IOVector a -> (Ptr a -> IO b) -> IO b
-{-# INLINE unsafeWith #-}
-unsafeWith (MVector _ fp) = withForeignPtr fp
-