about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs655
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs1106
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs121
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs1639
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs60
5 files changed, 0 insertions, 3581 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
deleted file mode 100644
index 6b6b6236d7..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle.hs
+++ /dev/null
@@ -1,655 +0,0 @@
-{-# LANGUAGE CPP, FlexibleInstances, Rank2Types, BangPatterns #-}
-
--- |
--- Module      : Data.Vector.Fusion.Bundle
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Bundles for stream fusion
---
-
-module Data.Vector.Fusion.Bundle (
-  -- * Types
-  Step(..), Chunk(..), Bundle, MBundle,
-
-  -- * In-place markers
-  inplace,
-
-  -- * Size hints
-  size, sized,
-
-  -- * Length information
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, generate, (++),
-
-  -- * Accessing individual elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, concatMap, flatten, unbox,
-
-  -- * Zipping
-  indexed, indexedR,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Filtering
-  filter, takeWhile, dropWhile,
-
-  -- * Searching
-  elem, notElem, find, findIndex,
-
-  -- * Folding
-  foldl, foldl1, foldl', foldl1', foldr, foldr1,
-
-  -- * Specialised folds
-  and, or,
-
-  -- * Unfolding
-  unfoldr, unfoldrN, iterateN,
-
-  -- * Scans
-  prescanl, prescanl',
-  postscanl, postscanl',
-  scanl, scanl',
-  scanl1, scanl1',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN, unsafeFromList, lift,
-  fromVector, reVector, fromVectors, concatVectors,
-
-  -- * Monadic combinators
-  mapM, mapM_, zipWithM, zipWithM_, filterM, foldM, fold1M, foldM', fold1M',
-
-  eq, cmp, eqBy, cmpBy
-) where
-
-import Data.Vector.Generic.Base ( Vector )
-import Data.Vector.Fusion.Bundle.Size
-import Data.Vector.Fusion.Util
-import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
-import Data.Vector.Fusion.Bundle.Monadic ( Chunk(..) )
-import qualified Data.Vector.Fusion.Bundle.Monadic as M
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo,
-                        mapM, mapM_ )
-
-#if MIN_VERSION_base(4,9,0)
-import Data.Functor.Classes (Eq1 (..), Ord1 (..))
-#endif
-
-import GHC.Base ( build )
-
--- Data.Vector.Internal.Check is unused
-#define NOT_VECTOR_MODULE
-#include "vector.h"
-
--- | The type of pure streams
-type Bundle = M.Bundle Id
-
--- | Alternative name for monadic streams
-type MBundle = M.Bundle
-
-inplace :: (forall m. Monad m => S.Stream m a -> S.Stream m b)
-        -> (Size -> Size) -> Bundle v a -> Bundle v b
-{-# INLINE_FUSED inplace #-}
-inplace f g b = b `seq` M.fromStream (f (M.elements b)) (g (M.size b))
-
-{-# RULES
-
-"inplace/inplace [Vector]"
-  forall (f1 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
-         (f2 :: forall m. Monad m => S.Stream m a -> S.Stream m a)
-         g1 g2 s.
-  inplace f1 g1 (inplace f2 g2 s) = inplace (f1 . f2) (g1 . g2) s   #-}
-
-
-
--- | Convert a pure stream to a monadic stream
-lift :: Monad m => Bundle v a -> M.Bundle m v a
-{-# INLINE_FUSED lift #-}
-lift (M.Bundle (Stream step s) (Stream vstep t) v sz)
-    = M.Bundle (Stream (return . unId . step) s)
-               (Stream (return . unId . vstep) t) v sz
-
--- | 'Size' hint of a 'Bundle'
-size :: Bundle v a -> Size
-{-# INLINE size #-}
-size = M.size
-
--- | Attach a 'Size' hint to a 'Bundle'
-sized :: Bundle v a -> Size -> Bundle v a
-{-# INLINE sized #-}
-sized = M.sized
-
--- Length
--- ------
-
--- | Length of a 'Bundle'
-length :: Bundle v a -> Int
-{-# INLINE length #-}
-length = unId . M.length
-
--- | Check if a 'Bundle' is empty
-null :: Bundle v a -> Bool
-{-# INLINE null #-}
-null = unId . M.null
-
--- Construction
--- ------------
-
--- | Empty 'Bundle'
-empty :: Bundle v a
-{-# INLINE empty #-}
-empty = M.empty
-
--- | Singleton 'Bundle'
-singleton :: a -> Bundle v a
-{-# INLINE singleton #-}
-singleton = M.singleton
-
--- | Replicate a value to a given length
-replicate :: Int -> a -> Bundle v a
-{-# INLINE replicate #-}
-replicate = M.replicate
-
--- | Generate a stream from its indices
-generate :: Int -> (Int -> a) -> Bundle v a
-{-# INLINE generate #-}
-generate = M.generate
-
--- | Prepend an element
-cons :: a -> Bundle v a -> Bundle v a
-{-# INLINE cons #-}
-cons = M.cons
-
--- | Append an element
-snoc :: Bundle v a -> a -> Bundle v a
-{-# INLINE snoc #-}
-snoc = M.snoc
-
-infixr 5 ++
--- | Concatenate two 'Bundle's
-(++) :: Bundle v a -> Bundle v a -> Bundle v a
-{-# INLINE (++) #-}
-(++) = (M.++)
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Bundle' or error if empty
-head :: Bundle v a -> a
-{-# INLINE head #-}
-head = unId . M.head
-
--- | Last element of the 'Bundle' or error if empty
-last :: Bundle v a -> a
-{-# INLINE last #-}
-last = unId . M.last
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Bundle v a -> Int -> a
-{-# INLINE (!!) #-}
-s !! i = unId (s M.!! i)
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Bundle v a -> Int -> Maybe a
-{-# INLINE (!?) #-}
-s !? i = unId (s M.!? i)
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Int   -- ^ starting index
-      -> Int   -- ^ length
-      -> Bundle v a
-      -> Bundle v a
-{-# INLINE slice #-}
-slice = M.slice
-
--- | All but the last element
-init :: Bundle v a -> Bundle v a
-{-# INLINE init #-}
-init = M.init
-
--- | All but the first element
-tail :: Bundle v a -> Bundle v a
-{-# INLINE tail #-}
-tail = M.tail
-
--- | The first @n@ elements
-take :: Int -> Bundle v a -> Bundle v a
-{-# INLINE take #-}
-take = M.take
-
--- | All but the first @n@ elements
-drop :: Int -> Bundle v a -> Bundle v a
-{-# INLINE drop #-}
-drop = M.drop
-
--- Mapping
--- ---------------
-
--- | Map a function over a 'Bundle'
-map :: (a -> b) -> Bundle v a -> Bundle v b
-{-# INLINE map #-}
-map = M.map
-
-unbox :: Bundle v (Box a) -> Bundle v a
-{-# INLINE unbox #-}
-unbox = M.unbox
-
-concatMap :: (a -> Bundle v b) -> Bundle v a -> Bundle v b
-{-# INLINE concatMap #-}
-concatMap = M.concatMap
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Bundle' with its index
-indexed :: Bundle v a -> Bundle v (Int,a)
-{-# INLINE indexed #-}
-indexed = M.indexed
-
--- | Pair each element in a 'Bundle' with its index, starting from the right
--- and counting down
-indexedR :: Int -> Bundle v a -> Bundle v (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR = M.indexedR
-
--- | Zip two 'Bundle's with the given function
-zipWith :: (a -> b -> c) -> Bundle v a -> Bundle v b -> Bundle v c
-{-# INLINE zipWith #-}
-zipWith = M.zipWith
-
--- | Zip three 'Bundle's with the given function
-zipWith3 :: (a -> b -> c -> d) -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-{-# INLINE zipWith3 #-}
-zipWith3 = M.zipWith3
-
-zipWith4 :: (a -> b -> c -> d -> e)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e
-{-# INLINE zipWith4 #-}
-zipWith4 = M.zipWith4
-
-zipWith5 :: (a -> b -> c -> d -> e -> f)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e -> Bundle v f
-{-# INLINE zipWith5 #-}
-zipWith5 = M.zipWith5
-
-zipWith6 :: (a -> b -> c -> d -> e -> f -> g)
-                    -> Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                    -> Bundle v e -> Bundle v f -> Bundle v g
-{-# INLINE zipWith6 #-}
-zipWith6 = M.zipWith6
-
-zip :: Bundle v a -> Bundle v b -> Bundle v (a,b)
-{-# INLINE zip #-}
-zip = M.zip
-
-zip3 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = M.zip3
-
-zip4 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = M.zip4
-
-zip5 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v e -> Bundle v (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = M.zip5
-
-zip6 :: Bundle v a -> Bundle v b -> Bundle v c -> Bundle v d
-                -> Bundle v e -> Bundle v f -> Bundle v (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = M.zip6
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE filter #-}
-filter = M.filter
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE takeWhile #-}
-takeWhile = M.takeWhile
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: (a -> Bool) -> Bundle v a -> Bundle v a
-{-# INLINE dropWhile #-}
-dropWhile = M.dropWhile
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Bundle' contains an element
-elem :: Eq a => a -> Bundle v a -> Bool
-{-# INLINE elem #-}
-elem x = unId . M.elem x
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: Eq a => a -> Bundle v a -> Bool
-{-# INLINE notElem #-}
-notElem x = unId . M.notElem x
-
--- | Yield 'Just' the first element matching the predicate or 'Nothing' if no
--- such element exists.
-find :: (a -> Bool) -> Bundle v a -> Maybe a
-{-# INLINE find #-}
-find f = unId . M.find f
-
--- | Yield 'Just' the index of the first element matching the predicate or
--- 'Nothing' if no such element exists.
-findIndex :: (a -> Bool) -> Bundle v a -> Maybe Int
-{-# INLINE findIndex #-}
-findIndex f = unId . M.findIndex f
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: (a -> b -> a) -> a -> Bundle v b -> a
-{-# INLINE foldl #-}
-foldl f z = unId . M.foldl f z
-
--- | Left fold on non-empty 'Bundle's
-foldl1 :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldl1 #-}
-foldl1 f = unId . M.foldl1 f
-
--- | Left fold with strict accumulator
-foldl' :: (a -> b -> a) -> a -> Bundle v b -> a
-{-# INLINE foldl' #-}
-foldl' f z = unId . M.foldl' f z
-
--- | Left fold on non-empty 'Bundle's with strict accumulator
-foldl1' :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldl1' #-}
-foldl1' f = unId . M.foldl1' f
-
--- | Right fold
-foldr :: (a -> b -> b) -> b -> Bundle v a -> b
-{-# INLINE foldr #-}
-foldr f z = unId . M.foldr f z
-
--- | Right fold on non-empty 'Bundle's
-foldr1 :: (a -> a -> a) -> Bundle v a -> a
-{-# INLINE foldr1 #-}
-foldr1 f = unId . M.foldr1 f
-
--- Specialised folds
--- -----------------
-
-and :: Bundle v Bool -> Bool
-{-# INLINE and #-}
-and = unId . M.and
-
-or :: Bundle v Bool -> Bool
-{-# INLINE or #-}
-or = unId . M.or
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: (s -> Maybe (a, s)) -> s -> Bundle v a
-{-# INLINE unfoldr #-}
-unfoldr = M.unfoldr
-
--- | Unfold at most @n@ elements
-unfoldrN :: Int -> (s -> Maybe (a, s)) -> s -> Bundle v a
-{-# INLINE unfoldrN #-}
-unfoldrN = M.unfoldrN
-
--- | Apply function n-1 times to value. Zeroth element is original value.
-iterateN :: Int -> (a -> a) -> a -> Bundle v a
-{-# INLINE iterateN #-}
-iterateN = M.iterateN
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE prescanl #-}
-prescanl = M.prescanl
-
--- | Prefix scan with strict accumulator
-prescanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE prescanl' #-}
-prescanl' = M.prescanl'
-
--- | Suffix scan
-postscanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE postscanl #-}
-postscanl = M.postscanl
-
--- | Suffix scan with strict accumulator
-postscanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE postscanl' #-}
-postscanl' = M.postscanl'
-
--- | Haskell-style scan
-scanl :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE scanl #-}
-scanl = M.scanl
-
--- | Haskell-style scan with strict accumulator
-scanl' :: (a -> b -> a) -> a -> Bundle v b -> Bundle v a
-{-# INLINE scanl' #-}
-scanl' = M.scanl'
-
--- | Scan over a non-empty 'Bundle'
-scanl1 :: (a -> a -> a) -> Bundle v a -> Bundle v a
-{-# INLINE scanl1 #-}
-scanl1 = M.scanl1
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator
-scanl1' :: (a -> a -> a) -> Bundle v a -> Bundle v a
-{-# INLINE scanl1' #-}
-scanl1' = M.scanl1'
-
-
--- Comparisons
--- -----------
-
--- | Check if two 'Bundle's are equal
-eq :: (Eq a) => Bundle v a -> Bundle v a -> Bool
-{-# INLINE eq #-}
-eq = eqBy (==)
-
-eqBy :: (a -> b -> Bool) -> Bundle v a -> Bundle v b -> Bool
-{-# INLINE eqBy #-}
-eqBy e x y = unId (M.eqBy e x y)
-
--- | Lexicographically compare two 'Bundle's
-cmp :: (Ord a) => Bundle v a -> Bundle v a -> Ordering
-{-# INLINE cmp #-}
-cmp = cmpBy compare
-
-cmpBy :: (a ->  b -> Ordering) -> Bundle v a -> Bundle v b -> Ordering
-{-# INLINE cmpBy #-}
-cmpBy c x y = unId (M.cmpBy c x y)
-
-instance Eq a => Eq (M.Bundle Id v a) where
-  {-# INLINE (==) #-}
-  (==) = eq
-
-instance Ord a => Ord (M.Bundle Id v a) where
-  {-# INLINE compare #-}
-  compare = cmp
-
-#if MIN_VERSION_base(4,9,0)
-instance Eq1 (M.Bundle Id v) where
-  {-# INLINE liftEq #-}
-  liftEq = eqBy
-
-instance Ord1 (M.Bundle Id v) where
-  {-# INLINE liftCompare #-}
-  liftCompare = cmpBy
-#endif
-
--- Monadic combinators
--- -------------------
-
--- | Apply a monadic action to each element of the stream, producing a monadic
--- stream of results
-mapM :: Monad m => (a -> m b) -> Bundle v a -> M.Bundle m v b
-{-# INLINE mapM #-}
-mapM f = M.mapM f . lift
-
--- | Apply a monadic action to each element of the stream
-mapM_ :: Monad m => (a -> m b) -> Bundle v a -> m ()
-{-# INLINE mapM_ #-}
-mapM_ f = M.mapM_ f . lift
-
-zipWithM :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> M.Bundle m v c
-{-# INLINE zipWithM #-}
-zipWithM f as bs = M.zipWithM f (lift as) (lift bs)
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle v a -> Bundle v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f as bs = M.zipWithM_ f (lift as) (lift bs)
-
--- | Yield a monadic stream of elements that satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Bundle v a -> M.Bundle m v a
-{-# INLINE filterM #-}
-filterM f = M.filterM f . lift
-
--- | Monadic fold
-foldM :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
-{-# INLINE foldM #-}
-foldM m z = M.foldM m z . lift
-
--- | Monadic fold over non-empty stream
-fold1M :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
-{-# INLINE fold1M #-}
-fold1M m = M.fold1M m . lift
-
--- | Monadic fold with strict accumulator
-foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle v b -> m a
-{-# INLINE foldM' #-}
-foldM' m z = M.foldM' m z . lift
-
--- | Monad fold over non-empty stream with strict accumulator
-fold1M' :: Monad m => (a -> a -> m a) -> Bundle v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' m = M.fold1M' m . lift
-
--- Enumerations
--- ------------
-
--- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: Num a => a -> a -> Int -> Bundle v a
-{-# INLINE enumFromStepN #-}
-enumFromStepN = M.enumFromStepN
-
--- | Enumerate values
---
--- /WARNING:/ This operations can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: Enum a => a -> a -> Bundle v a
-{-# INLINE enumFromTo #-}
-enumFromTo = M.enumFromTo
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operations is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: Enum a => a -> a -> a -> Bundle v a
-{-# INLINE enumFromThenTo #-}
-enumFromThenTo = M.enumFromThenTo
-
--- Conversions
--- -----------
-
--- | Convert a 'Bundle' to a list
-toList :: Bundle v a -> [a]
-{-# INLINE toList #-}
--- toList s = unId (M.toList s)
-toList s = build (\c n -> toListFB c n s)
-
--- This supports foldr/build list fusion that GHC implements
-toListFB :: (a -> b -> b) -> b -> Bundle v a -> b
-{-# INLINE [0] toListFB #-}
-toListFB c n M.Bundle{M.sElems = Stream step t} = go t
-  where
-    go s = case unId (step s) of
-             Yield x s' -> x `c` go s'
-             Skip    s' -> go s'
-             Done       -> n
-
--- | Create a 'Bundle' from a list
-fromList :: [a] -> Bundle v a
-{-# INLINE fromList #-}
-fromList = M.fromList
-
--- | Create a 'Bundle' from the first @n@ elements of a list
---
--- > fromListN n xs = fromList (take n xs)
-fromListN :: Int -> [a] -> Bundle v a
-{-# INLINE fromListN #-}
-fromListN = M.fromListN
-
-unsafeFromList :: Size -> [a] -> Bundle v a
-{-# INLINE unsafeFromList #-}
-unsafeFromList = M.unsafeFromList
-
-fromVector :: Vector v a => v a -> Bundle v a
-{-# INLINE fromVector #-}
-fromVector = M.fromVector
-
-reVector :: Bundle u a -> Bundle v a
-{-# INLINE reVector #-}
-reVector = M.reVector
-
-fromVectors :: Vector v a => [v a] -> Bundle v a
-{-# INLINE fromVectors #-}
-fromVectors = M.fromVectors
-
-concatVectors :: Vector v a => Bundle u (v a) -> Bundle v a
-{-# INLINE concatVectors #-}
-concatVectors = M.concatVectors
-
--- | Create a 'Bundle' of values from a 'Bundle' of streamable things
-flatten :: (a -> s) -> (s -> Step s b) -> Size -> Bundle v a -> Bundle v b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep sz = M.flatten (return . mk) (return . istep) sz . lift
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
deleted file mode 100644
index 46f4a165f8..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
+++ /dev/null
@@ -1,1106 +0,0 @@
-{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Fusion.Bundle.Monadic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Monadic bundles.
---
-
-module Data.Vector.Fusion.Bundle.Monadic (
-  Bundle(..), Chunk(..),
-
-  -- * Size hints
-  size, sized,
-
-  -- * Length
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
-
-  -- * Accessing elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, mapM, mapM_, trans, unbox, concatMap, flatten,
-
-  -- * Zipping
-  indexed, indexedR, zipWithM_,
-  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Comparisons
-  eqBy, cmpBy,
-
-  -- * Filtering
-  filter, filterM, takeWhile, takeWhileM, dropWhile, dropWhileM,
-
-  -- * Searching
-  elem, notElem, find, findM, findIndex, findIndexM,
-
-  -- * Folding
-  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
-  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
-  foldr, foldrM, foldr1, foldr1M,
-
-  -- * Specialised folds
-  and, or, concatMapM,
-
-  -- * Unfolding
-  unfoldr, unfoldrM,
-  unfoldrN, unfoldrNM,
-  iterateN, iterateNM,
-
-  -- * Scans
-  prescanl, prescanlM, prescanl', prescanlM',
-  postscanl, postscanlM, postscanl', postscanlM',
-  scanl, scanlM, scanl', scanlM',
-  scanl1, scanl1M, scanl1', scanl1M',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN, unsafeFromList,
-  fromVector, reVector, fromVectors, concatVectors,
-  fromStream, chunks, elements
-) where
-
-import Data.Vector.Generic.Base
-import qualified Data.Vector.Generic.Mutable.Base as M
-import Data.Vector.Fusion.Bundle.Size
-import Data.Vector.Fusion.Util ( Box(..), delay_inline )
-import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
-import qualified Data.Vector.Fusion.Stream.Monadic as S
-import Control.Monad.Primitive
-
-import qualified Data.List as List
-import Data.Char      ( ord )
-import GHC.Base       ( unsafeChr )
-import Control.Monad  ( liftM )
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, mapM, mapM_, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo )
-
-import Data.Int  ( Int8, Int16, Int32 )
-import Data.Word ( Word8, Word16, Word32, Word64 )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word )
-#endif
-
-#include "vector.h"
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS > 32
-import Data.Int  ( Int64 )
-#endif
-
-data Chunk v a = Chunk Int (forall m. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
-
--- | Monadic streams
-data Bundle m v a = Bundle { sElems  :: Stream m a
-                           , sChunks :: Stream m (Chunk v a)
-                           , sVector :: Maybe (v a)
-                           , sSize   :: Size
-                           }
-
-fromStream :: Monad m => Stream m a -> Size -> Bundle m v a
-{-# INLINE fromStream #-}
-fromStream (Stream step t) sz = Bundle (Stream step t) (Stream step' t) Nothing sz
-  where
-    step' s = do r <- step s
-                 return $ fmap (\x -> Chunk 1 (\v -> M.basicUnsafeWrite v 0 x)) r
-
-chunks :: Bundle m v a -> Stream m (Chunk v a)
-{-# INLINE chunks #-}
-chunks = sChunks
-
-elements :: Bundle m v a -> Stream m a
-{-# INLINE elements #-}
-elements = sElems
-
--- | 'Size' hint of a 'Bundle'
-size :: Bundle m v a -> Size
-{-# INLINE size #-}
-size = sSize
-
--- | Attach a 'Size' hint to a 'Bundle'
-sized :: Bundle m v a -> Size -> Bundle m v a
-{-# INLINE_FUSED sized #-}
-sized s sz = s { sSize = sz }
-
--- Length
--- ------
-
--- | Length of a 'Bundle'
-length :: Monad m => Bundle m v a -> m Int
-{-# INLINE_FUSED length #-}
-length Bundle{sSize = Exact n}  = return n
-length Bundle{sChunks = s} = S.foldl' (\n (Chunk k _) -> n+k) 0 s
-
--- | Check if a 'Bundle' is empty
-null :: Monad m => Bundle m v a -> m Bool
-{-# INLINE_FUSED null #-}
-null Bundle{sSize = Exact n} = return (n == 0)
-null Bundle{sChunks = s} = S.foldr (\(Chunk n _) z -> n == 0 && z) True s
-
--- Construction
--- ------------
-
--- | Empty 'Bundle'
-empty :: Monad m => Bundle m v a
-{-# INLINE_FUSED empty #-}
-empty = fromStream S.empty (Exact 0)
-
--- | Singleton 'Bundle'
-singleton :: Monad m => a -> Bundle m v a
-{-# INLINE_FUSED singleton #-}
-singleton x = fromStream (S.singleton x) (Exact 1)
-
--- | Replicate a value to a given length
-replicate :: Monad m => Int -> a -> Bundle m v a
-{-# INLINE_FUSED replicate #-}
-replicate n x = Bundle (S.replicate n x)
-                       (S.singleton $ Chunk len (\v -> M.basicSet v x))
-                       Nothing
-                       (Exact len)
-  where
-    len = delay_inline max n 0
-
--- | Yield a 'Bundle' of values obtained by performing the monadic action the
--- given number of times
-replicateM :: Monad m => Int -> m a -> Bundle m v a
-{-# INLINE_FUSED replicateM #-}
--- NOTE: We delay inlining max here because GHC will create a join point for
--- the call to newArray# otherwise which is not really nice.
-replicateM n p = fromStream (S.replicateM n p) (Exact (delay_inline max n 0))
-
-generate :: Monad m => Int -> (Int -> a) -> Bundle m v a
-{-# INLINE generate #-}
-generate n f = generateM n (return . f)
-
--- | Generate a stream from its indices
-generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a
-{-# INLINE_FUSED generateM #-}
-generateM n f = fromStream (S.generateM n f) (Exact (delay_inline max n 0))
-
--- | Prepend an element
-cons :: Monad m => a -> Bundle m v a -> Bundle m v a
-{-# INLINE cons #-}
-cons x s = singleton x ++ s
-
--- | Append an element
-snoc :: Monad m => Bundle m v a -> a -> Bundle m v a
-{-# INLINE snoc #-}
-snoc s x = s ++ singleton x
-
-infixr 5 ++
--- | Concatenate two 'Bundle's
-(++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED (++) #-}
-Bundle sa ta _ na ++ Bundle sb tb _ nb = Bundle (sa S.++ sb) (ta S.++ tb) Nothing (na + nb)
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Bundle' or error if empty
-head :: Monad m => Bundle m v a -> m a
-{-# INLINE_FUSED head #-}
-head = S.head . sElems
-
--- | Last element of the 'Bundle' or error if empty
-last :: Monad m => Bundle m v a -> m a
-{-# INLINE_FUSED last #-}
-last = S.last . sElems
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Monad m => Bundle m v a -> Int -> m a
-{-# INLINE (!!) #-}
-b !! i = sElems b S.!! i
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a)
-{-# INLINE (!?) #-}
-b !? i = sElems b S.!? i
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Monad m => Int   -- ^ starting index
-                 -> Int   -- ^ length
-                 -> Bundle m v a
-                 -> Bundle m v a
-{-# INLINE slice #-}
-slice i n s = take n (drop i s)
-
--- | All but the last element
-init :: Monad m => Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED init #-}
-init Bundle{sElems = s, sSize = sz} = fromStream (S.init s) (sz-1)
-
--- | All but the first element
-tail :: Monad m => Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED tail #-}
-tail Bundle{sElems = s, sSize = sz} = fromStream (S.tail s) (sz-1)
-
--- | The first @n@ elements
-take :: Monad m => Int -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED take #-}
-take n Bundle{sElems = s, sSize = sz} = fromStream (S.take n s) (smaller (Exact n) sz)
-
--- | All but the first @n@ elements
-drop :: Monad m => Int -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED drop #-}
-drop n Bundle{sElems = s, sSize = sz} =
-  fromStream (S.drop n s) (clampedSubtract sz (Exact n))
-
--- Mapping
--- -------
-
-instance Monad m => Functor (Bundle m v) where
-  {-# INLINE fmap #-}
-  fmap = map
-
--- | Map a function over a 'Bundle'
-map :: Monad m => (a -> b) -> Bundle m v a -> Bundle m v b
-{-# INLINE map #-}
-map f = mapM (return . f)
-
--- | Map a monadic function over a 'Bundle'
-mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED mapM #-}
-mapM f Bundle{sElems = s, sSize = n} = fromStream (S.mapM f s) n
-
--- | Execute a monadic action for each element of the 'Bundle'
-mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m ()
-{-# INLINE_FUSED mapM_ #-}
-mapM_ m = S.mapM_ m . sElems
-
--- | Transform a 'Bundle' to use a different monad
-trans :: (Monad m, Monad m') => (forall z. m z -> m' z)
-                             -> Bundle m v a -> Bundle m' v a
-{-# INLINE_FUSED trans #-}
-trans f Bundle{sElems = s, sChunks = cs, sVector = v, sSize = n}
-  = Bundle { sElems = S.trans f s, sChunks = S.trans f cs, sVector = v, sSize = n }
-
-unbox :: Monad m => Bundle m v (Box a) -> Bundle m v a
-{-# INLINE_FUSED unbox #-}
-unbox Bundle{sElems = s, sSize = n} = fromStream (S.unbox s) n
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Bundle' with its index
-indexed :: Monad m => Bundle m v a -> Bundle m v (Int,a)
-{-# INLINE_FUSED indexed #-}
-indexed Bundle{sElems = s, sSize = n} = fromStream (S.indexed s) n
-
--- | Pair each element in a 'Bundle' with its index, starting from the right
--- and counting down
-indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR m Bundle{sElems = s, sSize = n} = fromStream (S.indexedR m s) n
-
--- | Zip two 'Bundle's with the given monadic function
-zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
-{-# INLINE_FUSED zipWithM #-}
-zipWithM f Bundle{sElems = sa, sSize = na}
-           Bundle{sElems = sb, sSize = nb} = fromStream (S.zipWithM f sa sb) (smaller na nb)
-
--- FIXME: This might expose an opportunity for inplace execution.
-{-# RULES
-
-"zipWithM xs xs [Vector.Bundle]" forall f xs.
-  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
-
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f sa sb = S.zipWithM_ f (sElems sa) (sElems sb)
-
-zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-{-# INLINE_FUSED zipWith3M #-}
-zipWith3M f Bundle{sElems = sa, sSize = na}
-            Bundle{sElems = sb, sSize = nb}
-            Bundle{sElems = sc, sSize = nc}
-  = fromStream (S.zipWith3M f sa sb sc) (smaller na (smaller nb nc))
-
-zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e
-{-# INLINE zipWith4M #-}
-zipWith4M f sa sb sc sd
-  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
-
-zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e -> Bundle m v f
-{-# INLINE zipWith5M #-}
-zipWith5M f sa sb sc sd se
-  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
-
-zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
-                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                     -> Bundle m v e -> Bundle m v f -> Bundle m v g
-{-# INLINE zipWith6M #-}
-zipWith6M fn sa sb sc sd se sf
-  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
-                                                  (zip3 sd se sf)
-
-zipWith :: Monad m => (a -> b -> c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
-{-# INLINE zipWith #-}
-zipWith f = zipWithM (\a b -> return (f a b))
-
-zipWith3 :: Monad m => (a -> b -> c -> d)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-{-# INLINE zipWith3 #-}
-zipWith3 f = zipWith3M (\a b c -> return (f a b c))
-
-zipWith4 :: Monad m => (a -> b -> c -> d -> e)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e
-{-# INLINE zipWith4 #-}
-zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
-
-zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e -> Bundle m v f
-{-# INLINE zipWith5 #-}
-zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
-
-zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
-                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                    -> Bundle m v e -> Bundle m v f -> Bundle m v g
-{-# INLINE zipWith6 #-}
-zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
-
-zip :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v (a,b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v e -> Bundle m v (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
-                -> Bundle m v e -> Bundle m v f -> Bundle m v (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Comparisons
--- -----------
-
--- | Check if two 'Bundle's are equal
-eqBy :: (Monad m) => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool
-{-# INLINE_FUSED eqBy #-}
-eqBy eq x y = S.eqBy eq (sElems x) (sElems y)
-
--- | Lexicographically compare two 'Bundle's
-cmpBy :: (Monad m) => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering
-{-# INLINE_FUSED cmpBy #-}
-cmpBy cmp x y = S.cmpBy cmp (sElems x) (sElems y)
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE filter #-}
-filter f = filterM (return . f)
-
--- | Drop elements which do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED filterM #-}
-filterM f Bundle{sElems = s, sSize = n} = fromStream (S.filterM f s) (toMax n)
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE takeWhile #-}
-takeWhile f = takeWhileM (return . f)
-
--- | Longest prefix of elements that satisfy the monadic predicate
-takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED takeWhileM #-}
-takeWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.takeWhileM f s) (toMax n)
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE dropWhile #-}
-dropWhile f = dropWhileM (return . f)
-
--- | Drop the longest prefix of elements that satisfy the monadic predicate
-dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED dropWhileM #-}
-dropWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.dropWhileM f s) (toMax n)
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Bundle' contains an element
-elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
-{-# INLINE_FUSED elem #-}
-elem x = S.elem x . sElems
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
-{-# INLINE notElem #-}
-notElem x = S.notElem x . sElems
-
--- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
--- if no such element exists.
-find :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe a)
-{-# INLINE find #-}
-find f = findM (return . f)
-
--- | Yield 'Just' the first element that satisfies the monadic predicate or
--- 'Nothing' if no such element exists.
-findM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe a)
-{-# INLINE_FUSED findM #-}
-findM f = S.findM f . sElems
-
--- | Yield 'Just' the index of the first element that satisfies the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe Int)
-{-# INLINE_FUSED findIndex #-}
-findIndex f = findIndexM (return . f)
-
--- | Yield 'Just' the index of the first element that satisfies the monadic
--- predicate or 'Nothing' if no such element exists.
-findIndexM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe Int)
-{-# INLINE_FUSED findIndexM #-}
-findIndexM f = S.findIndexM f . sElems
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
-{-# INLINE foldl #-}
-foldl f = foldlM (\a b -> return (f a b))
-
--- | Left fold with a monadic operator
-foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE_FUSED foldlM #-}
-foldlM m z = S.foldlM m z . sElems
-
--- | Same as 'foldlM'
-foldM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE foldM #-}
-foldM = foldlM
-
--- | Left fold over a non-empty 'Bundle'
-foldl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldl1 #-}
-foldl1 f = foldl1M (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Bundle' with a monadic operator
-foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldl1M #-}
-foldl1M f = S.foldl1M f . sElems
-
--- | Same as 'foldl1M'
-fold1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE fold1M #-}
-fold1M = foldl1M
-
--- | Left fold with a strict accumulator
-foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
-{-# INLINE foldl' #-}
-foldl' f = foldlM' (\a b -> return (f a b))
-
--- | Left fold with a strict accumulator and a monadic operator
-foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE_FUSED foldlM' #-}
-foldlM' m z = S.foldlM' m z . sElems
-
--- | Same as 'foldlM''
-foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
-{-# INLINE foldM' #-}
-foldM' = foldlM'
-
--- | Left fold over a non-empty 'Bundle' with a strict accumulator
-foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldl1' #-}
-foldl1' f = foldl1M' (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Bundle' with a strict accumulator and a
--- monadic operator
-foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldl1M' #-}
-foldl1M' f = S.foldl1M' f . sElems
-
--- | Same as 'foldl1M''
-fold1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = foldl1M'
-
--- | Right fold
-foldr :: Monad m => (a -> b -> b) -> b -> Bundle m v a -> m b
-{-# INLINE foldr #-}
-foldr f = foldrM (\a b -> return (f a b))
-
--- | Right fold with a monadic operator
-foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b
-{-# INLINE_FUSED foldrM #-}
-foldrM f z = S.foldrM f z . sElems
-
--- | Right fold over a non-empty stream
-foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
-{-# INLINE foldr1 #-}
-foldr1 f = foldr1M (\a b -> return (f a b))
-
--- | Right fold over a non-empty stream with a monadic operator
-foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
-{-# INLINE_FUSED foldr1M #-}
-foldr1M f = S.foldr1M f . sElems
-
--- Specialised folds
--- -----------------
-
-and :: Monad m => Bundle m v Bool -> m Bool
-{-# INLINE_FUSED and #-}
-and = S.and . sElems
-
-or :: Monad m => Bundle m v Bool -> m Bool
-{-# INLINE_FUSED or #-}
-or = S.or . sElems
-
-concatMap :: Monad m => (a -> Bundle m v b) -> Bundle m v a -> Bundle m v b
-{-# INLINE concatMap #-}
-concatMap f = concatMapM (return . f)
-
-concatMapM :: Monad m => (a -> m (Bundle m v b)) -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED concatMapM #-}
-concatMapM f Bundle{sElems = s} = fromStream (S.concatMapM (liftM sElems . f) s) Unknown
-
--- | Create a 'Bundle' of values from a 'Bundle' of streamable things
-flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size
-                   -> Bundle m v a -> Bundle m v b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep sz Bundle{sElems = s} = fromStream (S.flatten mk istep s) sz
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldr #-}
-unfoldr f = unfoldrM (return . f)
-
--- | Unfold with a monadic function
-unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrM #-}
-unfoldrM f s = fromStream (S.unfoldrM f s) Unknown
-
--- | Unfold at most @n@ elements
-unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrN #-}
-unfoldrN n f = unfoldrNM n (return . f)
-
--- | Unfold at most @n@ elements with a monadic functions
-unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a
-{-# INLINE_FUSED unfoldrNM #-}
-unfoldrNM n f s = fromStream (S.unfoldrNM n f s) (Max (delay_inline max n 0))
-
--- | Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a
-{-# INLINE_FUSED iterateNM #-}
-iterateNM n f x0 = fromStream (S.iterateNM n f x0) (Exact (delay_inline max n 0))
-
--- | Apply function n times to value. Zeroth element is original value.
-iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a
-{-# INLINE_FUSED iterateN #-}
-iterateN n f x0 = iterateNM n (return . f) x0
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE prescanl #-}
-prescanl f = prescanlM (\a b -> return (f a b))
-
--- | Prefix scan with a monadic operator
-prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED prescanlM #-}
-prescanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM f z s) sz
-
--- | Prefix scan with strict accumulator
-prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE prescanl' #-}
-prescanl' f = prescanlM' (\a b -> return (f a b))
-
--- | Prefix scan with strict accumulator and a monadic operator
-prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED prescanlM' #-}
-prescanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM' f z s) sz
-
--- | Suffix scan
-postscanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE postscanl #-}
-postscanl f = postscanlM (\a b -> return (f a b))
-
--- | Suffix scan with a monadic operator
-postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED postscanlM #-}
-postscanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM f z s) sz
-
--- | Suffix scan with strict accumulator
-postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE postscanl' #-}
-postscanl' f = postscanlM' (\a b -> return (f a b))
-
--- | Suffix scan with strict acccumulator and a monadic operator
-postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE_FUSED postscanlM' #-}
-postscanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM' f z s) sz
-
--- | Haskell-style scan
-scanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanl #-}
-scanl f = scanlM (\a b -> return (f a b))
-
--- | Haskell-style scan with a monadic operator
-scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanlM #-}
-scanlM f z s = z `cons` postscanlM f z s
-
--- | Haskell-style scan with strict accumulator
-scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanl' #-}
-scanl' f = scanlM' (\a b -> return (f a b))
-
--- | Haskell-style scan with strict accumulator and a monadic operator
-scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
-{-# INLINE scanlM' #-}
-scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
-
--- | Scan over a non-empty 'Bundle'
-scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
-{-# INLINE scanl1 #-}
-scanl1 f = scanl1M (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Bundle' with a monadic operator
-scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED scanl1M #-}
-scanl1M f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M f s) sz
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator
-scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
-{-# INLINE scanl1' #-}
-scanl1' f = scanl1M' (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Bundle' with a strict accumulator and a monadic
--- operator
-scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
-{-# INLINE_FUSED scanl1M' #-}
-scanl1M' f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M' f s) sz
-
--- Enumerations
--- ------------
-
--- The Enum class is broken for this, there just doesn't seem to be a
--- way to implement this generically. We have to specialise for as many types
--- as we can but this doesn't help in polymorphic loops.
-
--- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a
-{-# INLINE_FUSED enumFromStepN #-}
-enumFromStepN x y n = fromStream (S.enumFromStepN x y n) (Exact (delay_inline max n 0))
-
--- | Enumerate values
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo #-}
-enumFromTo x y = fromList [x .. y]
-
--- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
--- overflow which can't happen here.
-
--- FIXME: add "too large" test for Int
-enumFromTo_small :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_small #-}
-enumFromTo_small x y = x `seq` y `seq` fromStream (Stream step x) (Exact n)
-  where
-    n = delay_inline max (fromIntegral y - fromIntegral x + 1) 0
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int8> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Bundle m v Int8
-
-"enumFromTo<Int16> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Bundle m v Int16
-
-"enumFromTo<Word8> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Bundle m v Word8
-
-"enumFromTo<Word16> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Bundle m v Word16   #-}
-
-
-
-#if WORD_SIZE_IN_BITS > 32
-
-{-# RULES
-
-"enumFromTo<Int32> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Bundle m v Int32
-
-"enumFromTo<Word32> [Bundle]"
-  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Bundle m v Word32   #-}
-
-#endif
-
--- NOTE: We could implement a generic "too large" test:
---
--- len x y | x > y = 0
---         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
---         | otherwise = error
---   where
---     n = y-x+1
---
--- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
--- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
---
-
-enumFromTo_int :: forall m v. Monad m => Int -> Int -> Bundle m v Int
-{-# INLINE_FUSED enumFromTo_int #-}
-enumFromTo_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len :: Int -> Int -> Int
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0)
-                        $ n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_intlike #-}
-enumFromTo_intlike x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0)
-                        $ fromIntegral n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int> [Bundle]"
-  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Bundle m v Int
-
-#if WORD_SIZE_IN_BITS > 32
-
-"enumFromTo<Int64> [Bundle]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Bundle m v Int64    #-}
-
-#else
-
-"enumFromTo<Int32> [Bundle]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Bundle m v Int32    #-}
-
-#endif
-
-
-
-enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_big_word #-}
-enumFromTo_big_word x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n < fromIntegral (maxBound :: Int))
-                        $ fromIntegral (n+1)
-      where
-        n = v-u
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Word> [Bundle]"
-  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Bundle m v Word
-
-"enumFromTo<Word64> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word64 -> Word64 -> Bundle m v Word64
-
-#if WORD_SIZE_IN_BITS == 32
-
-"enumFromTo<Word32> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word32 -> Word32 -> Bundle m v Word32
-
-#endif
-
-"enumFromTo<Integer> [Bundle]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Integer -> Integer -> Bundle m v Integer   #-}
-
-
-#if WORD_SIZE_IN_BITS > 32
-
--- FIXME: the "too large" test is totally wrong
-enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_big_int #-}
-enumFromTo_big_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
-  where
-    {-# INLINE [0] len #-}
-    len u v | u > v     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (n > 0 && n <= fromIntegral (maxBound :: Int))
-                        $ fromIntegral n
-      where
-        n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-
-{-# RULES
-
-"enumFromTo<Int64> [Bundle]"
-  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Bundle m v Int64   #-}
-
-
-
-#endif
-
-enumFromTo_char :: Monad m => Char -> Char -> Bundle m v Char
-{-# INLINE_FUSED enumFromTo_char #-}
-enumFromTo_char x y = x `seq` y `seq` fromStream (Stream step xn) (Exact n)
-  where
-    xn = ord x
-    yn = ord y
-
-    n = delay_inline max 0 (yn - xn + 1)
-
-    {-# INLINE_INNER step #-}
-    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
-            | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Char> [Bundle]"
-  enumFromTo = enumFromTo_char   #-}
-
-
-
-------------------------------------------------------------------------
-
--- Specialise enumFromTo for Float and Double.
--- Also, try to do something about pairs?
-
-enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromTo_double #-}
-enumFromTo_double n m = n `seq` m `seq` fromStream (Stream step n) (Max (len n lim))
-  where
-    lim = m + 1/2 -- important to float out
-
-    {-# INLINE [0] len #-}
-    len x y | x > y     = 0
-            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-                          (l > 0)
-                        $ fromIntegral l
-      where
-        l :: Integer
-        l = truncate (y-x)+2
-
-    {-# INLINE_INNER step #-}
-    step x | x <= lim  = return $ Yield x (x+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Double> [Bundle]"
-  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Bundle m v Double
-
-"enumFromTo<Float> [Bundle]"
-  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Bundle m v Float   #-}
-
-
-
-------------------------------------------------------------------------
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operation is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a
-{-# INLINE_FUSED enumFromThenTo #-}
-enumFromThenTo x y z = fromList [x, y .. z]
-
--- FIXME: Specialise enumFromThenTo.
-
--- Conversions
--- -----------
-
--- | Convert a 'Bundle' to a list
-toList :: Monad m => Bundle m v a -> m [a]
-{-# INLINE toList #-}
-toList = foldr (:) []
-
--- | Convert a list to a 'Bundle'
-fromList :: Monad m => [a] -> Bundle m v a
-{-# INLINE fromList #-}
-fromList xs = unsafeFromList Unknown xs
-
--- | Convert the first @n@ elements of a list to a 'Bundle'
-fromListN :: Monad m => Int -> [a] -> Bundle m v a
-{-# INLINE_FUSED fromListN #-}
-fromListN n xs = fromStream (S.fromListN n xs) (Max (delay_inline max n 0))
-
--- | Convert a list to a 'Bundle' with the given 'Size' hint.
-unsafeFromList :: Monad m => Size -> [a] -> Bundle m v a
-{-# INLINE_FUSED unsafeFromList #-}
-unsafeFromList sz xs = fromStream (S.fromList xs) sz
-
-fromVector :: (Monad m, Vector v a) => v a -> Bundle m v a
-{-# INLINE_FUSED fromVector #-}
-fromVector v = v `seq` n `seq` Bundle (Stream step 0)
-                                      (Stream vstep True)
-                                      (Just v)
-                                      (Exact n)
-  where
-    n = basicLength v
-
-    {-# INLINE step #-}
-    step i | i >= n = return Done
-           | otherwise = case basicUnsafeIndexM v i of
-                           Box x -> return $ Yield x (i+1)
-
-
-    {-# INLINE vstep #-}
-    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
-    vstep False = return Done
-
-fromVectors :: forall m v a. (Monad m, Vector v a) => [v a] -> Bundle m v a
-{-# INLINE_FUSED fromVectors #-}
-fromVectors us = Bundle (Stream pstep (Left us))
-                        (Stream vstep us)
-                        Nothing
-                        (Exact n)
-  where
-    n = List.foldl' (\k v -> k + basicLength v) 0 us
-
-    pstep (Left []) = return Done
-    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
-
-    pstep (Right (v,i,vs))
-      | i >= basicLength v = return $ Skip (Left vs)
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return $ Yield x (Right (v,i+1,vs))
-
-    -- FIXME: work around bug in GHC 7.6.1
-    vstep :: [v a] -> m (Step [v a] (Chunk v a))
-    vstep [] = return Done
-    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
-                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                       (M.basicLength mv == basicLength v)
-                                                 $ basicUnsafeCopy mv v)) vs
-
-
-concatVectors :: (Monad m, Vector v a) => Bundle m u (v a) -> Bundle m v a
-{-# INLINE_FUSED concatVectors #-}
-concatVectors Bundle{sElems = Stream step t}
-  = Bundle (Stream pstep (Left t))
-           (Stream vstep t)
-           Nothing
-           Unknown
-  where
-    pstep (Left s) = do
-      r <- step s
-      case r of
-        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
-        Skip    s' -> return (Skip (Left s'))
-        Done       -> return Done
-
-    pstep (Right (v,i,s))
-      | i >= basicLength v = return (Skip (Left s))
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return (Yield x (Right (v,i+1,s)))
-
-
-    vstep s = do
-      r <- step s
-      case r of
-        Yield v s' -> return (Yield (Chunk (basicLength v)
-                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                          (M.basicLength mv == basicLength v)
-                                                   $ basicUnsafeCopy mv v)) s')
-        Skip    s' -> return (Skip s')
-        Done       -> return Done
-
-reVector :: Monad m => Bundle m u a -> Bundle m v a
-{-# INLINE_FUSED reVector #-}
-reVector Bundle{sElems = s, sSize = n} = fromStream s n
-
-{-# RULES
-
-"reVector [Vector]"
-  reVector = id
-
-"reVector/reVector [Vector]" forall s.
-  reVector (reVector s) = s   #-}
-
-
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
deleted file mode 100644
index e90cf37320..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Size.hs
+++ /dev/null
@@ -1,121 +0,0 @@
--- |
--- Module      : Data.Vector.Fusion.Bundle.Size
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : portable
---
--- Size hints for streams.
---
-
-module Data.Vector.Fusion.Bundle.Size (
-  Size(..), clampedSubtract, smaller, larger, toMax, upperBound, lowerBound
-) where
-
-import Data.Vector.Fusion.Util ( delay_inline )
-
--- | Size hint
-data Size = Exact Int          -- ^ Exact size
-          | Max   Int          -- ^ Upper bound on the size
-          | Unknown            -- ^ Unknown size
-        deriving( Eq, Show )
-
-instance Num Size where
-  Exact m + Exact n = checkedAdd Exact m n
-  Exact m + Max   n = checkedAdd Max m n
-
-  Max   m + Exact n = checkedAdd Max m n
-  Max   m + Max   n = checkedAdd Max m n
-
-  _       + _       = Unknown
-
-
-  Exact m - Exact n = checkedSubtract Exact m n
-  Exact m - Max   _ = Max   m
-
-  Max   m - Exact n = checkedSubtract Max m n
-  Max   m - Max   _ = Max   m
-  Max   m - Unknown = Max   m
-
-  _       - _       = Unknown
-
-
-  fromInteger n     = Exact (fromInteger n)
-
-  (*)    = error "vector: internal error * for Bundle.size isn't defined"
-  abs    = error "vector: internal error abs for Bundle.size isn't defined"
-  signum = error "vector: internal error signum for Bundle.size isn't defined"
-
-{-# INLINE checkedAdd #-}
-checkedAdd :: (Int -> Size) -> Int -> Int -> Size
-checkedAdd con m n
-    -- Note: we assume m and n are >= 0.
-  | r < m || r < n =
-      error $ "Data.Vector.Fusion.Bundle.Size.checkedAdd: overflow: " ++ show r
-  | otherwise = con r
-  where
-    r = m + n
-
-{-# INLINE checkedSubtract #-}
-checkedSubtract :: (Int -> Size) -> Int -> Int -> Size
-checkedSubtract con m n
-  | r < 0 =
-      error $ "Data.Vector.Fusion.Bundle.Size.checkedSubtract: underflow: " ++ show r
-  | otherwise = con r
-  where
-    r = m - n
-
--- | Subtract two sizes with clamping to 0, for drop-like things
-{-# INLINE clampedSubtract #-}
-clampedSubtract :: Size -> Size -> Size
-clampedSubtract (Exact m) (Exact n) = Exact (max 0 (m - n))
-clampedSubtract (Max   m) (Exact n)
-  | m <= n = Exact 0
-  | otherwise = Max (m - n)
-clampedSubtract (Exact m) (Max   _) = Max m
-clampedSubtract (Max   m) (Max   _) = Max m
-clampedSubtract _         _ = Unknown
-
--- | Minimum of two size hints
-smaller :: Size -> Size -> Size
-{-# INLINE smaller #-}
-smaller (Exact m) (Exact n) = Exact (delay_inline min m n)
-smaller (Exact m) (Max   n) = Max   (delay_inline min m n)
-smaller (Exact m) Unknown   = Max   m
-smaller (Max   m) (Exact n) = Max   (delay_inline min m n)
-smaller (Max   m) (Max   n) = Max   (delay_inline min m n)
-smaller (Max   m) Unknown   = Max   m
-smaller Unknown   (Exact n) = Max   n
-smaller Unknown   (Max   n) = Max   n
-smaller Unknown   Unknown   = Unknown
-
--- | Maximum of two size hints
-larger :: Size -> Size -> Size
-{-# INLINE larger #-}
-larger (Exact m) (Exact n)             = Exact (delay_inline max m n)
-larger (Exact m) (Max   n) | m >= n    = Exact m
-                           | otherwise = Max   n
-larger (Max   m) (Exact n) | n >= m    = Exact n
-                           | otherwise = Max   m
-larger (Max   m) (Max   n)             = Max   (delay_inline max m n)
-larger _         _                     = Unknown
-
--- | Convert a size hint to an upper bound
-toMax :: Size -> Size
-toMax (Exact n) = Max n
-toMax (Max   n) = Max n
-toMax Unknown   = Unknown
-
--- | Compute the minimum size from a size hint
-lowerBound :: Size -> Int
-lowerBound (Exact n) = n
-lowerBound _         = 0
-
--- | Compute the maximum size from a size hint if possible
-upperBound :: Size -> Maybe Int
-upperBound (Exact n) = Just n
-upperBound (Max   n) = Just n
-upperBound Unknown   = Nothing
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
deleted file mode 100644
index cca002ca6f..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Stream/Monadic.hs
+++ /dev/null
@@ -1,1639 +0,0 @@
-{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
-
--- |
--- Module      : Data.Vector.Fusion.Stream.Monadic
--- Copyright   : (c) Roman Leshchinskiy 2008-2010
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : non-portable
---
--- Monadic stream combinators.
---
-
-module Data.Vector.Fusion.Stream.Monadic (
-  Stream(..), Step(..), SPEC(..),
-
-  -- * Length
-  length, null,
-
-  -- * Construction
-  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
-
-  -- * Accessing elements
-  head, last, (!!), (!?),
-
-  -- * Substreams
-  slice, init, tail, take, drop,
-
-  -- * Mapping
-  map, mapM, mapM_, trans, unbox, concatMap, flatten,
-
-  -- * Zipping
-  indexed, indexedR, zipWithM_,
-  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
-  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
-  zip, zip3, zip4, zip5, zip6,
-
-  -- * Comparisons
-  eqBy, cmpBy,
-
-  -- * Filtering
-  filter, filterM, uniq, mapMaybe, takeWhile, takeWhileM, dropWhile, dropWhileM,
-
-  -- * Searching
-  elem, notElem, find, findM, findIndex, findIndexM,
-
-  -- * Folding
-  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
-  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
-  foldr, foldrM, foldr1, foldr1M,
-
-  -- * Specialised folds
-  and, or, concatMapM,
-
-  -- * Unfolding
-  unfoldr, unfoldrM,
-  unfoldrN, unfoldrNM,
-  iterateN, iterateNM,
-
-  -- * Scans
-  prescanl, prescanlM, prescanl', prescanlM',
-  postscanl, postscanlM, postscanl', postscanlM',
-  scanl, scanlM, scanl', scanlM',
-  scanl1, scanl1M, scanl1', scanl1M',
-
-  -- * Enumerations
-  enumFromStepN, enumFromTo, enumFromThenTo,
-
-  -- * Conversions
-  toList, fromList, fromListN
-) where
-
-import Data.Vector.Fusion.Util ( Box(..) )
-
-import Data.Char      ( ord )
-import GHC.Base       ( unsafeChr )
-import Control.Monad  ( liftM )
-import Prelude hiding ( length, null,
-                        replicate, (++),
-                        head, last, (!!),
-                        init, tail, take, drop,
-                        map, mapM, mapM_, concatMap,
-                        zipWith, zipWith3, zip, zip3,
-                        filter, takeWhile, dropWhile,
-                        elem, notElem,
-                        foldl, foldl1, foldr, foldr1,
-                        and, or,
-                        scanl, scanl1,
-                        enumFromTo, enumFromThenTo )
-
-import Data.Int  ( Int8, Int16, Int32 )
-import Data.Word ( Word8, Word16, Word32, Word64 )
-
-#if !MIN_VERSION_base(4,8,0)
-import Data.Word ( Word8, Word16, Word32, Word, Word64 )
-#endif
-
-#if __GLASGOW_HASKELL__ >= 708
-import GHC.Types ( SPEC(..) )
-#elif __GLASGOW_HASKELL__ >= 700
-import GHC.Exts ( SpecConstrAnnotation(..) )
-#endif
-
-#include "vector.h"
-#include "MachDeps.h"
-
-#if WORD_SIZE_IN_BITS > 32
-import Data.Int  ( Int64 )
-#endif
-
-#if __GLASGOW_HASKELL__ < 708
-data SPEC = SPEC | SPEC2
-#if __GLASGOW_HASKELL__ >= 700
-{-# ANN type SPEC ForceSpecConstr #-}
-#endif
-#endif
-
-emptyStream :: String
-{-# NOINLINE emptyStream #-}
-emptyStream = "empty stream"
-
-#define EMPTY_STREAM (\state -> ERROR state emptyStream)
-
--- | Result of taking a single step in a stream
-data Step s a where
-  Yield :: a -> s -> Step s a
-  Skip  :: s -> Step s a
-  Done  :: Step s a
-
-instance Functor (Step s) where
-  {-# INLINE fmap #-}
-  fmap f (Yield x s) = Yield (f x) s
-  fmap _ (Skip s) = Skip s
-  fmap _ Done = Done
-
--- | Monadic streams
-data Stream m a = forall s. Stream (s -> m (Step s a)) s
-
--- Length
--- ------
-
--- | Length of a 'Stream'
-length :: Monad m => Stream m a -> m Int
-{-# INLINE_FUSED length #-}
-length = foldl' (\n _ -> n+1) 0
-
--- | Check if a 'Stream' is empty
-null :: Monad m => Stream m a -> m Bool
-{-# INLINE_FUSED null #-}
-null (Stream step t) = null_loop t
-  where
-    null_loop s = do
-      r <- step s
-      case r of
-        Yield _ _ -> return False
-        Skip s'   -> null_loop s'
-        Done      -> return True
-
--- Construction
--- ------------
-
--- | Empty 'Stream'
-empty :: Monad m => Stream m a
-{-# INLINE_FUSED empty #-}
-empty = Stream (const (return Done)) ()
-
--- | Singleton 'Stream'
-singleton :: Monad m => a -> Stream m a
-{-# INLINE_FUSED singleton #-}
-singleton x = Stream (return . step) True
-  where
-    {-# INLINE_INNER step #-}
-    step True  = Yield x False
-    step False = Done
-
--- | Replicate a value to a given length
-replicate :: Monad m => Int -> a -> Stream m a
-{-# INLINE_FUSED replicate #-}
-replicate n x = replicateM n (return x)
-
--- | Yield a 'Stream' of values obtained by performing the monadic action the
--- given number of times
-replicateM :: Monad m => Int -> m a -> Stream m a
-{-# INLINE_FUSED replicateM #-}
-replicateM n p = Stream step n
-  where
-    {-# INLINE_INNER step #-}
-    step i | i <= 0    = return Done
-           | otherwise = do { x <- p; return $ Yield x (i-1) }
-
-generate :: Monad m => Int -> (Int -> a) -> Stream m a
-{-# INLINE generate #-}
-generate n f = generateM n (return . f)
-
--- | Generate a stream from its indices
-generateM :: Monad m => Int -> (Int -> m a) -> Stream m a
-{-# INLINE_FUSED generateM #-}
-generateM n f = n `seq` Stream step 0
-  where
-    {-# INLINE_INNER step #-}
-    step i | i < n     = do
-                           x <- f i
-                           return $ Yield x (i+1)
-           | otherwise = return Done
-
--- | Prepend an element
-cons :: Monad m => a -> Stream m a -> Stream m a
-{-# INLINE cons #-}
-cons x s = singleton x ++ s
-
--- | Append an element
-snoc :: Monad m => Stream m a -> a -> Stream m a
-{-# INLINE snoc #-}
-snoc s x = s ++ singleton x
-
-infixr 5 ++
--- | Concatenate two 'Stream's
-(++) :: Monad m => Stream m a -> Stream m a -> Stream m a
-{-# INLINE_FUSED (++) #-}
-Stream stepa ta ++ Stream stepb tb = Stream step (Left ta)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left  sa) = do
-                        r <- stepa sa
-                        case r of
-                          Yield x sa' -> return $ Yield x (Left  sa')
-                          Skip    sa' -> return $ Skip    (Left  sa')
-                          Done        -> return $ Skip    (Right tb)
-    step (Right sb) = do
-                        r <- stepb sb
-                        case r of
-                          Yield x sb' -> return $ Yield x (Right sb')
-                          Skip    sb' -> return $ Skip    (Right sb')
-                          Done        -> return $ Done
-
--- Accessing elements
--- ------------------
-
--- | First element of the 'Stream' or error if empty
-head :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED head #-}
-head (Stream step t) = head_loop SPEC t
-  where
-    head_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x _  -> return x
-            Skip    s' -> head_loop SPEC s'
-            Done       -> EMPTY_STREAM "head"
-
-
-
--- | Last element of the 'Stream' or error if empty
-last :: Monad m => Stream m a -> m a
-{-# INLINE_FUSED last #-}
-last (Stream step t) = last_loop0 SPEC t
-  where
-    last_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> last_loop1 SPEC x s'
-            Skip    s' -> last_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "last"
-
-    last_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> last_loop1 SPEC y s'
-            Skip    s' -> last_loop1 SPEC x s'
-            Done       -> return x
-
-infixl 9 !!
--- | Element at the given position
-(!!) :: Monad m => Stream m a -> Int -> m a
-{-# INLINE (!!) #-}
-Stream step t !! j | j < 0     = ERROR "!!" "negative index"
-                   | otherwise = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return x
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> EMPTY_STREAM "!!"
-
-infixl 9 !?
--- | Element at the given position or 'Nothing' if out of bounds
-(!?) :: Monad m => Stream m a -> Int -> m (Maybe a)
-{-# INLINE (!?) #-}
-Stream step t !? j = index_loop SPEC t j
-  where
-    index_loop !_ s i
-      = i `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' | i == 0    -> return (Just x)
-                       | otherwise -> index_loop SPEC s' (i-1)
-            Skip    s'             -> index_loop SPEC s' i
-            Done                   -> return Nothing
-
--- Substreams
--- ----------
-
--- | Extract a substream of the given length starting at the given position.
-slice :: Monad m => Int   -- ^ starting index
-                 -> Int   -- ^ length
-                 -> Stream m a
-                 -> Stream m a
-{-# INLINE slice #-}
-slice i n s = take n (drop i s)
-
--- | All but the last element
-init :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED init #-}
-init (Stream step t) = Stream step' (Nothing, t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Skip (Just x,  s')
-                             Skip    s' -> Skip (Nothing, s')
-                             Done       -> EMPTY_STREAM "init"
-                         ) (step s)
-
-    step' (Just x,  s) = liftM (\r ->
-                           case r of
-                             Yield y s' -> Yield x (Just y, s')
-                             Skip    s' -> Skip    (Just x, s')
-                             Done       -> Done
-                         ) (step s)
-
--- | All but the first element
-tail :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED tail #-}
-tail (Stream step t) = Stream step' (Left t)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Left  s) = liftM (\r ->
-                        case r of
-                          Yield _ s' -> Skip (Right s')
-                          Skip    s' -> Skip (Left  s')
-                          Done       -> EMPTY_STREAM "tail"
-                      ) (step s)
-
-    step' (Right s) = liftM (\r ->
-                        case r of
-                          Yield x s' -> Yield x (Right s')
-                          Skip    s' -> Skip    (Right s')
-                          Done       -> Done
-                      ) (step s)
-
--- | The first @n@ elements
-take :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED take #-}
-take n (Stream step t) = n `seq` Stream step' (t, 0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, i) | i < n = liftM (\r ->
-                             case r of
-                               Yield x s' -> Yield x (s', i+1)
-                               Skip    s' -> Skip    (s', i)
-                               Done       -> Done
-                           ) (step s)
-    step' (_, _) = return Done
-
--- | All but the first @n@ elements
-drop :: Monad m => Int -> Stream m a -> Stream m a
-{-# INLINE_FUSED drop #-}
-drop n (Stream step t) = Stream step' (t, Just n)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Just i) | i > 0 = liftM (\r ->
-                                case r of
-                                   Yield _ s' -> Skip (s', Just (i-1))
-                                   Skip    s' -> Skip (s', Just i)
-                                   Done       -> Done
-                                ) (step s)
-                      | otherwise = return $ Skip (s, Nothing)
-
-    step' (s, Nothing) = liftM (\r ->
-                           case r of
-                             Yield x s' -> Yield x (s', Nothing)
-                             Skip    s' -> Skip    (s', Nothing)
-                             Done       -> Done
-                           ) (step s)
-
--- Mapping
--- -------
-
-instance Monad m => Functor (Stream m) where
-  {-# INLINE fmap #-}
-  fmap = map
-
--- | Map a function over a 'Stream'
-map :: Monad m => (a -> b) -> Stream m a -> Stream m b
-{-# INLINE map #-}
-map f = mapM (return . f)
-
-
--- | Map a monadic function over a 'Stream'
-mapM :: Monad m => (a -> m b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapM #-}
-mapM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> liftM  (`Yield` s') (f x)
-                  Skip    s' -> return (Skip    s')
-                  Done       -> return Done
-
-consume :: Monad m => Stream m a -> m ()
-{-# INLINE_FUSED consume #-}
-consume (Stream step t) = consume_loop SPEC t
-  where
-    consume_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield _ s' -> consume_loop SPEC s'
-            Skip    s' -> consume_loop SPEC s'
-            Done       -> return ()
-
--- | Execute a monadic action for each element of the 'Stream'
-mapM_ :: Monad m => (a -> m b) -> Stream m a -> m ()
-{-# INLINE_FUSED mapM_ #-}
-mapM_ m = consume . mapM m
-
--- | Transform a 'Stream' to use a different monad
-trans :: (Monad m, Monad m')
-      => (forall z. m z -> m' z) -> Stream m a -> Stream m' a
-{-# INLINE_FUSED trans #-}
-trans f (Stream step s) = Stream (f . step) s
-
-unbox :: Monad m => Stream m (Box a) -> Stream m a
-{-# INLINE_FUSED unbox #-}
-unbox (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield (Box x) s' -> return $ Yield x s'
-                  Skip          s' -> return $ Skip    s'
-                  Done             -> return $ Done
-
--- Zipping
--- -------
-
--- | Pair each element in a 'Stream' with its index
-indexed :: Monad m => Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexed #-}
-indexed (Stream step t) = Stream step' (t,0)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> return $ Yield (i,x) (s', i+1)
-                      Skip    s' -> return $ Skip        (s', i)
-                      Done       -> return Done
-
--- | Pair each element in a 'Stream' with its index, starting from the right
--- and counting down
-indexedR :: Monad m => Int -> Stream m a -> Stream m (Int,a)
-{-# INLINE_FUSED indexedR #-}
-indexedR m (Stream step t) = Stream step' (t,m)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,i) = i `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield x s' -> let i' = i-1
-                                    in
-                                    return $ Yield (i',x) (s', i')
-                      Skip    s' -> return $ Skip         (s', i)
-                      Done       -> return Done
-
--- | Zip two 'Stream's with the given monadic function
-zipWithM :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE_FUSED zipWithM #-}
-zipWithM f (Stream stepa ta) (Stream stepb tb) = Stream step (ta, tb, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, Nothing) = liftM (\r ->
-                               case r of
-                                 Yield x sa' -> Skip (sa', sb, Just x)
-                                 Skip    sa' -> Skip (sa', sb, Nothing)
-                                 Done        -> Done
-                             ) (stepa sa)
-
-    step (sa, sb, Just x)  = do
-                               r <- stepb sb
-                               case r of
-                                 Yield y sb' ->
-                                   do
-                                     z <- f x y
-                                     return $ Yield z (sa, sb', Nothing)
-                                 Skip    sb' -> return $ Skip (sa, sb', Just x)
-                                 Done        -> return $ Done
-
--- FIXME: This might expose an opportunity for inplace execution.
-{-# RULES
-
-"zipWithM xs xs [Vector.Stream]" forall f xs.
-  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
-
-
-zipWithM_ :: Monad m => (a -> b -> m c) -> Stream m a -> Stream m b -> m ()
-{-# INLINE zipWithM_ #-}
-zipWithM_ f sa sb = consume (zipWithM f sa sb)
-
-zipWith3M :: Monad m => (a -> b -> c -> m d) -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE_FUSED zipWith3M #-}
-zipWith3M f (Stream stepa ta)
-            (Stream stepb tb)
-            (Stream stepc tc) = Stream step (ta, tb, tc, Nothing)
-  where
-    {-# INLINE_INNER step #-}
-    step (sa, sb, sc, Nothing) = do
-        r <- stepa sa
-        return $ case r of
-            Yield x sa' -> Skip (sa', sb, sc, Just (x, Nothing))
-            Skip    sa' -> Skip (sa', sb, sc, Nothing)
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Nothing)) = do
-        r <- stepb sb
-        return $ case r of
-            Yield y sb' -> Skip (sa, sb', sc, Just (x, Just y))
-            Skip    sb' -> Skip (sa, sb', sc, Just (x, Nothing))
-            Done        -> Done
-
-    step (sa, sb, sc, Just (x, Just y)) = do
-        r <- stepc sc
-        case r of
-            Yield z sc' -> f x y z >>= (\res -> return $ Yield res (sa, sb, sc', Nothing))
-            Skip    sc' -> return $ Skip (sa, sb, sc', Just (x, Just y))
-            Done        -> return $ Done
-
-zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e
-{-# INLINE zipWith4M #-}
-zipWith4M f sa sb sc sd
-  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
-
-zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f
-{-# INLINE zipWith5M #-}
-zipWith5M f sa sb sc sd se
-  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
-
-zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
-                     -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                     -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6M #-}
-zipWith6M fn sa sb sc sd se sf
-  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
-                                                  (zip3 sd se sf)
-
-zipWith :: Monad m => (a -> b -> c) -> Stream m a -> Stream m b -> Stream m c
-{-# INLINE zipWith #-}
-zipWith f = zipWithM (\a b -> return (f a b))
-
-zipWith3 :: Monad m => (a -> b -> c -> d)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-{-# INLINE zipWith3 #-}
-zipWith3 f = zipWith3M (\a b c -> return (f a b c))
-
-zipWith4 :: Monad m => (a -> b -> c -> d -> e)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e
-{-# INLINE zipWith4 #-}
-zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
-
-zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f
-{-# INLINE zipWith5 #-}
-zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
-
-zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
-                    -> Stream m a -> Stream m b -> Stream m c -> Stream m d
-                    -> Stream m e -> Stream m f -> Stream m g
-{-# INLINE zipWith6 #-}
-zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
-
-zip :: Monad m => Stream m a -> Stream m b -> Stream m (a,b)
-{-# INLINE zip #-}
-zip = zipWith (,)
-
-zip3 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m (a,b,c)
-{-# INLINE zip3 #-}
-zip3 = zipWith3 (,,)
-
-zip4 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m (a,b,c,d)
-{-# INLINE zip4 #-}
-zip4 = zipWith4 (,,,)
-
-zip5 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m (a,b,c,d,e)
-{-# INLINE zip5 #-}
-zip5 = zipWith5 (,,,,)
-
-zip6 :: Monad m => Stream m a -> Stream m b -> Stream m c -> Stream m d
-                -> Stream m e -> Stream m f -> Stream m (a,b,c,d,e,f)
-{-# INLINE zip6 #-}
-zip6 = zipWith6 (,,,,,)
-
--- Comparisons
--- -----------
-
--- | Check if two 'Stream's are equal
-eqBy :: (Monad m) => (a -> b -> Bool) -> Stream m a -> Stream m b -> m Bool
-{-# INLINE_FUSED eqBy #-}
-eqBy eq (Stream step1 t1) (Stream step2 t2) = eq_loop0 SPEC t1 t2
-  where
-    eq_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> eq_loop1 SPEC x s1' s2
-        Skip    s1' -> eq_loop0 SPEC   s1' s2
-        Done        -> eq_null s2
-
-    eq_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2'
-          | eq x y    -> eq_loop0 SPEC   s1 s2'
-          | otherwise -> return False
-        Skip    s2'   -> eq_loop1 SPEC x s1 s2'
-        Done          -> return False
-
-    eq_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return False
-        Skip s2'  -> eq_null s2'
-        Done      -> return True
-
--- | Lexicographically compare two 'Stream's
-cmpBy :: (Monad m) => (a -> b -> Ordering) -> Stream m a -> Stream m b -> m Ordering
-{-# INLINE_FUSED cmpBy #-}
-cmpBy cmp (Stream step1 t1) (Stream step2 t2) = cmp_loop0 SPEC t1 t2
-  where
-    cmp_loop0 !_ s1 s2 = do
-      r <- step1 s1
-      case r of
-        Yield x s1' -> cmp_loop1 SPEC x s1' s2
-        Skip    s1' -> cmp_loop0 SPEC   s1' s2
-        Done        -> cmp_null s2
-
-    cmp_loop1 !_ x s1 s2 = do
-      r <- step2 s2
-      case r of
-        Yield y s2' -> case x `cmp` y of
-                         EQ -> cmp_loop0 SPEC s1 s2'
-                         c  -> return c
-        Skip    s2' -> cmp_loop1 SPEC x s1 s2'
-        Done        -> return GT
-
-    cmp_null s2 = do
-      r <- step2 s2
-      case r of
-        Yield _ _ -> return LT
-        Skip s2'  -> cmp_null s2'
-        Done      -> return EQ
-
--- Filtering
--- ---------
-
--- | Drop elements which do not satisfy the predicate
-filter :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE filter #-}
-filter f = filterM (return . f)
-
-mapMaybe :: Monad m => (a -> Maybe b) -> Stream m a -> Stream m b
-{-# INLINE_FUSED mapMaybe #-}
-mapMaybe f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  return $ case f x of
-                                    Nothing -> Skip s'
-                                    Just b' -> Yield b' s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop elements which do not satisfy the monadic predicate
-filterM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED filterM #-}
-filterM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s'
-                                                else Skip    s'
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop repeated adjacent elements.
-uniq :: (Eq a, Monad m) => Stream m a -> Stream m a
-{-# INLINE_FUSED uniq #-}
-uniq (Stream step st) = Stream step' (Nothing,st)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (Nothing, s) = do r <- step s
-                            case r of
-                              Yield x s' -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip  (Nothing, s')
-                              Done       -> return   Done
-    step' (Just x0, s) = do r <- step s
-                            case r of
-                              Yield x s' | x == x0   -> return $ Skip    (Just x0, s')
-                                         | otherwise -> return $ Yield x (Just x , s')
-                              Skip  s'   -> return $ Skip (Just x0, s')
-                              Done       -> return   Done
-
--- | Longest prefix of elements that satisfy the predicate
-takeWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE takeWhile #-}
-takeWhile f = takeWhileM (return . f)
-
--- | Longest prefix of elements that satisfy the monadic predicate
-takeWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED takeWhileM #-}
-takeWhileM f (Stream step t) = Stream step' t
-  where
-    {-# INLINE_INNER step' #-}
-    step' s = do
-                r <- step s
-                case r of
-                  Yield x s' -> do
-                                  b <- f x
-                                  return $ if b then Yield x s' else Done
-                  Skip    s' -> return $ Skip s'
-                  Done       -> return $ Done
-
--- | Drop the longest prefix of elements that satisfy the predicate
-dropWhile :: Monad m => (a -> Bool) -> Stream m a -> Stream m a
-{-# INLINE dropWhile #-}
-dropWhile f = dropWhileM (return . f)
-
-data DropWhile s a = DropWhile_Drop s | DropWhile_Yield a s | DropWhile_Next s
-
--- | Drop the longest prefix of elements that satisfy the monadic predicate
-dropWhileM :: Monad m => (a -> m Bool) -> Stream m a -> Stream m a
-{-# INLINE_FUSED dropWhileM #-}
-dropWhileM f (Stream step t) = Stream step' (DropWhile_Drop t)
-  where
-    -- NOTE: we jump through hoops here to have only one Yield; local data
-    -- declarations would be nice!
-
-    {-# INLINE_INNER step' #-}
-    step' (DropWhile_Drop s)
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            return $ if b then Skip (DropWhile_Drop    s')
-                                          else Skip (DropWhile_Yield x s')
-            Skip    s' -> return $ Skip (DropWhile_Drop    s')
-            Done       -> return $ Done
-
-    step' (DropWhile_Yield x s) = return $ Yield x (DropWhile_Next s)
-
-    step' (DropWhile_Next s)
-      = liftM (\r ->
-          case r of
-            Yield x s' -> Skip    (DropWhile_Yield x s')
-            Skip    s' -> Skip    (DropWhile_Next    s')
-            Done       -> Done
-        ) (step s)
-
--- Searching
--- ---------
-
-infix 4 `elem`
--- | Check whether the 'Stream' contains an element
-elem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE_FUSED elem #-}
-elem x (Stream step t) = elem_loop SPEC t
-  where
-    elem_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield y s' | x == y    -> return True
-                       | otherwise -> elem_loop SPEC s'
-            Skip    s'             -> elem_loop SPEC s'
-            Done                   -> return False
-
-infix 4 `notElem`
--- | Inverse of `elem`
-notElem :: (Monad m, Eq a) => a -> Stream m a -> m Bool
-{-# INLINE notElem #-}
-notElem x s = liftM not (elem x s)
-
--- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
--- if no such element exists.
-find :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE find #-}
-find f = findM (return . f)
-
--- | Yield 'Just' the first element that satisfies the monadic predicate or
--- 'Nothing' if no such element exists.
-findM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe a)
-{-# INLINE_FUSED findM #-}
-findM f (Stream step t) = find_loop SPEC t
-  where
-    find_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just x
-                                 else find_loop SPEC s'
-            Skip    s' -> find_loop SPEC s'
-            Done       -> return Nothing
-
--- | Yield 'Just' the index of the first element that satisfies the predicate
--- or 'Nothing' if no such element exists.
-findIndex :: Monad m => (a -> Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndex #-}
-findIndex f = findIndexM (return . f)
-
--- | Yield 'Just' the index of the first element that satisfies the monadic
--- predicate or 'Nothing' if no such element exists.
-findIndexM :: Monad m => (a -> m Bool) -> Stream m a -> m (Maybe Int)
-{-# INLINE_FUSED findIndexM #-}
-findIndexM f (Stream step t) = findIndex_loop SPEC t 0
-  where
-    findIndex_loop !_ s i
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do
-                            b <- f x
-                            if b then return $ Just i
-                                 else findIndex_loop SPEC s' (i+1)
-            Skip    s' -> findIndex_loop SPEC s' i
-            Done       -> return Nothing
-
--- Folding
--- -------
-
--- | Left fold
-foldl :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl #-}
-foldl f = foldlM (\a b -> return (f a b))
-
--- | Left fold with a monadic operator
-foldlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM #-}
-foldlM m w (Stream step t) = foldlM_loop SPEC w t
-  where
-    foldlM_loop !_ z s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM_loop SPEC z' s' }
-            Skip    s' -> foldlM_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM'
-foldM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM #-}
-foldM = foldlM
-
--- | Left fold over a non-empty 'Stream'
-foldl1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1 #-}
-foldl1 f = foldl1M (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a monadic operator
-foldl1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M #-}
-foldl1M f (Stream step t) = foldl1M_loop SPEC t
-  where
-    foldl1M_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM f x (Stream step s')
-            Skip    s' -> foldl1M_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M"
-
--- | Same as 'foldl1M'
-fold1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M #-}
-fold1M = foldl1M
-
--- | Left fold with a strict accumulator
-foldl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> m a
-{-# INLINE foldl' #-}
-foldl' f = foldlM' (\a b -> return (f a b))
-
--- | Left fold with a strict accumulator and a monadic operator
-foldlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE_FUSED foldlM' #-}
-foldlM' m w (Stream step t) = foldlM'_loop SPEC w t
-  where
-    foldlM'_loop !_ z s
-      = z `seq`
-        do
-          r <- step s
-          case r of
-            Yield x s' -> do { z' <- m z x; foldlM'_loop SPEC z' s' }
-            Skip    s' -> foldlM'_loop SPEC z s'
-            Done       -> return z
-
--- | Same as 'foldlM''
-foldM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> m a
-{-# INLINE foldM' #-}
-foldM' = foldlM'
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator
-foldl1' :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldl1' #-}
-foldl1' f = foldl1M' (\a b -> return (f a b))
-
--- | Left fold over a non-empty 'Stream' with a strict accumulator and a
--- monadic operator
-foldl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldl1M' #-}
-foldl1M' f (Stream step t) = foldl1M'_loop SPEC t
-  where
-    foldl1M'_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldlM' f x (Stream step s')
-            Skip    s' -> foldl1M'_loop SPEC s'
-            Done       -> EMPTY_STREAM "foldl1M'"
-
--- | Same as 'foldl1M''
-fold1M' :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE fold1M' #-}
-fold1M' = foldl1M'
-
--- | Right fold
-foldr :: Monad m => (a -> b -> b) -> b -> Stream m a -> m b
-{-# INLINE foldr #-}
-foldr f = foldrM (\a b -> return (f a b))
-
--- | Right fold with a monadic operator
-foldrM :: Monad m => (a -> b -> m b) -> b -> Stream m a -> m b
-{-# INLINE_FUSED foldrM #-}
-foldrM f z (Stream step t) = foldrM_loop SPEC t
-  where
-    foldrM_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> f x =<< foldrM_loop SPEC s'
-            Skip    s' -> foldrM_loop SPEC s'
-            Done       -> return z
-
--- | Right fold over a non-empty stream
-foldr1 :: Monad m => (a -> a -> a) -> Stream m a -> m a
-{-# INLINE foldr1 #-}
-foldr1 f = foldr1M (\a b -> return (f a b))
-
--- | Right fold over a non-empty stream with a monadic operator
-foldr1M :: Monad m => (a -> a -> m a) -> Stream m a -> m a
-{-# INLINE_FUSED foldr1M #-}
-foldr1M f (Stream step t) = foldr1M_loop0 SPEC t
-  where
-    foldr1M_loop0 !_ s
-      = do
-          r <- step s
-          case r of
-            Yield x s' -> foldr1M_loop1 SPEC x s'
-            Skip    s' -> foldr1M_loop0 SPEC   s'
-            Done       -> EMPTY_STREAM "foldr1M"
-
-    foldr1M_loop1 !_ x s
-      = do
-          r <- step s
-          case r of
-            Yield y s' -> f x =<< foldr1M_loop1 SPEC y s'
-            Skip    s' -> foldr1M_loop1 SPEC x s'
-            Done       -> return x
-
--- Specialised folds
--- -----------------
-
-and :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED and #-}
-and (Stream step t) = and_loop SPEC t
-  where
-    and_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False _  -> return False
-            Yield True  s' -> and_loop SPEC s'
-            Skip        s' -> and_loop SPEC s'
-            Done           -> return True
-
-or :: Monad m => Stream m Bool -> m Bool
-{-# INLINE_FUSED or #-}
-or (Stream step t) = or_loop SPEC t
-  where
-    or_loop !_ s
-      = do
-          r <- step s
-          case r of
-            Yield False s' -> or_loop SPEC s'
-            Yield True  _  -> return True
-            Skip        s' -> or_loop SPEC s'
-            Done           -> return False
-
-concatMap :: Monad m => (a -> Stream m b) -> Stream m a -> Stream m b
-{-# INLINE concatMap #-}
-concatMap f = concatMapM (return . f)
-
-concatMapM :: Monad m => (a -> m (Stream m b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED concatMapM #-}
-concatMapM f (Stream step t) = Stream concatMap_go (Left t)
-  where
-    concatMap_go (Left s) = do
-        r <- step s
-        case r of
-            Yield a s' -> do
-                b_stream <- f a
-                return $ Skip (Right (b_stream, s'))
-            Skip    s' -> return $ Skip (Left s')
-            Done       -> return Done
-    concatMap_go (Right (Stream inner_step inner_s, s)) = do
-        r <- inner_step inner_s
-        case r of
-            Yield b inner_s' -> return $ Yield b (Right (Stream inner_step inner_s', s))
-            Skip    inner_s' -> return $ Skip (Right (Stream inner_step inner_s', s))
-            Done             -> return $ Skip (Left s)
-
--- | Create a 'Stream' of values from a 'Stream' of streamable things
-flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Stream m a -> Stream m b
-{-# INLINE_FUSED flatten #-}
-flatten mk istep (Stream ostep u) = Stream step (Left u)
-  where
-    {-# INLINE_INNER step #-}
-    step (Left t) = do
-                      r <- ostep t
-                      case r of
-                        Yield a t' -> do
-                                        s <- mk a
-                                        s `seq` return (Skip (Right (s,t')))
-                        Skip    t' -> return $ Skip (Left t')
-                        Done       -> return $ Done
-
-
-    step (Right (s,t)) = do
-                           r <- istep s
-                           case r of
-                             Yield x s' -> return $ Yield x (Right (s',t))
-                             Skip    s' -> return $ Skip    (Right (s',t))
-                             Done       -> return $ Skip    (Left t)
-
--- Unfolding
--- ---------
-
--- | Unfold
-unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldr #-}
-unfoldr f = unfoldrM (return . f)
-
--- | Unfold with a monadic function
-unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrM #-}
-unfoldrM f t = Stream step t
-  where
-    {-# INLINE_INNER step #-}
-    step s = liftM (\r ->
-               case r of
-                 Just (x, s') -> Yield x s'
-                 Nothing      -> Done
-             ) (f s)
-
-unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrN #-}
-unfoldrN n f = unfoldrNM n (return . f)
-
--- | Unfold at most @n@ elements with a monadic functions
-unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Stream m a
-{-# INLINE_FUSED unfoldrNM #-}
-unfoldrNM m f t = Stream step (t,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (s,n) | n <= 0    = return Done
-               | otherwise = liftM (\r ->
-                               case r of
-                                 Just (x,s') -> Yield x (s',n-1)
-                                 Nothing     -> Done
-                             ) (f s)
-
--- | Apply monadic function n times to value. Zeroth element is original value.
-iterateNM :: Monad m => Int -> (a -> m a) -> a -> Stream m a
-{-# INLINE_FUSED iterateNM #-}
-iterateNM n f x0 = Stream step (x0,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (x,i) | i <= 0    = return Done
-               | i == n    = return $ Yield x (x,i-1)
-               | otherwise = do a <- f x
-                                return $ Yield a (a,i-1)
-
--- | Apply function n times to value. Zeroth element is original value.
-iterateN :: Monad m => Int -> (a -> a) -> a -> Stream m a
-{-# INLINE_FUSED iterateN #-}
-iterateN n f x0 = iterateNM n (return . f) x0
-
--- Scans
--- -----
-
--- | Prefix scan
-prescanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl #-}
-prescanl f = prescanlM (\a b -> return (f a b))
-
--- | Prefix scan with a monadic operator
-prescanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM #-}
-prescanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Prefix scan with strict accumulator
-prescanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE prescanl' #-}
-prescanl' f = prescanlM' (\a b -> return (f a b))
-
--- | Prefix scan with strict accumulator and a monadic operator
-prescanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED prescanlM' #-}
-prescanlM' f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield x (s', z)
-                      Skip    s' -> return $ Skip (s', x)
-                      Done       -> return Done
-
--- | Suffix scan
-postscanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl #-}
-postscanl f = postscanlM (\a b -> return (f a b))
-
--- | Suffix scan with a monadic operator
-postscanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM #-}
-postscanlM f w (Stream step t) = Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      return $ Yield z (s',z)
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Suffix scan with strict accumulator
-postscanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE postscanl' #-}
-postscanl' f = postscanlM' (\a b -> return (f a b))
-
--- | Suffix scan with strict acccumulator and a monadic operator
-postscanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE_FUSED postscanlM' #-}
-postscanlM' f w (Stream step t) = w `seq` Stream step' (t,w)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s,x) = x `seq`
-                  do
-                    r <- step s
-                    case r of
-                      Yield y s' -> do
-                                      z <- f x y
-                                      z `seq` return (Yield z (s',z))
-                      Skip    s' -> return $ Skip (s',x)
-                      Done       -> return Done
-
--- | Haskell-style scan
-scanl :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl #-}
-scanl f = scanlM (\a b -> return (f a b))
-
--- | Haskell-style scan with a monadic operator
-scanlM :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM #-}
-scanlM f z s = z `cons` postscanlM f z s
-
--- | Haskell-style scan with strict accumulator
-scanl' :: Monad m => (a -> b -> a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanl' #-}
-scanl' f = scanlM' (\a b -> return (f a b))
-
--- | Haskell-style scan with strict accumulator and a monadic operator
-scanlM' :: Monad m => (a -> b -> m a) -> a -> Stream m b -> Stream m a
-{-# INLINE scanlM' #-}
-scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
-
--- | Scan over a non-empty 'Stream'
-scanl1 :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1 #-}
-scanl1 f = scanl1M (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a monadic operator
-scanl1M :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M #-}
-scanl1M f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> return $ Yield x (s', Just x)
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            return $ Yield z (s', Just z)
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- | Scan over a non-empty 'Stream' with a strict accumulator
-scanl1' :: Monad m => (a -> a -> a) -> Stream m a -> Stream m a
-{-# INLINE scanl1' #-}
-scanl1' f = scanl1M' (\x y -> return (f x y))
-
--- | Scan over a non-empty 'Stream' with a strict accumulator and a monadic
--- operator
-scanl1M' :: Monad m => (a -> a -> m a) -> Stream m a -> Stream m a
-{-# INLINE_FUSED scanl1M' #-}
-scanl1M' f (Stream step t) = Stream step' (t, Nothing)
-  where
-    {-# INLINE_INNER step' #-}
-    step' (s, Nothing) = do
-                           r <- step s
-                           case r of
-                             Yield x s' -> x `seq` return (Yield x (s', Just x))
-                             Skip    s' -> return $ Skip (s', Nothing)
-                             Done       -> EMPTY_STREAM "scanl1M"
-
-    step' (s, Just x) = x `seq`
-                        do
-                          r <- step s
-                          case r of
-                            Yield y s' -> do
-                                            z <- f x y
-                                            z `seq` return (Yield z (s', Just z))
-                            Skip    s' -> return $ Skip (s', Just x)
-                            Done       -> return Done
-
--- Enumerations
--- ------------
-
--- The Enum class is broken for this, there just doesn't seem to be a
--- way to implement this generically. We have to specialise for as many types
--- as we can but this doesn't help in polymorphic loops.
-
--- | Yield a 'Stream' of the given length containing the values @x@, @x+y@,
--- @x+y+y@ etc.
-enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Stream m a
-{-# INLINE_FUSED enumFromStepN #-}
-enumFromStepN x y n = x `seq` y `seq` n `seq` Stream step (x,n)
-  where
-    {-# INLINE_INNER step #-}
-    step (w,m) | m > 0     = return $ Yield w (w+y,m-1)
-               | otherwise = return $ Done
-
--- | Enumerate values
---
--- /WARNING:/ This operation can be very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromTo :: (Enum a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo #-}
-enumFromTo x y = fromList [x .. y]
-
--- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
--- overflow which can't happen here.
-
--- FIXME: add "too large" test for Int
-enumFromTo_small :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_small #-}
-enumFromTo_small x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step w | w <= y    = return $ Yield w (w+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Stream m Int8
-
-"enumFromTo<Int16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Stream m Int16
-
-"enumFromTo<Word8> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Stream m Word8
-
-"enumFromTo<Word16> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Stream m Word16   #-}
-
-
-#if WORD_SIZE_IN_BITS > 32
-
-{-# RULES
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Stream m Int32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Stream m Word32   #-}
-
-
-#endif
-
--- NOTE: We could implement a generic "too large" test:
---
--- len x y | x > y = 0
---         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
---         | otherwise = error
---   where
---     n = y-x+1
---
--- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
--- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
---
-
-enumFromTo_int :: forall m. Monad m => Int -> Int -> Stream m Int
-{-# INLINE_FUSED enumFromTo_int #-}
-enumFromTo_int x y = x `seq` y `seq` Stream step x
-  where
-    -- {-# INLINE [0] len #-}
-    -- len :: Int -> Int -> Int
-    -- len u v | u > v     = 0
-    --         | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
-    --                       (n > 0)
-    --                     $ n
-    --   where
-    --     n = v-u+1
-
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_intlike #-}
-enumFromTo_intlike x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int> [Stream]"
-  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Stream m Int
-
-#if WORD_SIZE_IN_BITS > 32
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Stream m Int64 #-}
-
-#else
-
-"enumFromTo<Int32> [Stream]"
-  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Stream m Int32 #-}
-
-#endif
-
-enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_word #-}
-enumFromTo_big_word x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Word> [Stream]"
-  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Stream m Word
-
-"enumFromTo<Word64> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word64 -> Word64 -> Stream m Word64
-
-#if WORD_SIZE_IN_BITS == 32
-
-"enumFromTo<Word32> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Word32 -> Word32 -> Stream m Word32
-
-#endif
-
-"enumFromTo<Integer> [Stream]"
-  enumFromTo = enumFromTo_big_word
-                        :: Monad m => Integer -> Integer -> Stream m Integer   #-}
-
-
-
-#if WORD_SIZE_IN_BITS > 32
-
--- FIXME: the "too large" test is totally wrong
-enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_big_int #-}
-enumFromTo_big_int x y = x `seq` y `seq` Stream step x
-  where
-    {-# INLINE_INNER step #-}
-    step z | z <= y    = return $ Yield z (z+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Int64> [Stream]"
-  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Stream m Int64   #-}
-
-
-
-#endif
-
-enumFromTo_char :: Monad m => Char -> Char -> Stream m Char
-{-# INLINE_FUSED enumFromTo_char #-}
-enumFromTo_char x y = x `seq` y `seq` Stream step xn
-  where
-    xn = ord x
-    yn = ord y
-
-    {-# INLINE_INNER step #-}
-    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
-            | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Char> [Stream]"
-  enumFromTo = enumFromTo_char   #-}
-
-
-
-------------------------------------------------------------------------
-
--- Specialise enumFromTo for Float and Double.
--- Also, try to do something about pairs?
-
-enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Stream m a
-{-# INLINE_FUSED enumFromTo_double #-}
-enumFromTo_double n m = n `seq` m `seq` Stream step n
-  where
-    lim = m + 1/2 -- important to float out
-
-    {-# INLINE_INNER step #-}
-    step x | x <= lim  = return $ Yield x (x+1)
-           | otherwise = return $ Done
-
-{-# RULES
-
-"enumFromTo<Double> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Stream m Double
-
-"enumFromTo<Float> [Stream]"
-  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Stream m Float   #-}
-
-
-
-------------------------------------------------------------------------
-
--- | Enumerate values with a given step.
---
--- /WARNING:/ This operation is very inefficient. If at all possible, use
--- 'enumFromStepN' instead.
-enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Stream m a
-{-# INLINE_FUSED enumFromThenTo #-}
-enumFromThenTo x y z = fromList [x, y .. z]
-
--- FIXME: Specialise enumFromThenTo.
-
--- Conversions
--- -----------
-
--- | Convert a 'Stream' to a list
-toList :: Monad m => Stream m a -> m [a]
-{-# INLINE toList #-}
-toList = foldr (:) []
-
--- | Convert a list to a 'Stream'
-fromList :: Monad m => [a] -> Stream m a
-{-# INLINE fromList #-}
-fromList zs = Stream step zs
-  where
-    step (x:xs) = return (Yield x xs)
-    step []     = return Done
-
--- | Convert the first @n@ elements of a list to a 'Bundle'
-fromListN :: Monad m => Int -> [a] -> Stream m a
-{-# INLINE_FUSED fromListN #-}
-fromListN m zs = Stream step (zs,m)
-  where
-    {-# INLINE_INNER step #-}
-    step (_, n) | n <= 0 = return Done
-    step (x:xs,n)        = return (Yield x (xs,n-1))
-    step ([],_)          = return Done
-
-{-
-fromVector :: (Monad m, Vector v a) => v a -> Stream m a
-{-# INLINE_FUSED fromVector #-}
-fromVector v = v `seq` n `seq` Stream (Unf step 0)
-                                      (Unf vstep True)
-                                      (Just v)
-                                      (Exact n)
-  where
-    n = basicLength v
-
-    {-# INLINE step #-}
-    step i | i >= n = return Done
-           | otherwise = case basicUnsafeIndexM v i of
-                           Box x -> return $ Yield x (i+1)
-
-
-    {-# INLINE vstep #-}
-    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
-    vstep False = return Done
-
-fromVectors :: forall m a. (Monad m, Vector v a) => [v a] -> Stream m a
-{-# INLINE_FUSED fromVectors #-}
-fromVectors vs = Stream (Unf pstep (Left vs))
-                        (Unf vstep vs)
-                        Nothing
-                        (Exact n)
-  where
-    n = List.foldl' (\k v -> k + basicLength v) 0 vs
-
-    pstep (Left []) = return Done
-    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
-
-    pstep (Right (v,i,vs))
-      | i >= basicLength v = return $ Skip (Left vs)
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return $ Yield x (Right (v,i+1,vs))
-
-    -- FIXME: work around bug in GHC 7.6.1
-    vstep :: [v a] -> m (Step [v a] (Chunk v a))
-    vstep [] = return Done
-    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
-                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                       (M.basicLength mv == basicLength v)
-                                                 $ basicUnsafeCopy mv v)) vs
-
-
-concatVectors :: (Monad m, Vector v a) => Stream m (v a) -> Stream m a
-{-# INLINE_FUSED concatVectors #-}
-concatVectors (Stream step s}
-  = Stream (Unf pstep (Left s))
-           (Unf vstep s)
-           Nothing
-           Unknown
-  where
-    pstep (Left s) = do
-      r <- step s
-      case r of
-        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
-        Skip    s' -> return (Skip (Left s'))
-        Done       -> return Done
-
-    pstep (Right (v,i,s))
-      | i >= basicLength v = return (Skip (Left s))
-      | otherwise          = case basicUnsafeIndexM v i of
-                               Box x -> return (Yield x (Right (v,i+1,s)))
-
-
-    vstep s = do
-      r <- step s
-      case r of
-        Yield v s' -> return (Yield (Chunk (basicLength v)
-                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
-                                                                          (M.basicLength mv == basicLength v)
-                                                   $ basicUnsafeCopy mv v)) s')
-        Skip    s' -> return (Skip s')
-        Done       -> return Done
-
-reVector :: Monad m => Stream m a -> Stream m a
-{-# INLINE_FUSED reVector #-}
-reVector (Stream step s, sSize = n} = Stream step s n
-
-{-# RULES
-
-"reVector [Vector]"
-  reVector = id
-
-"reVector/reVector [Vector]" forall s.
-  reVector (reVector s) = s   #-}
-
-
--}
-
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
deleted file mode 100644
index 855bf5ddd4..0000000000
--- a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Util.hs
+++ /dev/null
@@ -1,60 +0,0 @@
-{-# LANGUAGE CPP #-}
--- |
--- Module      : Data.Vector.Fusion.Util
--- Copyright   : (c) Roman Leshchinskiy 2009
--- License     : BSD-style
---
--- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
--- Stability   : experimental
--- Portability : portable
---
--- Fusion-related utility types
---
-
-module Data.Vector.Fusion.Util (
-  Id(..), Box(..),
-
-  delay_inline, delayed_min
-) where
-
-#if !MIN_VERSION_base(4,8,0)
-import Control.Applicative (Applicative(..))
-#endif
-
--- | Identity monad
-newtype Id a = Id { unId :: a }
-
-instance Functor Id where
-  fmap f (Id x) = Id (f x)
-
-instance Applicative Id where
-  pure = Id
-  Id f <*> Id x = Id (f x)
-
-instance Monad Id where
-  return = pure
-  Id x >>= f = f x
-
--- | Box monad
-data Box a = Box { unBox :: a }
-
-instance Functor Box where
-  fmap f (Box x) = Box (f x)
-
-instance Applicative Box where
-  pure = Box
-  Box f <*> Box x = Box (f x)
-
-instance Monad Box where
-  return = pure
-  Box x >>= f = f x
-
--- | Delay inlining a function until late in the game (simplifier phase 0).
-delay_inline :: (a -> b) -> a -> b
-{-# INLINE [0] delay_inline #-}
-delay_inline f = f
-
--- | `min` inlined in phase 0
-delayed_min :: Int -> Int -> Int
-{-# INLINE [0] delayed_min #-}
-delayed_min m n = min m n