about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs1106
1 files changed, 1106 insertions, 0 deletions
diff --git a/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
new file mode 100644
index 0000000000..46f4a165f8
--- /dev/null
+++ b/third_party/bazel/rules_haskell/examples/vector/Data/Vector/Fusion/Bundle/Monadic.hs
@@ -0,0 +1,1106 @@
+{-# LANGUAGE CPP, ExistentialQuantification, MultiParamTypeClasses, FlexibleInstances, Rank2Types, BangPatterns, KindSignatures, GADTs, ScopedTypeVariables #-}
+
+-- |
+-- Module      : Data.Vector.Fusion.Bundle.Monadic
+-- Copyright   : (c) Roman Leshchinskiy 2008-2010
+-- License     : BSD-style
+--
+-- Maintainer  : Roman Leshchinskiy <rl@cse.unsw.edu.au>
+-- Stability   : experimental
+-- Portability : non-portable
+--
+-- Monadic bundles.
+--
+
+module Data.Vector.Fusion.Bundle.Monadic (
+  Bundle(..), Chunk(..),
+
+  -- * Size hints
+  size, sized,
+
+  -- * Length
+  length, null,
+
+  -- * Construction
+  empty, singleton, cons, snoc, replicate, replicateM, generate, generateM, (++),
+
+  -- * Accessing elements
+  head, last, (!!), (!?),
+
+  -- * Substreams
+  slice, init, tail, take, drop,
+
+  -- * Mapping
+  map, mapM, mapM_, trans, unbox, concatMap, flatten,
+
+  -- * Zipping
+  indexed, indexedR, zipWithM_,
+  zipWithM, zipWith3M, zipWith4M, zipWith5M, zipWith6M,
+  zipWith, zipWith3, zipWith4, zipWith5, zipWith6,
+  zip, zip3, zip4, zip5, zip6,
+
+  -- * Comparisons
+  eqBy, cmpBy,
+
+  -- * Filtering
+  filter, filterM, takeWhile, takeWhileM, dropWhile, dropWhileM,
+
+  -- * Searching
+  elem, notElem, find, findM, findIndex, findIndexM,
+
+  -- * Folding
+  foldl, foldlM, foldl1, foldl1M, foldM, fold1M,
+  foldl', foldlM', foldl1', foldl1M', foldM', fold1M',
+  foldr, foldrM, foldr1, foldr1M,
+
+  -- * Specialised folds
+  and, or, concatMapM,
+
+  -- * Unfolding
+  unfoldr, unfoldrM,
+  unfoldrN, unfoldrNM,
+  iterateN, iterateNM,
+
+  -- * Scans
+  prescanl, prescanlM, prescanl', prescanlM',
+  postscanl, postscanlM, postscanl', postscanlM',
+  scanl, scanlM, scanl', scanlM',
+  scanl1, scanl1M, scanl1', scanl1M',
+
+  -- * Enumerations
+  enumFromStepN, enumFromTo, enumFromThenTo,
+
+  -- * Conversions
+  toList, fromList, fromListN, unsafeFromList,
+  fromVector, reVector, fromVectors, concatVectors,
+  fromStream, chunks, elements
+) where
+
+import Data.Vector.Generic.Base
+import qualified Data.Vector.Generic.Mutable.Base as M
+import Data.Vector.Fusion.Bundle.Size
+import Data.Vector.Fusion.Util ( Box(..), delay_inline )
+import Data.Vector.Fusion.Stream.Monadic ( Stream(..), Step(..) )
+import qualified Data.Vector.Fusion.Stream.Monadic as S
+import Control.Monad.Primitive
+
+import qualified Data.List as List
+import Data.Char      ( ord )
+import GHC.Base       ( unsafeChr )
+import Control.Monad  ( liftM )
+import Prelude hiding ( length, null,
+                        replicate, (++),
+                        head, last, (!!),
+                        init, tail, take, drop,
+                        map, mapM, mapM_, concatMap,
+                        zipWith, zipWith3, zip, zip3,
+                        filter, takeWhile, dropWhile,
+                        elem, notElem,
+                        foldl, foldl1, foldr, foldr1,
+                        and, or,
+                        scanl, scanl1,
+                        enumFromTo, enumFromThenTo )
+
+import Data.Int  ( Int8, Int16, Int32 )
+import Data.Word ( Word8, Word16, Word32, Word64 )
+
+#if !MIN_VERSION_base(4,8,0)
+import Data.Word ( Word )
+#endif
+
+#include "vector.h"
+#include "MachDeps.h"
+
+#if WORD_SIZE_IN_BITS > 32
+import Data.Int  ( Int64 )
+#endif
+
+data Chunk v a = Chunk Int (forall m. (PrimMonad m, Vector v a) => Mutable v (PrimState m) a -> m ())
+
+-- | Monadic streams
+data Bundle m v a = Bundle { sElems  :: Stream m a
+                           , sChunks :: Stream m (Chunk v a)
+                           , sVector :: Maybe (v a)
+                           , sSize   :: Size
+                           }
+
+fromStream :: Monad m => Stream m a -> Size -> Bundle m v a
+{-# INLINE fromStream #-}
+fromStream (Stream step t) sz = Bundle (Stream step t) (Stream step' t) Nothing sz
+  where
+    step' s = do r <- step s
+                 return $ fmap (\x -> Chunk 1 (\v -> M.basicUnsafeWrite v 0 x)) r
+
+chunks :: Bundle m v a -> Stream m (Chunk v a)
+{-# INLINE chunks #-}
+chunks = sChunks
+
+elements :: Bundle m v a -> Stream m a
+{-# INLINE elements #-}
+elements = sElems
+
+-- | 'Size' hint of a 'Bundle'
+size :: Bundle m v a -> Size
+{-# INLINE size #-}
+size = sSize
+
+-- | Attach a 'Size' hint to a 'Bundle'
+sized :: Bundle m v a -> Size -> Bundle m v a
+{-# INLINE_FUSED sized #-}
+sized s sz = s { sSize = sz }
+
+-- Length
+-- ------
+
+-- | Length of a 'Bundle'
+length :: Monad m => Bundle m v a -> m Int
+{-# INLINE_FUSED length #-}
+length Bundle{sSize = Exact n}  = return n
+length Bundle{sChunks = s} = S.foldl' (\n (Chunk k _) -> n+k) 0 s
+
+-- | Check if a 'Bundle' is empty
+null :: Monad m => Bundle m v a -> m Bool
+{-# INLINE_FUSED null #-}
+null Bundle{sSize = Exact n} = return (n == 0)
+null Bundle{sChunks = s} = S.foldr (\(Chunk n _) z -> n == 0 && z) True s
+
+-- Construction
+-- ------------
+
+-- | Empty 'Bundle'
+empty :: Monad m => Bundle m v a
+{-# INLINE_FUSED empty #-}
+empty = fromStream S.empty (Exact 0)
+
+-- | Singleton 'Bundle'
+singleton :: Monad m => a -> Bundle m v a
+{-# INLINE_FUSED singleton #-}
+singleton x = fromStream (S.singleton x) (Exact 1)
+
+-- | Replicate a value to a given length
+replicate :: Monad m => Int -> a -> Bundle m v a
+{-# INLINE_FUSED replicate #-}
+replicate n x = Bundle (S.replicate n x)
+                       (S.singleton $ Chunk len (\v -> M.basicSet v x))
+                       Nothing
+                       (Exact len)
+  where
+    len = delay_inline max n 0
+
+-- | Yield a 'Bundle' of values obtained by performing the monadic action the
+-- given number of times
+replicateM :: Monad m => Int -> m a -> Bundle m v a
+{-# INLINE_FUSED replicateM #-}
+-- NOTE: We delay inlining max here because GHC will create a join point for
+-- the call to newArray# otherwise which is not really nice.
+replicateM n p = fromStream (S.replicateM n p) (Exact (delay_inline max n 0))
+
+generate :: Monad m => Int -> (Int -> a) -> Bundle m v a
+{-# INLINE generate #-}
+generate n f = generateM n (return . f)
+
+-- | Generate a stream from its indices
+generateM :: Monad m => Int -> (Int -> m a) -> Bundle m v a
+{-# INLINE_FUSED generateM #-}
+generateM n f = fromStream (S.generateM n f) (Exact (delay_inline max n 0))
+
+-- | Prepend an element
+cons :: Monad m => a -> Bundle m v a -> Bundle m v a
+{-# INLINE cons #-}
+cons x s = singleton x ++ s
+
+-- | Append an element
+snoc :: Monad m => Bundle m v a -> a -> Bundle m v a
+{-# INLINE snoc #-}
+snoc s x = s ++ singleton x
+
+infixr 5 ++
+-- | Concatenate two 'Bundle's
+(++) :: Monad m => Bundle m v a -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED (++) #-}
+Bundle sa ta _ na ++ Bundle sb tb _ nb = Bundle (sa S.++ sb) (ta S.++ tb) Nothing (na + nb)
+
+-- Accessing elements
+-- ------------------
+
+-- | First element of the 'Bundle' or error if empty
+head :: Monad m => Bundle m v a -> m a
+{-# INLINE_FUSED head #-}
+head = S.head . sElems
+
+-- | Last element of the 'Bundle' or error if empty
+last :: Monad m => Bundle m v a -> m a
+{-# INLINE_FUSED last #-}
+last = S.last . sElems
+
+infixl 9 !!
+-- | Element at the given position
+(!!) :: Monad m => Bundle m v a -> Int -> m a
+{-# INLINE (!!) #-}
+b !! i = sElems b S.!! i
+
+infixl 9 !?
+-- | Element at the given position or 'Nothing' if out of bounds
+(!?) :: Monad m => Bundle m v a -> Int -> m (Maybe a)
+{-# INLINE (!?) #-}
+b !? i = sElems b S.!? i
+
+-- Substreams
+-- ----------
+
+-- | Extract a substream of the given length starting at the given position.
+slice :: Monad m => Int   -- ^ starting index
+                 -> Int   -- ^ length
+                 -> Bundle m v a
+                 -> Bundle m v a
+{-# INLINE slice #-}
+slice i n s = take n (drop i s)
+
+-- | All but the last element
+init :: Monad m => Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED init #-}
+init Bundle{sElems = s, sSize = sz} = fromStream (S.init s) (sz-1)
+
+-- | All but the first element
+tail :: Monad m => Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED tail #-}
+tail Bundle{sElems = s, sSize = sz} = fromStream (S.tail s) (sz-1)
+
+-- | The first @n@ elements
+take :: Monad m => Int -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED take #-}
+take n Bundle{sElems = s, sSize = sz} = fromStream (S.take n s) (smaller (Exact n) sz)
+
+-- | All but the first @n@ elements
+drop :: Monad m => Int -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED drop #-}
+drop n Bundle{sElems = s, sSize = sz} =
+  fromStream (S.drop n s) (clampedSubtract sz (Exact n))
+
+-- Mapping
+-- -------
+
+instance Monad m => Functor (Bundle m v) where
+  {-# INLINE fmap #-}
+  fmap = map
+
+-- | Map a function over a 'Bundle'
+map :: Monad m => (a -> b) -> Bundle m v a -> Bundle m v b
+{-# INLINE map #-}
+map f = mapM (return . f)
+
+-- | Map a monadic function over a 'Bundle'
+mapM :: Monad m => (a -> m b) -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED mapM #-}
+mapM f Bundle{sElems = s, sSize = n} = fromStream (S.mapM f s) n
+
+-- | Execute a monadic action for each element of the 'Bundle'
+mapM_ :: Monad m => (a -> m b) -> Bundle m v a -> m ()
+{-# INLINE_FUSED mapM_ #-}
+mapM_ m = S.mapM_ m . sElems
+
+-- | Transform a 'Bundle' to use a different monad
+trans :: (Monad m, Monad m') => (forall z. m z -> m' z)
+                             -> Bundle m v a -> Bundle m' v a
+{-# INLINE_FUSED trans #-}
+trans f Bundle{sElems = s, sChunks = cs, sVector = v, sSize = n}
+  = Bundle { sElems = S.trans f s, sChunks = S.trans f cs, sVector = v, sSize = n }
+
+unbox :: Monad m => Bundle m v (Box a) -> Bundle m v a
+{-# INLINE_FUSED unbox #-}
+unbox Bundle{sElems = s, sSize = n} = fromStream (S.unbox s) n
+
+-- Zipping
+-- -------
+
+-- | Pair each element in a 'Bundle' with its index
+indexed :: Monad m => Bundle m v a -> Bundle m v (Int,a)
+{-# INLINE_FUSED indexed #-}
+indexed Bundle{sElems = s, sSize = n} = fromStream (S.indexed s) n
+
+-- | Pair each element in a 'Bundle' with its index, starting from the right
+-- and counting down
+indexedR :: Monad m => Int -> Bundle m v a -> Bundle m v (Int,a)
+{-# INLINE_FUSED indexedR #-}
+indexedR m Bundle{sElems = s, sSize = n} = fromStream (S.indexedR m s) n
+
+-- | Zip two 'Bundle's with the given monadic function
+zipWithM :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
+{-# INLINE_FUSED zipWithM #-}
+zipWithM f Bundle{sElems = sa, sSize = na}
+           Bundle{sElems = sb, sSize = nb} = fromStream (S.zipWithM f sa sb) (smaller na nb)
+
+-- FIXME: This might expose an opportunity for inplace execution.
+{-# RULES
+
+"zipWithM xs xs [Vector.Bundle]" forall f xs.
+  zipWithM f xs xs = mapM (\x -> f x x) xs   #-}
+
+
+zipWithM_ :: Monad m => (a -> b -> m c) -> Bundle m v a -> Bundle m v b -> m ()
+{-# INLINE zipWithM_ #-}
+zipWithM_ f sa sb = S.zipWithM_ f (sElems sa) (sElems sb)
+
+zipWith3M :: Monad m => (a -> b -> c -> m d) -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+{-# INLINE_FUSED zipWith3M #-}
+zipWith3M f Bundle{sElems = sa, sSize = na}
+            Bundle{sElems = sb, sSize = nb}
+            Bundle{sElems = sc, sSize = nc}
+  = fromStream (S.zipWith3M f sa sb sc) (smaller na (smaller nb nc))
+
+zipWith4M :: Monad m => (a -> b -> c -> d -> m e)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e
+{-# INLINE zipWith4M #-}
+zipWith4M f sa sb sc sd
+  = zipWithM (\(a,b) (c,d) -> f a b c d) (zip sa sb) (zip sc sd)
+
+zipWith5M :: Monad m => (a -> b -> c -> d -> e -> m f)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e -> Bundle m v f
+{-# INLINE zipWith5M #-}
+zipWith5M f sa sb sc sd se
+  = zipWithM (\(a,b,c) (d,e) -> f a b c d e) (zip3 sa sb sc) (zip sd se)
+
+zipWith6M :: Monad m => (a -> b -> c -> d -> e -> f -> m g)
+                     -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                     -> Bundle m v e -> Bundle m v f -> Bundle m v g
+{-# INLINE zipWith6M #-}
+zipWith6M fn sa sb sc sd se sf
+  = zipWithM (\(a,b,c) (d,e,f) -> fn a b c d e f) (zip3 sa sb sc)
+                                                  (zip3 sd se sf)
+
+zipWith :: Monad m => (a -> b -> c) -> Bundle m v a -> Bundle m v b -> Bundle m v c
+{-# INLINE zipWith #-}
+zipWith f = zipWithM (\a b -> return (f a b))
+
+zipWith3 :: Monad m => (a -> b -> c -> d)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+{-# INLINE zipWith3 #-}
+zipWith3 f = zipWith3M (\a b c -> return (f a b c))
+
+zipWith4 :: Monad m => (a -> b -> c -> d -> e)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e
+{-# INLINE zipWith4 #-}
+zipWith4 f = zipWith4M (\a b c d -> return (f a b c d))
+
+zipWith5 :: Monad m => (a -> b -> c -> d -> e -> f)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e -> Bundle m v f
+{-# INLINE zipWith5 #-}
+zipWith5 f = zipWith5M (\a b c d e -> return (f a b c d e))
+
+zipWith6 :: Monad m => (a -> b -> c -> d -> e -> f -> g)
+                    -> Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                    -> Bundle m v e -> Bundle m v f -> Bundle m v g
+{-# INLINE zipWith6 #-}
+zipWith6 fn = zipWith6M (\a b c d e f -> return (fn a b c d e f))
+
+zip :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v (a,b)
+{-# INLINE zip #-}
+zip = zipWith (,)
+
+zip3 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v (a,b,c)
+{-# INLINE zip3 #-}
+zip3 = zipWith3 (,,)
+
+zip4 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v (a,b,c,d)
+{-# INLINE zip4 #-}
+zip4 = zipWith4 (,,,)
+
+zip5 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v e -> Bundle m v (a,b,c,d,e)
+{-# INLINE zip5 #-}
+zip5 = zipWith5 (,,,,)
+
+zip6 :: Monad m => Bundle m v a -> Bundle m v b -> Bundle m v c -> Bundle m v d
+                -> Bundle m v e -> Bundle m v f -> Bundle m v (a,b,c,d,e,f)
+{-# INLINE zip6 #-}
+zip6 = zipWith6 (,,,,,)
+
+-- Comparisons
+-- -----------
+
+-- | Check if two 'Bundle's are equal
+eqBy :: (Monad m) => (a -> b -> Bool) -> Bundle m v a -> Bundle m v b -> m Bool
+{-# INLINE_FUSED eqBy #-}
+eqBy eq x y = S.eqBy eq (sElems x) (sElems y)
+
+-- | Lexicographically compare two 'Bundle's
+cmpBy :: (Monad m) => (a -> b -> Ordering) -> Bundle m v a -> Bundle m v b -> m Ordering
+{-# INLINE_FUSED cmpBy #-}
+cmpBy cmp x y = S.cmpBy cmp (sElems x) (sElems y)
+
+-- Filtering
+-- ---------
+
+-- | Drop elements which do not satisfy the predicate
+filter :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE filter #-}
+filter f = filterM (return . f)
+
+-- | Drop elements which do not satisfy the monadic predicate
+filterM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED filterM #-}
+filterM f Bundle{sElems = s, sSize = n} = fromStream (S.filterM f s) (toMax n)
+
+-- | Longest prefix of elements that satisfy the predicate
+takeWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE takeWhile #-}
+takeWhile f = takeWhileM (return . f)
+
+-- | Longest prefix of elements that satisfy the monadic predicate
+takeWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED takeWhileM #-}
+takeWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.takeWhileM f s) (toMax n)
+
+-- | Drop the longest prefix of elements that satisfy the predicate
+dropWhile :: Monad m => (a -> Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE dropWhile #-}
+dropWhile f = dropWhileM (return . f)
+
+-- | Drop the longest prefix of elements that satisfy the monadic predicate
+dropWhileM :: Monad m => (a -> m Bool) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED dropWhileM #-}
+dropWhileM f Bundle{sElems = s, sSize = n} = fromStream (S.dropWhileM f s) (toMax n)
+
+-- Searching
+-- ---------
+
+infix 4 `elem`
+-- | Check whether the 'Bundle' contains an element
+elem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
+{-# INLINE_FUSED elem #-}
+elem x = S.elem x . sElems
+
+infix 4 `notElem`
+-- | Inverse of `elem`
+notElem :: (Monad m, Eq a) => a -> Bundle m v a -> m Bool
+{-# INLINE notElem #-}
+notElem x = S.notElem x . sElems
+
+-- | Yield 'Just' the first element that satisfies the predicate or 'Nothing'
+-- if no such element exists.
+find :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe a)
+{-# INLINE find #-}
+find f = findM (return . f)
+
+-- | Yield 'Just' the first element that satisfies the monadic predicate or
+-- 'Nothing' if no such element exists.
+findM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe a)
+{-# INLINE_FUSED findM #-}
+findM f = S.findM f . sElems
+
+-- | Yield 'Just' the index of the first element that satisfies the predicate
+-- or 'Nothing' if no such element exists.
+findIndex :: Monad m => (a -> Bool) -> Bundle m v a -> m (Maybe Int)
+{-# INLINE_FUSED findIndex #-}
+findIndex f = findIndexM (return . f)
+
+-- | Yield 'Just' the index of the first element that satisfies the monadic
+-- predicate or 'Nothing' if no such element exists.
+findIndexM :: Monad m => (a -> m Bool) -> Bundle m v a -> m (Maybe Int)
+{-# INLINE_FUSED findIndexM #-}
+findIndexM f = S.findIndexM f . sElems
+
+-- Folding
+-- -------
+
+-- | Left fold
+foldl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
+{-# INLINE foldl #-}
+foldl f = foldlM (\a b -> return (f a b))
+
+-- | Left fold with a monadic operator
+foldlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE_FUSED foldlM #-}
+foldlM m z = S.foldlM m z . sElems
+
+-- | Same as 'foldlM'
+foldM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE foldM #-}
+foldM = foldlM
+
+-- | Left fold over a non-empty 'Bundle'
+foldl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldl1 #-}
+foldl1 f = foldl1M (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Bundle' with a monadic operator
+foldl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldl1M #-}
+foldl1M f = S.foldl1M f . sElems
+
+-- | Same as 'foldl1M'
+fold1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE fold1M #-}
+fold1M = foldl1M
+
+-- | Left fold with a strict accumulator
+foldl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> m a
+{-# INLINE foldl' #-}
+foldl' f = foldlM' (\a b -> return (f a b))
+
+-- | Left fold with a strict accumulator and a monadic operator
+foldlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE_FUSED foldlM' #-}
+foldlM' m z = S.foldlM' m z . sElems
+
+-- | Same as 'foldlM''
+foldM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> m a
+{-# INLINE foldM' #-}
+foldM' = foldlM'
+
+-- | Left fold over a non-empty 'Bundle' with a strict accumulator
+foldl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldl1' #-}
+foldl1' f = foldl1M' (\a b -> return (f a b))
+
+-- | Left fold over a non-empty 'Bundle' with a strict accumulator and a
+-- monadic operator
+foldl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldl1M' #-}
+foldl1M' f = S.foldl1M' f . sElems
+
+-- | Same as 'foldl1M''
+fold1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE fold1M' #-}
+fold1M' = foldl1M'
+
+-- | Right fold
+foldr :: Monad m => (a -> b -> b) -> b -> Bundle m v a -> m b
+{-# INLINE foldr #-}
+foldr f = foldrM (\a b -> return (f a b))
+
+-- | Right fold with a monadic operator
+foldrM :: Monad m => (a -> b -> m b) -> b -> Bundle m v a -> m b
+{-# INLINE_FUSED foldrM #-}
+foldrM f z = S.foldrM f z . sElems
+
+-- | Right fold over a non-empty stream
+foldr1 :: Monad m => (a -> a -> a) -> Bundle m v a -> m a
+{-# INLINE foldr1 #-}
+foldr1 f = foldr1M (\a b -> return (f a b))
+
+-- | Right fold over a non-empty stream with a monadic operator
+foldr1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> m a
+{-# INLINE_FUSED foldr1M #-}
+foldr1M f = S.foldr1M f . sElems
+
+-- Specialised folds
+-- -----------------
+
+and :: Monad m => Bundle m v Bool -> m Bool
+{-# INLINE_FUSED and #-}
+and = S.and . sElems
+
+or :: Monad m => Bundle m v Bool -> m Bool
+{-# INLINE_FUSED or #-}
+or = S.or . sElems
+
+concatMap :: Monad m => (a -> Bundle m v b) -> Bundle m v a -> Bundle m v b
+{-# INLINE concatMap #-}
+concatMap f = concatMapM (return . f)
+
+concatMapM :: Monad m => (a -> m (Bundle m v b)) -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED concatMapM #-}
+concatMapM f Bundle{sElems = s} = fromStream (S.concatMapM (liftM sElems . f) s) Unknown
+
+-- | Create a 'Bundle' of values from a 'Bundle' of streamable things
+flatten :: Monad m => (a -> m s) -> (s -> m (Step s b)) -> Size
+                   -> Bundle m v a -> Bundle m v b
+{-# INLINE_FUSED flatten #-}
+flatten mk istep sz Bundle{sElems = s} = fromStream (S.flatten mk istep s) sz
+
+-- Unfolding
+-- ---------
+
+-- | Unfold
+unfoldr :: Monad m => (s -> Maybe (a, s)) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldr #-}
+unfoldr f = unfoldrM (return . f)
+
+-- | Unfold with a monadic function
+unfoldrM :: Monad m => (s -> m (Maybe (a, s))) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrM #-}
+unfoldrM f s = fromStream (S.unfoldrM f s) Unknown
+
+-- | Unfold at most @n@ elements
+unfoldrN :: Monad m => Int -> (s -> Maybe (a, s)) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrN #-}
+unfoldrN n f = unfoldrNM n (return . f)
+
+-- | Unfold at most @n@ elements with a monadic functions
+unfoldrNM :: Monad m => Int -> (s -> m (Maybe (a, s))) -> s -> Bundle m u a
+{-# INLINE_FUSED unfoldrNM #-}
+unfoldrNM n f s = fromStream (S.unfoldrNM n f s) (Max (delay_inline max n 0))
+
+-- | Apply monadic function n times to value. Zeroth element is original value.
+iterateNM :: Monad m => Int -> (a -> m a) -> a -> Bundle m u a
+{-# INLINE_FUSED iterateNM #-}
+iterateNM n f x0 = fromStream (S.iterateNM n f x0) (Exact (delay_inline max n 0))
+
+-- | Apply function n times to value. Zeroth element is original value.
+iterateN :: Monad m => Int -> (a -> a) -> a -> Bundle m u a
+{-# INLINE_FUSED iterateN #-}
+iterateN n f x0 = iterateNM n (return . f) x0
+
+-- Scans
+-- -----
+
+-- | Prefix scan
+prescanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE prescanl #-}
+prescanl f = prescanlM (\a b -> return (f a b))
+
+-- | Prefix scan with a monadic operator
+prescanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED prescanlM #-}
+prescanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM f z s) sz
+
+-- | Prefix scan with strict accumulator
+prescanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE prescanl' #-}
+prescanl' f = prescanlM' (\a b -> return (f a b))
+
+-- | Prefix scan with strict accumulator and a monadic operator
+prescanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED prescanlM' #-}
+prescanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.prescanlM' f z s) sz
+
+-- | Suffix scan
+postscanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE postscanl #-}
+postscanl f = postscanlM (\a b -> return (f a b))
+
+-- | Suffix scan with a monadic operator
+postscanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED postscanlM #-}
+postscanlM f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM f z s) sz
+
+-- | Suffix scan with strict accumulator
+postscanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE postscanl' #-}
+postscanl' f = postscanlM' (\a b -> return (f a b))
+
+-- | Suffix scan with strict acccumulator and a monadic operator
+postscanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE_FUSED postscanlM' #-}
+postscanlM' f z Bundle{sElems = s, sSize = sz} = fromStream (S.postscanlM' f z s) sz
+
+-- | Haskell-style scan
+scanl :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanl #-}
+scanl f = scanlM (\a b -> return (f a b))
+
+-- | Haskell-style scan with a monadic operator
+scanlM :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanlM #-}
+scanlM f z s = z `cons` postscanlM f z s
+
+-- | Haskell-style scan with strict accumulator
+scanl' :: Monad m => (a -> b -> a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanl' #-}
+scanl' f = scanlM' (\a b -> return (f a b))
+
+-- | Haskell-style scan with strict accumulator and a monadic operator
+scanlM' :: Monad m => (a -> b -> m a) -> a -> Bundle m v b -> Bundle m v a
+{-# INLINE scanlM' #-}
+scanlM' f z s = z `seq` (z `cons` postscanlM f z s)
+
+-- | Scan over a non-empty 'Bundle'
+scanl1 :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
+{-# INLINE scanl1 #-}
+scanl1 f = scanl1M (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Bundle' with a monadic operator
+scanl1M :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED scanl1M #-}
+scanl1M f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M f s) sz
+
+-- | Scan over a non-empty 'Bundle' with a strict accumulator
+scanl1' :: Monad m => (a -> a -> a) -> Bundle m v a -> Bundle m v a
+{-# INLINE scanl1' #-}
+scanl1' f = scanl1M' (\x y -> return (f x y))
+
+-- | Scan over a non-empty 'Bundle' with a strict accumulator and a monadic
+-- operator
+scanl1M' :: Monad m => (a -> a -> m a) -> Bundle m v a -> Bundle m v a
+{-# INLINE_FUSED scanl1M' #-}
+scanl1M' f Bundle{sElems = s, sSize = sz} = fromStream (S.scanl1M' f s) sz
+
+-- Enumerations
+-- ------------
+
+-- The Enum class is broken for this, there just doesn't seem to be a
+-- way to implement this generically. We have to specialise for as many types
+-- as we can but this doesn't help in polymorphic loops.
+
+-- | Yield a 'Bundle' of the given length containing the values @x@, @x+y@,
+-- @x+y+y@ etc.
+enumFromStepN :: (Num a, Monad m) => a -> a -> Int -> Bundle m v a
+{-# INLINE_FUSED enumFromStepN #-}
+enumFromStepN x y n = fromStream (S.enumFromStepN x y n) (Exact (delay_inline max n 0))
+
+-- | Enumerate values
+--
+-- /WARNING:/ This operation can be very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromTo :: (Enum a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo #-}
+enumFromTo x y = fromList [x .. y]
+
+-- NOTE: We use (x+1) instead of (succ x) below because the latter checks for
+-- overflow which can't happen here.
+
+-- FIXME: add "too large" test for Int
+enumFromTo_small :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_small #-}
+enumFromTo_small x y = x `seq` y `seq` fromStream (Stream step x) (Exact n)
+  where
+    n = delay_inline max (fromIntegral y - fromIntegral x + 1) 0
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int8> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int8 -> Int8 -> Bundle m v Int8
+
+"enumFromTo<Int16> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int16 -> Int16 -> Bundle m v Int16
+
+"enumFromTo<Word8> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word8 -> Word8 -> Bundle m v Word8
+
+"enumFromTo<Word16> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word16 -> Word16 -> Bundle m v Word16   #-}
+
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+{-# RULES
+
+"enumFromTo<Int32> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Int32 -> Int32 -> Bundle m v Int32
+
+"enumFromTo<Word32> [Bundle]"
+  enumFromTo = enumFromTo_small :: Monad m => Word32 -> Word32 -> Bundle m v Word32   #-}
+
+#endif
+
+-- NOTE: We could implement a generic "too large" test:
+--
+-- len x y | x > y = 0
+--         | n > 0 && n <= fromIntegral (maxBound :: Int) = fromIntegral n
+--         | otherwise = error
+--   where
+--     n = y-x+1
+--
+-- Alas, GHC won't eliminate unnecessary comparisons (such as n >= 0 for
+-- unsigned types). See http://hackage.haskell.org/trac/ghc/ticket/3744
+--
+
+enumFromTo_int :: forall m v. Monad m => Int -> Int -> Bundle m v Int
+{-# INLINE_FUSED enumFromTo_int #-}
+enumFromTo_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len :: Int -> Int -> Int
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0)
+                        $ n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+enumFromTo_intlike :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_intlike #-}
+enumFromTo_intlike x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0)
+                        $ fromIntegral n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Int> [Bundle]"
+  enumFromTo = enumFromTo_int :: Monad m => Int -> Int -> Bundle m v Int
+
+#if WORD_SIZE_IN_BITS > 32
+
+"enumFromTo<Int64> [Bundle]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int64 -> Int64 -> Bundle m v Int64    #-}
+
+#else
+
+"enumFromTo<Int32> [Bundle]"
+  enumFromTo = enumFromTo_intlike :: Monad m => Int32 -> Int32 -> Bundle m v Int32    #-}
+
+#endif
+
+
+
+enumFromTo_big_word :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_big_word #-}
+enumFromTo_big_word x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n < fromIntegral (maxBound :: Int))
+                        $ fromIntegral (n+1)
+      where
+        n = v-u
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Word> [Bundle]"
+  enumFromTo = enumFromTo_big_word :: Monad m => Word -> Word -> Bundle m v Word
+
+"enumFromTo<Word64> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word64 -> Word64 -> Bundle m v Word64
+
+#if WORD_SIZE_IN_BITS == 32
+
+"enumFromTo<Word32> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Word32 -> Word32 -> Bundle m v Word32
+
+#endif
+
+"enumFromTo<Integer> [Bundle]"
+  enumFromTo = enumFromTo_big_word
+                        :: Monad m => Integer -> Integer -> Bundle m v Integer   #-}
+
+
+#if WORD_SIZE_IN_BITS > 32
+
+-- FIXME: the "too large" test is totally wrong
+enumFromTo_big_int :: (Integral a, Monad m) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_big_int #-}
+enumFromTo_big_int x y = x `seq` y `seq` fromStream (Stream step x) (Exact (len x y))
+  where
+    {-# INLINE [0] len #-}
+    len u v | u > v     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (n > 0 && n <= fromIntegral (maxBound :: Int))
+                        $ fromIntegral n
+      where
+        n = v-u+1
+
+    {-# INLINE_INNER step #-}
+    step z | z <= y    = return $ Yield z (z+1)
+           | otherwise = return $ Done
+
+
+{-# RULES
+
+"enumFromTo<Int64> [Bundle]"
+  enumFromTo = enumFromTo_big_int :: Monad m => Int64 -> Int64 -> Bundle m v Int64   #-}
+
+
+
+#endif
+
+enumFromTo_char :: Monad m => Char -> Char -> Bundle m v Char
+{-# INLINE_FUSED enumFromTo_char #-}
+enumFromTo_char x y = x `seq` y `seq` fromStream (Stream step xn) (Exact n)
+  where
+    xn = ord x
+    yn = ord y
+
+    n = delay_inline max 0 (yn - xn + 1)
+
+    {-# INLINE_INNER step #-}
+    step zn | zn <= yn  = return $ Yield (unsafeChr zn) (zn+1)
+            | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Char> [Bundle]"
+  enumFromTo = enumFromTo_char   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- Specialise enumFromTo for Float and Double.
+-- Also, try to do something about pairs?
+
+enumFromTo_double :: (Monad m, Ord a, RealFrac a) => a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromTo_double #-}
+enumFromTo_double n m = n `seq` m `seq` fromStream (Stream step n) (Max (len n lim))
+  where
+    lim = m + 1/2 -- important to float out
+
+    {-# INLINE [0] len #-}
+    len x y | x > y     = 0
+            | otherwise = BOUNDS_CHECK(check) "enumFromTo" "vector too large"
+                          (l > 0)
+                        $ fromIntegral l
+      where
+        l :: Integer
+        l = truncate (y-x)+2
+
+    {-# INLINE_INNER step #-}
+    step x | x <= lim  = return $ Yield x (x+1)
+           | otherwise = return $ Done
+
+{-# RULES
+
+"enumFromTo<Double> [Bundle]"
+  enumFromTo = enumFromTo_double :: Monad m => Double -> Double -> Bundle m v Double
+
+"enumFromTo<Float> [Bundle]"
+  enumFromTo = enumFromTo_double :: Monad m => Float -> Float -> Bundle m v Float   #-}
+
+
+
+------------------------------------------------------------------------
+
+-- | Enumerate values with a given step.
+--
+-- /WARNING:/ This operation is very inefficient. If at all possible, use
+-- 'enumFromStepN' instead.
+enumFromThenTo :: (Enum a, Monad m) => a -> a -> a -> Bundle m v a
+{-# INLINE_FUSED enumFromThenTo #-}
+enumFromThenTo x y z = fromList [x, y .. z]
+
+-- FIXME: Specialise enumFromThenTo.
+
+-- Conversions
+-- -----------
+
+-- | Convert a 'Bundle' to a list
+toList :: Monad m => Bundle m v a -> m [a]
+{-# INLINE toList #-}
+toList = foldr (:) []
+
+-- | Convert a list to a 'Bundle'
+fromList :: Monad m => [a] -> Bundle m v a
+{-# INLINE fromList #-}
+fromList xs = unsafeFromList Unknown xs
+
+-- | Convert the first @n@ elements of a list to a 'Bundle'
+fromListN :: Monad m => Int -> [a] -> Bundle m v a
+{-# INLINE_FUSED fromListN #-}
+fromListN n xs = fromStream (S.fromListN n xs) (Max (delay_inline max n 0))
+
+-- | Convert a list to a 'Bundle' with the given 'Size' hint.
+unsafeFromList :: Monad m => Size -> [a] -> Bundle m v a
+{-# INLINE_FUSED unsafeFromList #-}
+unsafeFromList sz xs = fromStream (S.fromList xs) sz
+
+fromVector :: (Monad m, Vector v a) => v a -> Bundle m v a
+{-# INLINE_FUSED fromVector #-}
+fromVector v = v `seq` n `seq` Bundle (Stream step 0)
+                                      (Stream vstep True)
+                                      (Just v)
+                                      (Exact n)
+  where
+    n = basicLength v
+
+    {-# INLINE step #-}
+    step i | i >= n = return Done
+           | otherwise = case basicUnsafeIndexM v i of
+                           Box x -> return $ Yield x (i+1)
+
+
+    {-# INLINE vstep #-}
+    vstep True  = return (Yield (Chunk (basicLength v) (\mv -> basicUnsafeCopy mv v)) False)
+    vstep False = return Done
+
+fromVectors :: forall m v a. (Monad m, Vector v a) => [v a] -> Bundle m v a
+{-# INLINE_FUSED fromVectors #-}
+fromVectors us = Bundle (Stream pstep (Left us))
+                        (Stream vstep us)
+                        Nothing
+                        (Exact n)
+  where
+    n = List.foldl' (\k v -> k + basicLength v) 0 us
+
+    pstep (Left []) = return Done
+    pstep (Left (v:vs)) = basicLength v `seq` return (Skip (Right (v,0,vs)))
+
+    pstep (Right (v,i,vs))
+      | i >= basicLength v = return $ Skip (Left vs)
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return $ Yield x (Right (v,i+1,vs))
+
+    -- FIXME: work around bug in GHC 7.6.1
+    vstep :: [v a] -> m (Step [v a] (Chunk v a))
+    vstep [] = return Done
+    vstep (v:vs) = return $ Yield (Chunk (basicLength v)
+                                         (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                       (M.basicLength mv == basicLength v)
+                                                 $ basicUnsafeCopy mv v)) vs
+
+
+concatVectors :: (Monad m, Vector v a) => Bundle m u (v a) -> Bundle m v a
+{-# INLINE_FUSED concatVectors #-}
+concatVectors Bundle{sElems = Stream step t}
+  = Bundle (Stream pstep (Left t))
+           (Stream vstep t)
+           Nothing
+           Unknown
+  where
+    pstep (Left s) = do
+      r <- step s
+      case r of
+        Yield v s' -> basicLength v `seq` return (Skip (Right (v,0,s')))
+        Skip    s' -> return (Skip (Left s'))
+        Done       -> return Done
+
+    pstep (Right (v,i,s))
+      | i >= basicLength v = return (Skip (Left s))
+      | otherwise          = case basicUnsafeIndexM v i of
+                               Box x -> return (Yield x (Right (v,i+1,s)))
+
+
+    vstep s = do
+      r <- step s
+      case r of
+        Yield v s' -> return (Yield (Chunk (basicLength v)
+                                           (\mv -> INTERNAL_CHECK(check) "concatVectors" "length mismatch"
+                                                                          (M.basicLength mv == basicLength v)
+                                                   $ basicUnsafeCopy mv v)) s')
+        Skip    s' -> return (Skip s')
+        Done       -> return Done
+
+reVector :: Monad m => Bundle m u a -> Bundle m v a
+{-# INLINE_FUSED reVector #-}
+reVector Bundle{sElems = s, sSize = n} = fromStream s n
+
+{-# RULES
+
+"reVector [Vector]"
+  reVector = id
+
+"reVector/reVector [Vector]" forall s.
+  reVector (reVector s) = s   #-}
+
+
+