about summary refs log tree commit diff
path: root/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs
diff options
context:
space:
mode:
Diffstat (limited to 'third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs')
-rw-r--r--third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs316
1 files changed, 0 insertions, 316 deletions
diff --git a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs b/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs
deleted file mode 100644
index f39862c020..0000000000
--- a/third_party/bazel/rules_haskell/examples/transformers/Control/Monad/Trans/Writer/Strict.hs
+++ /dev/null
@@ -1,316 +0,0 @@
-{-# LANGUAGE CPP #-}
-#if __GLASGOW_HASKELL__ >= 702
-{-# LANGUAGE Safe #-}
-#endif
-#if __GLASGOW_HASKELL__ >= 710
-{-# LANGUAGE AutoDeriveTypeable #-}
-#endif
------------------------------------------------------------------------------
--- |
--- Module      :  Control.Monad.Trans.Writer.Strict
--- Copyright   :  (c) Andy Gill 2001,
---                (c) Oregon Graduate Institute of Science and Technology, 2001
--- License     :  BSD-style (see the file LICENSE)
---
--- Maintainer  :  R.Paterson@city.ac.uk
--- Stability   :  experimental
--- Portability :  portable
---
--- The strict 'WriterT' monad transformer, which adds collection of
--- outputs (such as a count or string output) to a given monad.
---
--- This monad transformer provides only limited access to the output
--- during the computation.  For more general access, use
--- "Control.Monad.Trans.State" instead.
---
--- This version builds its output strictly; for a lazy version with
--- the same interface, see "Control.Monad.Trans.Writer.Lazy".
--- Although the output is built strictly, it is not possible to
--- achieve constant space behaviour with this transformer: for that,
--- use "Control.Monad.Trans.Writer.CPS" instead.
------------------------------------------------------------------------------
-
-module Control.Monad.Trans.Writer.Strict (
-    -- * The Writer monad
-    Writer,
-    writer,
-    runWriter,
-    execWriter,
-    mapWriter,
-    -- * The WriterT monad transformer
-    WriterT(..),
-    execWriterT,
-    mapWriterT,
-    -- * Writer operations
-    tell,
-    listen,
-    listens,
-    pass,
-    censor,
-    -- * Lifting other operations
-    liftCallCC,
-    liftCatch,
-  ) where
-
-import Control.Monad.IO.Class
-import Control.Monad.Trans.Class
-import Data.Functor.Classes
-#if MIN_VERSION_base(4,12,0)
-import Data.Functor.Contravariant
-#endif
-import Data.Functor.Identity
-
-import Control.Applicative
-import Control.Monad
-#if MIN_VERSION_base(4,9,0)
-import qualified Control.Monad.Fail as Fail
-#endif
-import Control.Monad.Fix
-import Control.Monad.Signatures
-#if MIN_VERSION_base(4,4,0)
-import Control.Monad.Zip (MonadZip(mzipWith))
-#endif
-import Data.Foldable
-import Data.Monoid
-import Data.Traversable (Traversable(traverse))
-import Prelude hiding (null, length)
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by the type @w@ of output to accumulate.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-type Writer w = WriterT w Identity
-
--- | Construct a writer computation from a (result, output) pair.
--- (The inverse of 'runWriter'.)
-writer :: (Monad m) => (a, w) -> WriterT w m a
-writer = WriterT . return
-{-# INLINE writer #-}
-
--- | Unwrap a writer computation as a (result, output) pair.
--- (The inverse of 'writer'.)
-runWriter :: Writer w a -> (a, w)
-runWriter = runIdentity . runWriterT
-{-# INLINE runWriter #-}
-
--- | Extract the output from a writer computation.
---
--- * @'execWriter' m = 'snd' ('runWriter' m)@
-execWriter :: Writer w a -> w
-execWriter m = snd (runWriter m)
-{-# INLINE execWriter #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriter' ('mapWriter' f m) = f ('runWriter' m)@
-mapWriter :: ((a, w) -> (b, w')) -> Writer w a -> Writer w' b
-mapWriter f = mapWriterT (Identity . f . runIdentity)
-{-# INLINE mapWriter #-}
-
--- ---------------------------------------------------------------------------
--- | A writer monad parameterized by:
---
---   * @w@ - the output to accumulate.
---
---   * @m@ - The inner monad.
---
--- The 'return' function produces the output 'mempty', while @>>=@
--- combines the outputs of the subcomputations using 'mappend'.
-newtype WriterT w m a = WriterT { runWriterT :: m (a, w) }
-
-instance (Eq w, Eq1 m) => Eq1 (WriterT w m) where
-    liftEq eq (WriterT m1) (WriterT m2) = liftEq (liftEq2 eq (==)) m1 m2
-    {-# INLINE liftEq #-}
-
-instance (Ord w, Ord1 m) => Ord1 (WriterT w m) where
-    liftCompare comp (WriterT m1) (WriterT m2) =
-        liftCompare (liftCompare2 comp compare) m1 m2
-    {-# INLINE liftCompare #-}
-
-instance (Read w, Read1 m) => Read1 (WriterT w m) where
-    liftReadsPrec rp rl = readsData $
-        readsUnaryWith (liftReadsPrec rp' rl') "WriterT" WriterT
-      where
-        rp' = liftReadsPrec2 rp rl readsPrec readList
-        rl' = liftReadList2 rp rl readsPrec readList
-
-instance (Show w, Show1 m) => Show1 (WriterT w m) where
-    liftShowsPrec sp sl d (WriterT m) =
-        showsUnaryWith (liftShowsPrec sp' sl') "WriterT" d m
-      where
-        sp' = liftShowsPrec2 sp sl showsPrec showList
-        sl' = liftShowList2 sp sl showsPrec showList
-
-instance (Eq w, Eq1 m, Eq a) => Eq (WriterT w m a) where (==) = eq1
-instance (Ord w, Ord1 m, Ord a) => Ord (WriterT w m a) where compare = compare1
-instance (Read w, Read1 m, Read a) => Read (WriterT w m a) where
-    readsPrec = readsPrec1
-instance (Show w, Show1 m, Show a) => Show (WriterT w m a) where
-    showsPrec = showsPrec1
-
--- | Extract the output from a writer computation.
---
--- * @'execWriterT' m = 'liftM' 'snd' ('runWriterT' m)@
-execWriterT :: (Monad m) => WriterT w m a -> m w
-execWriterT m = do
-    (_, w) <- runWriterT m
-    return w
-{-# INLINE execWriterT #-}
-
--- | Map both the return value and output of a computation using
--- the given function.
---
--- * @'runWriterT' ('mapWriterT' f m) = f ('runWriterT' m)@
-mapWriterT :: (m (a, w) -> n (b, w')) -> WriterT w m a -> WriterT w' n b
-mapWriterT f m = WriterT $ f (runWriterT m)
-{-# INLINE mapWriterT #-}
-
-instance (Functor m) => Functor (WriterT w m) where
-    fmap f = mapWriterT $ fmap $ \ (a, w) -> (f a, w)
-    {-# INLINE fmap #-}
-
-instance (Foldable f) => Foldable (WriterT w f) where
-    foldMap f = foldMap (f . fst) . runWriterT
-    {-# INLINE foldMap #-}
-#if MIN_VERSION_base(4,8,0)
-    null (WriterT t) = null t
-    length (WriterT t) = length t
-#endif
-
-instance (Traversable f) => Traversable (WriterT w f) where
-    traverse f = fmap WriterT . traverse f' . runWriterT where
-       f' (a, b) = fmap (\ c -> (c, b)) (f a)
-    {-# INLINE traverse #-}
-
-instance (Monoid w, Applicative m) => Applicative (WriterT w m) where
-    pure a  = WriterT $ pure (a, mempty)
-    {-# INLINE pure #-}
-    f <*> v = WriterT $ liftA2 k (runWriterT f) (runWriterT v)
-      where k (a, w) (b, w') = (a b, w `mappend` w')
-    {-# INLINE (<*>) #-}
-
-instance (Monoid w, Alternative m) => Alternative (WriterT w m) where
-    empty   = WriterT empty
-    {-# INLINE empty #-}
-    m <|> n = WriterT $ runWriterT m <|> runWriterT n
-    {-# INLINE (<|>) #-}
-
-instance (Monoid w, Monad m) => Monad (WriterT w m) where
-#if !(MIN_VERSION_base(4,8,0))
-    return a = writer (a, mempty)
-    {-# INLINE return #-}
-#endif
-    m >>= k  = WriterT $ do
-        (a, w)  <- runWriterT m
-        (b, w') <- runWriterT (k a)
-        return (b, w `mappend` w')
-    {-# INLINE (>>=) #-}
-#if !(MIN_VERSION_base(4,13,0))
-    fail msg = WriterT $ fail msg
-    {-# INLINE fail #-}
-#endif
-
-#if MIN_VERSION_base(4,9,0)
-instance (Monoid w, Fail.MonadFail m) => Fail.MonadFail (WriterT w m) where
-    fail msg = WriterT $ Fail.fail msg
-    {-# INLINE fail #-}
-#endif
-
-instance (Monoid w, MonadPlus m) => MonadPlus (WriterT w m) where
-    mzero       = WriterT mzero
-    {-# INLINE mzero #-}
-    m `mplus` n = WriterT $ runWriterT m `mplus` runWriterT n
-    {-# INLINE mplus #-}
-
-instance (Monoid w, MonadFix m) => MonadFix (WriterT w m) where
-    mfix m = WriterT $ mfix $ \ ~(a, _) -> runWriterT (m a)
-    {-# INLINE mfix #-}
-
-instance (Monoid w) => MonadTrans (WriterT w) where
-    lift m = WriterT $ do
-        a <- m
-        return (a, mempty)
-    {-# INLINE lift #-}
-
-instance (Monoid w, MonadIO m) => MonadIO (WriterT w m) where
-    liftIO = lift . liftIO
-    {-# INLINE liftIO #-}
-
-#if MIN_VERSION_base(4,4,0)
-instance (Monoid w, MonadZip m) => MonadZip (WriterT w m) where
-    mzipWith f (WriterT x) (WriterT y) = WriterT $
-        mzipWith (\ (a, w) (b, w') -> (f a b, w `mappend` w')) x y
-    {-# INLINE mzipWith #-}
-#endif
-
-#if MIN_VERSION_base(4,12,0)
-instance Contravariant m => Contravariant (WriterT w m) where
-    contramap f = mapWriterT $ contramap $ \ (a, w) -> (f a, w)
-    {-# INLINE contramap #-}
-#endif
-
--- | @'tell' w@ is an action that produces the output @w@.
-tell :: (Monad m) => w -> WriterT w m ()
-tell w = writer ((), w)
-{-# INLINE tell #-}
-
--- | @'listen' m@ is an action that executes the action @m@ and adds its
--- output to the value of the computation.
---
--- * @'runWriterT' ('listen' m) = 'liftM' (\\ (a, w) -> ((a, w), w)) ('runWriterT' m)@
-listen :: (Monad m) => WriterT w m a -> WriterT w m (a, w)
-listen m = WriterT $ do
-    (a, w) <- runWriterT m
-    return ((a, w), w)
-{-# INLINE listen #-}
-
--- | @'listens' f m@ is an action that executes the action @m@ and adds
--- the result of applying @f@ to the output to the value of the computation.
---
--- * @'listens' f m = 'liftM' (id *** f) ('listen' m)@
---
--- * @'runWriterT' ('listens' f m) = 'liftM' (\\ (a, w) -> ((a, f w), w)) ('runWriterT' m)@
-listens :: (Monad m) => (w -> b) -> WriterT w m a -> WriterT w m (a, b)
-listens f m = WriterT $ do
-    (a, w) <- runWriterT m
-    return ((a, f w), w)
-{-# INLINE listens #-}
-
--- | @'pass' m@ is an action that executes the action @m@, which returns
--- a value and a function, and returns the value, applying the function
--- to the output.
---
--- * @'runWriterT' ('pass' m) = 'liftM' (\\ ((a, f), w) -> (a, f w)) ('runWriterT' m)@
-pass :: (Monad m) => WriterT w m (a, w -> w) -> WriterT w m a
-pass m = WriterT $ do
-    ((a, f), w) <- runWriterT m
-    return (a, f w)
-{-# INLINE pass #-}
-
--- | @'censor' f m@ is an action that executes the action @m@ and
--- applies the function @f@ to its output, leaving the return value
--- unchanged.
---
--- * @'censor' f m = 'pass' ('liftM' (\\ x -> (x,f)) m)@
---
--- * @'runWriterT' ('censor' f m) = 'liftM' (\\ (a, w) -> (a, f w)) ('runWriterT' m)@
-censor :: (Monad m) => (w -> w) -> WriterT w m a -> WriterT w m a
-censor f m = WriterT $ do
-    (a, w) <- runWriterT m
-    return (a, f w)
-{-# INLINE censor #-}
-
--- | Lift a @callCC@ operation to the new monad.
-liftCallCC :: (Monoid w) => CallCC m (a,w) (b,w) -> CallCC (WriterT w m) a b
-liftCallCC callCC f = WriterT $
-    callCC $ \ c ->
-    runWriterT (f (\ a -> WriterT $ c (a, mempty)))
-{-# INLINE liftCallCC #-}
-
--- | Lift a @catchE@ operation to the new monad.
-liftCatch :: Catch e m (a,w) -> Catch e (WriterT w m) a
-liftCatch catchE m h =
-    WriterT $ runWriterT m `catchE` \ e -> runWriterT (h e)
-{-# INLINE liftCatch #-}