about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/container/internal/container_memory.h
diff options
context:
space:
mode:
authorVincent Ambo <tazjin@google.com>2020-05-20T01·32+0100
committerVincent Ambo <tazjin@google.com>2020-05-20T01·32+0100
commitfc8dc48020ac5b52731d0828a96ea4d2526c77ba (patch)
tree353204eea3268095a9ad3f5345720f32c2615c69 /third_party/abseil_cpp/absl/container/internal/container_memory.h
parentffb2ae54beb5796cd408fbe15d2d2da09ff37adf (diff)
parent768eb2ca2857342673fcd462792ce04b8bac3fa3 (diff)
Add 'third_party/abseil_cpp/' from commit '768eb2ca2857342673fcd462792ce04b8bac3fa3' r/781
git-subtree-dir: third_party/abseil_cpp
git-subtree-mainline: ffb2ae54beb5796cd408fbe15d2d2da09ff37adf
git-subtree-split: 768eb2ca2857342673fcd462792ce04b8bac3fa3
Diffstat (limited to 'third_party/abseil_cpp/absl/container/internal/container_memory.h')
-rw-r--r--third_party/abseil_cpp/absl/container/internal/container_memory.h445
1 files changed, 445 insertions, 0 deletions
diff --git a/third_party/abseil_cpp/absl/container/internal/container_memory.h b/third_party/abseil_cpp/absl/container/internal/container_memory.h
new file mode 100644
index 0000000000..536ea398eb
--- /dev/null
+++ b/third_party/abseil_cpp/absl/container/internal/container_memory.h
@@ -0,0 +1,445 @@
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+//      https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
+#define ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_
+
+#ifdef ADDRESS_SANITIZER
+#include <sanitizer/asan_interface.h>
+#endif
+
+#ifdef MEMORY_SANITIZER
+#include <sanitizer/msan_interface.h>
+#endif
+
+#include <cassert>
+#include <cstddef>
+#include <memory>
+#include <tuple>
+#include <type_traits>
+#include <utility>
+
+#include "absl/memory/memory.h"
+#include "absl/meta/type_traits.h"
+#include "absl/utility/utility.h"
+
+namespace absl {
+ABSL_NAMESPACE_BEGIN
+namespace container_internal {
+
+template <size_t Alignment>
+struct alignas(Alignment) AlignedType {};
+
+// Allocates at least n bytes aligned to the specified alignment.
+// Alignment must be a power of 2. It must be positive.
+//
+// Note that many allocators don't honor alignment requirements above certain
+// threshold (usually either alignof(std::max_align_t) or alignof(void*)).
+// Allocate() doesn't apply alignment corrections. If the underlying allocator
+// returns insufficiently alignment pointer, that's what you are going to get.
+template <size_t Alignment, class Alloc>
+void* Allocate(Alloc* alloc, size_t n) {
+  static_assert(Alignment > 0, "");
+  assert(n && "n must be positive");
+  using M = AlignedType<Alignment>;
+  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
+  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
+  A mem_alloc(*alloc);
+  void* p = AT::allocate(mem_alloc, (n + sizeof(M) - 1) / sizeof(M));
+  assert(reinterpret_cast<uintptr_t>(p) % Alignment == 0 &&
+         "allocator does not respect alignment");
+  return p;
+}
+
+// The pointer must have been previously obtained by calling
+// Allocate<Alignment>(alloc, n).
+template <size_t Alignment, class Alloc>
+void Deallocate(Alloc* alloc, void* p, size_t n) {
+  static_assert(Alignment > 0, "");
+  assert(n && "n must be positive");
+  using M = AlignedType<Alignment>;
+  using A = typename absl::allocator_traits<Alloc>::template rebind_alloc<M>;
+  using AT = typename absl::allocator_traits<Alloc>::template rebind_traits<M>;
+  A mem_alloc(*alloc);
+  AT::deallocate(mem_alloc, static_cast<M*>(p),
+                 (n + sizeof(M) - 1) / sizeof(M));
+}
+
+namespace memory_internal {
+
+// Constructs T into uninitialized storage pointed by `ptr` using the args
+// specified in the tuple.
+template <class Alloc, class T, class Tuple, size_t... I>
+void ConstructFromTupleImpl(Alloc* alloc, T* ptr, Tuple&& t,
+                            absl::index_sequence<I...>) {
+  absl::allocator_traits<Alloc>::construct(
+      *alloc, ptr, std::get<I>(std::forward<Tuple>(t))...);
+}
+
+template <class T, class F>
+struct WithConstructedImplF {
+  template <class... Args>
+  decltype(std::declval<F>()(std::declval<T>())) operator()(
+      Args&&... args) const {
+    return std::forward<F>(f)(T(std::forward<Args>(args)...));
+  }
+  F&& f;
+};
+
+template <class T, class Tuple, size_t... Is, class F>
+decltype(std::declval<F>()(std::declval<T>())) WithConstructedImpl(
+    Tuple&& t, absl::index_sequence<Is...>, F&& f) {
+  return WithConstructedImplF<T, F>{std::forward<F>(f)}(
+      std::get<Is>(std::forward<Tuple>(t))...);
+}
+
+template <class T, size_t... Is>
+auto TupleRefImpl(T&& t, absl::index_sequence<Is...>)
+    -> decltype(std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...)) {
+  return std::forward_as_tuple(std::get<Is>(std::forward<T>(t))...);
+}
+
+// Returns a tuple of references to the elements of the input tuple. T must be a
+// tuple.
+template <class T>
+auto TupleRef(T&& t) -> decltype(
+    TupleRefImpl(std::forward<T>(t),
+                 absl::make_index_sequence<
+                     std::tuple_size<typename std::decay<T>::type>::value>())) {
+  return TupleRefImpl(
+      std::forward<T>(t),
+      absl::make_index_sequence<
+          std::tuple_size<typename std::decay<T>::type>::value>());
+}
+
+template <class F, class K, class V>
+decltype(std::declval<F>()(std::declval<const K&>(), std::piecewise_construct,
+                           std::declval<std::tuple<K>>(), std::declval<V>()))
+DecomposePairImpl(F&& f, std::pair<std::tuple<K>, V> p) {
+  const auto& key = std::get<0>(p.first);
+  return std::forward<F>(f)(key, std::piecewise_construct, std::move(p.first),
+                            std::move(p.second));
+}
+
+}  // namespace memory_internal
+
+// Constructs T into uninitialized storage pointed by `ptr` using the args
+// specified in the tuple.
+template <class Alloc, class T, class Tuple>
+void ConstructFromTuple(Alloc* alloc, T* ptr, Tuple&& t) {
+  memory_internal::ConstructFromTupleImpl(
+      alloc, ptr, std::forward<Tuple>(t),
+      absl::make_index_sequence<
+          std::tuple_size<typename std::decay<Tuple>::type>::value>());
+}
+
+// Constructs T using the args specified in the tuple and calls F with the
+// constructed value.
+template <class T, class Tuple, class F>
+decltype(std::declval<F>()(std::declval<T>())) WithConstructed(
+    Tuple&& t, F&& f) {
+  return memory_internal::WithConstructedImpl<T>(
+      std::forward<Tuple>(t),
+      absl::make_index_sequence<
+          std::tuple_size<typename std::decay<Tuple>::type>::value>(),
+      std::forward<F>(f));
+}
+
+// Given arguments of an std::pair's consructor, PairArgs() returns a pair of
+// tuples with references to the passed arguments. The tuples contain
+// constructor arguments for the first and the second elements of the pair.
+//
+// The following two snippets are equivalent.
+//
+// 1. std::pair<F, S> p(args...);
+//
+// 2. auto a = PairArgs(args...);
+//    std::pair<F, S> p(std::piecewise_construct,
+//                      std::move(p.first), std::move(p.second));
+inline std::pair<std::tuple<>, std::tuple<>> PairArgs() { return {}; }
+template <class F, class S>
+std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(F&& f, S&& s) {
+  return {std::piecewise_construct, std::forward_as_tuple(std::forward<F>(f)),
+          std::forward_as_tuple(std::forward<S>(s))};
+}
+template <class F, class S>
+std::pair<std::tuple<const F&>, std::tuple<const S&>> PairArgs(
+    const std::pair<F, S>& p) {
+  return PairArgs(p.first, p.second);
+}
+template <class F, class S>
+std::pair<std::tuple<F&&>, std::tuple<S&&>> PairArgs(std::pair<F, S>&& p) {
+  return PairArgs(std::forward<F>(p.first), std::forward<S>(p.second));
+}
+template <class F, class S>
+auto PairArgs(std::piecewise_construct_t, F&& f, S&& s)
+    -> decltype(std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
+                               memory_internal::TupleRef(std::forward<S>(s)))) {
+  return std::make_pair(memory_internal::TupleRef(std::forward<F>(f)),
+                        memory_internal::TupleRef(std::forward<S>(s)));
+}
+
+// A helper function for implementing apply() in map policies.
+template <class F, class... Args>
+auto DecomposePair(F&& f, Args&&... args)
+    -> decltype(memory_internal::DecomposePairImpl(
+        std::forward<F>(f), PairArgs(std::forward<Args>(args)...))) {
+  return memory_internal::DecomposePairImpl(
+      std::forward<F>(f), PairArgs(std::forward<Args>(args)...));
+}
+
+// A helper function for implementing apply() in set policies.
+template <class F, class Arg>
+decltype(std::declval<F>()(std::declval<const Arg&>(), std::declval<Arg>()))
+DecomposeValue(F&& f, Arg&& arg) {
+  const auto& key = arg;
+  return std::forward<F>(f)(key, std::forward<Arg>(arg));
+}
+
+// Helper functions for asan and msan.
+inline void SanitizerPoisonMemoryRegion(const void* m, size_t s) {
+#ifdef ADDRESS_SANITIZER
+  ASAN_POISON_MEMORY_REGION(m, s);
+#endif
+#ifdef MEMORY_SANITIZER
+  __msan_poison(m, s);
+#endif
+  (void)m;
+  (void)s;
+}
+
+inline void SanitizerUnpoisonMemoryRegion(const void* m, size_t s) {
+#ifdef ADDRESS_SANITIZER
+  ASAN_UNPOISON_MEMORY_REGION(m, s);
+#endif
+#ifdef MEMORY_SANITIZER
+  __msan_unpoison(m, s);
+#endif
+  (void)m;
+  (void)s;
+}
+
+template <typename T>
+inline void SanitizerPoisonObject(const T* object) {
+  SanitizerPoisonMemoryRegion(object, sizeof(T));
+}
+
+template <typename T>
+inline void SanitizerUnpoisonObject(const T* object) {
+  SanitizerUnpoisonMemoryRegion(object, sizeof(T));
+}
+
+namespace memory_internal {
+
+// If Pair is a standard-layout type, OffsetOf<Pair>::kFirst and
+// OffsetOf<Pair>::kSecond are equivalent to offsetof(Pair, first) and
+// offsetof(Pair, second) respectively. Otherwise they are -1.
+//
+// The purpose of OffsetOf is to avoid calling offsetof() on non-standard-layout
+// type, which is non-portable.
+template <class Pair, class = std::true_type>
+struct OffsetOf {
+  static constexpr size_t kFirst = static_cast<size_t>(-1);
+  static constexpr size_t kSecond = static_cast<size_t>(-1);
+};
+
+template <class Pair>
+struct OffsetOf<Pair, typename std::is_standard_layout<Pair>::type> {
+  static constexpr size_t kFirst = offsetof(Pair, first);
+  static constexpr size_t kSecond = offsetof(Pair, second);
+};
+
+template <class K, class V>
+struct IsLayoutCompatible {
+ private:
+  struct Pair {
+    K first;
+    V second;
+  };
+
+  // Is P layout-compatible with Pair?
+  template <class P>
+  static constexpr bool LayoutCompatible() {
+    return std::is_standard_layout<P>() && sizeof(P) == sizeof(Pair) &&
+           alignof(P) == alignof(Pair) &&
+           memory_internal::OffsetOf<P>::kFirst ==
+               memory_internal::OffsetOf<Pair>::kFirst &&
+           memory_internal::OffsetOf<P>::kSecond ==
+               memory_internal::OffsetOf<Pair>::kSecond;
+  }
+
+ public:
+  // Whether pair<const K, V> and pair<K, V> are layout-compatible. If they are,
+  // then it is safe to store them in a union and read from either.
+  static constexpr bool value = std::is_standard_layout<K>() &&
+                                std::is_standard_layout<Pair>() &&
+                                memory_internal::OffsetOf<Pair>::kFirst == 0 &&
+                                LayoutCompatible<std::pair<K, V>>() &&
+                                LayoutCompatible<std::pair<const K, V>>();
+};
+
+}  // namespace memory_internal
+
+// The internal storage type for key-value containers like flat_hash_map.
+//
+// It is convenient for the value_type of a flat_hash_map<K, V> to be
+// pair<const K, V>; the "const K" prevents accidental modification of the key
+// when dealing with the reference returned from find() and similar methods.
+// However, this creates other problems; we want to be able to emplace(K, V)
+// efficiently with move operations, and similarly be able to move a
+// pair<K, V> in insert().
+//
+// The solution is this union, which aliases the const and non-const versions
+// of the pair. This also allows flat_hash_map<const K, V> to work, even though
+// that has the same efficiency issues with move in emplace() and insert() -
+// but people do it anyway.
+//
+// If kMutableKeys is false, only the value member can be accessed.
+//
+// If kMutableKeys is true, key can be accessed through all slots while value
+// and mutable_value must be accessed only via INITIALIZED slots. Slots are
+// created and destroyed via mutable_value so that the key can be moved later.
+//
+// Accessing one of the union fields while the other is active is safe as
+// long as they are layout-compatible, which is guaranteed by the definition of
+// kMutableKeys. For C++11, the relevant section of the standard is
+// https://timsong-cpp.github.io/cppwp/n3337/class.mem#19 (9.2.19)
+template <class K, class V>
+union map_slot_type {
+  map_slot_type() {}
+  ~map_slot_type() = delete;
+  using value_type = std::pair<const K, V>;
+  using mutable_value_type =
+      std::pair<absl::remove_const_t<K>, absl::remove_const_t<V>>;
+
+  value_type value;
+  mutable_value_type mutable_value;
+  absl::remove_const_t<K> key;
+};
+
+template <class K, class V>
+struct map_slot_policy {
+  using slot_type = map_slot_type<K, V>;
+  using value_type = std::pair<const K, V>;
+  using mutable_value_type = std::pair<K, V>;
+
+ private:
+  static void emplace(slot_type* slot) {
+    // The construction of union doesn't do anything at runtime but it allows us
+    // to access its members without violating aliasing rules.
+    new (slot) slot_type;
+  }
+  // If pair<const K, V> and pair<K, V> are layout-compatible, we can accept one
+  // or the other via slot_type. We are also free to access the key via
+  // slot_type::key in this case.
+  using kMutableKeys = memory_internal::IsLayoutCompatible<K, V>;
+
+ public:
+  static value_type& element(slot_type* slot) { return slot->value; }
+  static const value_type& element(const slot_type* slot) {
+    return slot->value;
+  }
+
+  static const K& key(const slot_type* slot) {
+    return kMutableKeys::value ? slot->key : slot->value.first;
+  }
+
+  template <class Allocator, class... Args>
+  static void construct(Allocator* alloc, slot_type* slot, Args&&... args) {
+    emplace(slot);
+    if (kMutableKeys::value) {
+      absl::allocator_traits<Allocator>::construct(*alloc, &slot->mutable_value,
+                                                   std::forward<Args>(args)...);
+    } else {
+      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
+                                                   std::forward<Args>(args)...);
+    }
+  }
+
+  // Construct this slot by moving from another slot.
+  template <class Allocator>
+  static void construct(Allocator* alloc, slot_type* slot, slot_type* other) {
+    emplace(slot);
+    if (kMutableKeys::value) {
+      absl::allocator_traits<Allocator>::construct(
+          *alloc, &slot->mutable_value, std::move(other->mutable_value));
+    } else {
+      absl::allocator_traits<Allocator>::construct(*alloc, &slot->value,
+                                                   std::move(other->value));
+    }
+  }
+
+  template <class Allocator>
+  static void destroy(Allocator* alloc, slot_type* slot) {
+    if (kMutableKeys::value) {
+      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->mutable_value);
+    } else {
+      absl::allocator_traits<Allocator>::destroy(*alloc, &slot->value);
+    }
+  }
+
+  template <class Allocator>
+  static void transfer(Allocator* alloc, slot_type* new_slot,
+                       slot_type* old_slot) {
+    emplace(new_slot);
+    if (kMutableKeys::value) {
+      absl::allocator_traits<Allocator>::construct(
+          *alloc, &new_slot->mutable_value, std::move(old_slot->mutable_value));
+    } else {
+      absl::allocator_traits<Allocator>::construct(*alloc, &new_slot->value,
+                                                   std::move(old_slot->value));
+    }
+    destroy(alloc, old_slot);
+  }
+
+  template <class Allocator>
+  static void swap(Allocator* alloc, slot_type* a, slot_type* b) {
+    if (kMutableKeys::value) {
+      using std::swap;
+      swap(a->mutable_value, b->mutable_value);
+    } else {
+      value_type tmp = std::move(a->value);
+      absl::allocator_traits<Allocator>::destroy(*alloc, &a->value);
+      absl::allocator_traits<Allocator>::construct(*alloc, &a->value,
+                                                   std::move(b->value));
+      absl::allocator_traits<Allocator>::destroy(*alloc, &b->value);
+      absl::allocator_traits<Allocator>::construct(*alloc, &b->value,
+                                                   std::move(tmp));
+    }
+  }
+
+  template <class Allocator>
+  static void move(Allocator* alloc, slot_type* src, slot_type* dest) {
+    if (kMutableKeys::value) {
+      dest->mutable_value = std::move(src->mutable_value);
+    } else {
+      absl::allocator_traits<Allocator>::destroy(*alloc, &dest->value);
+      absl::allocator_traits<Allocator>::construct(*alloc, &dest->value,
+                                                   std::move(src->value));
+    }
+  }
+
+  template <class Allocator>
+  static void move(Allocator* alloc, slot_type* first, slot_type* last,
+                   slot_type* result) {
+    for (slot_type *src = first, *dest = result; src != last; ++src, ++dest)
+      move(alloc, src, dest);
+  }
+};
+
+}  // namespace container_internal
+ABSL_NAMESPACE_END
+}  // namespace absl
+
+#endif  // ABSL_CONTAINER_INTERNAL_CONTAINER_MEMORY_H_