use crate::store_path::{
self, build_ca_path, build_output_path, build_text_path, StorePath, StorePathRef,
};
use bstr::BString;
use serde::{Deserialize, Serialize};
use sha2::{Digest, Sha256};
use std::collections::{BTreeMap, BTreeSet};
use std::io;
mod errors;
mod output;
mod parse_error;
mod parser;
mod validate;
mod write;
#[cfg(test)]
mod tests;
// Public API of the crate.
pub use crate::nixhash::{CAHash, NixHash};
pub use errors::{DerivationError, OutputError};
pub use output::Output;
use self::write::AtermWriteable;
#[derive(Clone, Debug, Default, Eq, PartialEq, Serialize, Deserialize)]
pub struct Derivation {
#[serde(rename = "args")]
pub arguments: Vec<String>,
pub builder: String,
#[serde(rename = "env")]
pub environment: BTreeMap<String, BString>,
/// Map from drv path to output names used from this derivation.
#[serde(rename = "inputDrvs")]
pub input_derivations: BTreeMap<StorePath, BTreeSet<String>>,
/// Plain store paths of additional inputs.
#[serde(rename = "inputSrcs")]
pub input_sources: BTreeSet<StorePath>,
/// Maps output names to Output.
pub outputs: BTreeMap<String, Output>,
pub system: String,
}
impl Derivation {
/// write the Derivation to the given [std::io::Write], in ATerm format.
///
/// The only errors returns are these when writing to the passed writer.
pub fn serialize(&self, writer: &mut impl std::io::Write) -> Result<(), io::Error> {
self.serialize_with_replacements(writer, &self.input_derivations)
}
/// Like `serialize` but allow replacing the input_derivations for hash calculations.
fn serialize_with_replacements(
&self,
writer: &mut impl std::io::Write,
input_derivations: &BTreeMap<impl AtermWriteable, BTreeSet<String>>,
) -> Result<(), io::Error> {
use write::*;
writer.write_all(write::DERIVATION_PREFIX.as_bytes())?;
write_char(writer, write::PAREN_OPEN)?;
write_outputs(writer, &self.outputs)?;
write_char(writer, COMMA)?;
write_input_derivations(writer, input_derivations)?;
write_char(writer, COMMA)?;
write_input_sources(writer, &self.input_sources)?;
write_char(writer, COMMA)?;
write_system(writer, &self.system)?;
write_char(writer, COMMA)?;
write_builder(writer, &self.builder)?;
write_char(writer, COMMA)?;
write_arguments(writer, &self.arguments)?;
write_char(writer, COMMA)?;
write_environment(writer, &self.environment)?;
write_char(writer, PAREN_CLOSE)?;
Ok(())
}
/// return the ATerm serialization.
pub fn to_aterm_bytes(&self) -> Vec<u8> {
self.to_aterm_bytes_with_replacements(&self.input_derivations)
}
/// Like `to_aterm_bytes`, but accept a different BTreeMap for input_derivations.
/// This is used to render the ATerm representation of a Derivation "modulo
/// fixed-output derivations".
fn to_aterm_bytes_with_replacements(
&self,
input_derivations: &BTreeMap<impl AtermWriteable, BTreeSet<String>>,
) -> Vec<u8> {
let mut buffer: Vec<u8> = Vec::new();
// invoke serialize and write to the buffer.
// Note we only propagate errors writing to the writer in serialize,
// which won't panic for the string we write to.
self.serialize_with_replacements(&mut buffer, input_derivations)
.unwrap();
buffer
}
/// Parse an Derivation in ATerm serialization, and validate it passes our
/// set of validations.
pub fn from_aterm_bytes(b: &[u8]) -> Result<Derivation, parser::Error<&[u8]>> {
parser::parse(b)
}
/// Returns the drv path of a [Derivation] struct.
///
/// The drv path is calculated by invoking [build_text_path], using
/// the `name` with a `.drv` suffix as name, all [Derivation::input_sources] and
/// keys of [Derivation::input_derivations] as references, and the ATerm string of
/// the [Derivation] as content.
pub fn calculate_derivation_path(&self, name: &str) -> Result<StorePath, DerivationError> {
// append .drv to the name
let name = &format!("{}.drv", name);
// collect the list of paths from input_sources and input_derivations
// into a (sorted, guaranteed by BTreeSet) list of references
let references: BTreeSet<String> = self
.input_sources
.iter()
.chain(self.input_derivations.keys())
.map(StorePath::to_absolute_path)
.collect();
build_text_path(name, self.to_aterm_bytes(), references)
.map(|s| s.to_owned())
.map_err(|_e| DerivationError::InvalidOutputName(name.to_string()))
}
/// Returns the FOD digest, if the derivation is fixed-output, or None if
/// it's not.
/// TODO: this is kinda the string from [build_ca_path] with a
/// [CAHash::Flat], what's fed to `build_store_path_from_fingerprint_parts`
/// (except the out_output.path being an empty string)
pub fn fod_digest(&self) -> Option<[u8; 32]> {
if self.outputs.len() != 1 {
return None;
}
let out_output = self.outputs.get("out")?;
let ca_hash = &out_output.ca_hash.as_ref()?;
Some(
Sha256::new_with_prefix(format!(
"fixed:out:{}{}:{}",
ca_kind_prefix(ca_hash),
ca_hash.hash().to_nix_hex_string(),
out_output
.path
.as_ref()
.map(StorePath::to_absolute_path)
.as_ref()
.map(|s| s as &str)
.unwrap_or(""),
))
.finalize()
.into(),
)
}
/// Calculates the hash of a derivation modulo fixed-output subderivations.
///
/// This is called `hashDerivationModulo` in nixcpp.
///
/// It returns the sha256 digest of the derivation ATerm representation,
/// except that:
/// - any input derivation paths have beed replaced "by the result of a
/// recursive call to this function" and that
/// - for fixed-output derivations the special
/// `fixed:out:${algo}:${digest}:${fodPath}` string is hashed instead of
/// the A-Term.
///
/// It's up to the caller of this function to provide a (infallible) lookup
/// function to query [hash_derivation_modulo] of direct input derivations,
/// by their [StorePathRef].
/// It will only be called in case the derivation is not a fixed-output
/// derivation.
pub fn hash_derivation_modulo<F>(&self, fn_lookup_hash_derivation_modulo: F) -> [u8; 32]
where
F: Fn(&StorePathRef) -> [u8; 32],
{
// Fixed-output derivations return a fixed hash.
// Non-Fixed-output derivations return the sha256 digest of the ATerm
// notation, but with all input_derivation paths replaced by a recursive
// call to this function.
// We call [fn_lookup_hash_derivation_modulo] rather than recursing
// ourselves, so callers can precompute this.
self.fod_digest().unwrap_or({
// For each input_derivation, look up the hash derivation modulo,
// and replace the derivation path in the aterm with it's HEXLOWER digest.
let aterm_bytes = self.to_aterm_bytes_with_replacements(&BTreeMap::from_iter(
self.input_derivations
.iter()
.map(|(drv_path, output_names)| {
let hash = fn_lookup_hash_derivation_modulo(&drv_path.into());
(hash, output_names.to_owned())
}),
));
// write the ATerm of that to the hash function and return its digest.
Sha256::new_with_prefix(aterm_bytes).finalize().into()
})
}
/// This calculates all output paths of a Derivation and updates the struct.
/// It requires the struct to be initially without output paths.
/// This means, self.outputs[$outputName].path needs to be an empty string,
/// and self.environment[$outputName] needs to be an empty string.
///
/// Output path calculation requires knowledge of the
/// [hash_derivation_modulo], which (in case of non-fixed-output
/// derivations) also requires knowledge of the [hash_derivation_modulo] of
/// input derivations (recursively).
///
/// To avoid recursing and doing unnecessary calculation, we simply
/// ask the caller of this function to provide the result of the
/// [hash_derivation_modulo] call of the current [Derivation],
/// and leave it up to them to calculate it when needed.
///
/// On completion, `self.environment[$outputName]` and
/// `self.outputs[$outputName].path` are set to the calculated output path for all
/// outputs.
pub fn calculate_output_paths(
&mut self,
name: &str,
hash_derivation_modulo: &[u8; 32],
) -> Result<(), DerivationError> {
// The fingerprint and hash differs per output
for (output_name, output) in self.outputs.iter_mut() {
// Assert that outputs are not yet populated, to avoid using this function wrongly.
// We don't also go over self.environment, but it's a sufficient
// footgun prevention mechanism.
assert!(output.path.is_none());
let path_name = output_path_name(name, output_name);
// For fixed output derivation we use [build_ca_path], otherwise we
// use [build_output_path] with [hash_derivation_modulo].
let abs_store_path = if let Some(ref hwm) = output.ca_hash {
build_ca_path(&path_name, hwm, Vec::<String>::new(), false).map_err(|e| {
DerivationError::InvalidOutputDerivationPath(output_name.to_string(), e)
})?
} else {
build_output_path(hash_derivation_modulo, output_name, &path_name).map_err(|e| {
DerivationError::InvalidOutputDerivationPath(
output_name.to_string(),
store_path::BuildStorePathError::InvalidStorePath(e),
)
})?
};
output.path = Some(abs_store_path.to_owned());
self.environment.insert(
output_name.to_string(),
abs_store_path.to_absolute_path().into(),
);
}
Ok(())
}
}
/// Calculate the name part of the store path of a derivation [Output].
///
/// It's the name, and (if it's the non-out output), the output name
/// after a `-`.
fn output_path_name(derivation_name: &str, output_name: &str) -> String {
let mut output_path_name = derivation_name.to_string();
if output_name != "out" {
output_path_name.push('-');
output_path_name.push_str(output_name);
}
output_path_name
}
/// For a [CAHash], return the "prefix" used for NAR purposes.
/// For [CAHash::Flat], this is an empty string, for [CAHash::Nar], it's "r:".
/// Panics for other [CAHash] kinds, as they're not valid in a derivation
/// context.
fn ca_kind_prefix(ca_hash: &CAHash) -> &'static str {
match ca_hash {
CAHash::Flat(_) => "",
CAHash::Nar(_) => "r:",
_ => panic!("invalid ca hash in derivation context: {:?}", ca_hash),
}
}