about summary refs log tree commit diff
path: root/users/tazjin/presentations/bootstrapping-2018/presentation.tex
blob: d3aa613375544d676898e3d746cc1abc35fafa8a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
\documentclass[12pt]{beamer}
\usetheme{metropolis}
\newenvironment{code}{\ttfamily}{\par}
\title{Where does \textit{your} compiler come from?}
\date{2018-03-13}
\author{Vincent Ambo}
\institute{Norwegian Unix User Group}
\begin{document}
  \maketitle

  %% Slide 1:
  \section{Introduction}

  %% Slide 2:
  \begin{frame}{Chicken and egg}
    Self-hosted compilers are often built using themselves, for example:

    \begin{itemize}
    \item C-family compilers bootstrap themselves \& each other
    \item (Some!) Common Lisp compilers can bootstrap each other
    \item \texttt{rustc} bootstraps itself with a previous version
    \item ... same for many other languages!
    \end{itemize}
  \end{frame}

  \begin{frame}{Chicken, egg and ... lizard?}
    It's not just compilers: Languages have runtimes, too.

    \begin{itemize}
    \item JVM is implemented in C++
    \item Erlang-VM is C
    \item Haskell runtime is C
    \end{itemize}

    ... we can't ever get away from C, can we?
  \end{frame}

  %% Slide 3:
  \begin{frame}{Trusting Trust}
    \begin{center}
      \huge{Could this be exploited?}
    \end{center}
  \end{frame}

  %% Slide 4:
  \begin{frame}{Short interlude: A quine}
    \begin{center}
      \begin{code}
        ((lambda (x) (list x (list 'quote x)))
        \newline\vspace*{6mm} '(lambda (x) (list x (list 'quote x))))
      \end{code}
    \end{center}
  \end{frame}

  %% Slide 5:
  \begin{frame}{Short interlude: Quine Relay}
    \begin{center}
      \includegraphics[
        keepaspectratio=true,
        height=\textheight
      ]{quine-relay.png}
    \end{center}
  \end{frame}

  %% Slide 6:
  \begin{frame}{Trusting Trust}
    An attack described by Ken Thompson in 1983:

    \begin{enumerate}
    \item Modify a compiler to detect when it's compiling itself.
    \item Let the modification insert \textit{itself} into the new compiler.
    \item Add arbitrary attack code to the modification.
    \item \textit{Optional!} Remove the attack from the source after compilation.
    \end{enumerate}
  \end{frame}

  %% Slide 7:
  \begin{frame}{Damage potential?}
    \begin{center}
      \large{Let your imagination run wild!}
    \end{center}
  \end{frame}

  %% Slide 8:
  \section{Countermeasures}

  %% Slide 9:
  \begin{frame}{Diverse Double-Compiling}
    Assume we have:

    \begin{itemize}
    \item Target language compilers $A$ and $T$
    \item The source code of $A$: $ S_{A} $
    \end{itemize}
  \end{frame}

  %% Slide 10:
  \begin{frame}{Diverse Double-Compiling}
    Apply the first stage (functional equivalence):

    \begin{itemize}
    \item $ X = A(S_{A})$
    \item $ Y = T(S_{A})$
    \end{itemize}

    Apply the second stage (bit-for-bit equivalence):

    \begin{itemize}
    \item $ V = X(S_{A})$
    \item $ W = Y(S_{A})$
    \end{itemize}

    Now we have a new problem: Reproducibility!
  \end{frame}

  %% Slide 11:
  \begin{frame}{Reproducibility}
    Bit-for-bit equivalent output is hard, for example:

    \begin{itemize}
    \item Timestamps in output artifacts
    \item Non-deterministic linking order in concurrent builds
    \item Non-deterministic VM \& memory states in outputs
    \item Randomness in builds (sic!)
    \end{itemize}
  \end{frame}

  \begin{frame}{Reproducibility}
    \begin{center}
      Without reproducibility, we can never trust that any shipped
      binary matches the source code!
    \end{center}
  \end{frame}

  %% Slide 12:
  \section{(Partial) State of the Union}

  \begin{frame}{The Desired State}
    \begin{center}
      \begin{enumerate}
      \item Full-source bootstrap!
      \item All packages reproducible!
      \end{enumerate}
    \end{center}
  \end{frame}

  %% Slide 13:
  \begin{frame}{Bootstrapping Debian}
    \begin{itemize}
    \item Sparse information on the Debian-wiki
    \item Bootstrapping discussions mostly resolve around new architectures
    \item GCC is compiled by depending on previous versions of GCC
    \end{itemize}
  \end{frame}

  \begin{frame}{Reproducing Debian}
    Debian has a very active effort for reproducible builds:

    \begin{itemize}
    \item Organised information about reproducibility status
    \item Over 90\% reproducibility in Debian package base!
    \end{itemize}
  \end{frame}

  \begin{frame}{Short interlude: Nix}
    \begin{center}
      \includegraphics[
        keepaspectratio=true,
        height=0.7\textheight
      ]{nixos-logo.png}
    \end{center}
  \end{frame}

  \begin{frame}{Short interlude: Nix}
    \begin{center}
      \includegraphics[
        keepaspectratio=true,
        height=0.90\textheight
      ]{drake-meme.png}
    \end{center}
  \end{frame}

  \begin{frame}{Short interlude: Nix}
    \begin{center}
      \includegraphics[
        keepaspectratio=true,
        height=0.7\textheight
      ]{nixos-logo.png}
    \end{center}
  \end{frame}

  \begin{frame}{Bootstrapping NixOS}
    Nix evaluation can not recurse forever: The bootstrap can not
    simply depend on a previous GCC.

    Workaround: \texttt{bootstrap-tools} tarball from a previous
    binary cache is fetched and used.

    An unfortunate magic binary blob ...
  \end{frame}

  \begin{frame}{Reproducing NixOS}
    Not all reproducibility patches have been ported from Debian.

    However: Builds are fully repeatable via the Nix fundamentals!
  \end{frame}

  \section{Future Developments}

  \begin{frame}{Bootstrappable: stage0}
    Hand-rolled ``Cthulhu's Path to Madness'' hex-programs:

    \begin{itemize}
    \item No non-auditable binary blobs
    \item Aims for understandability by 70\% of programmers
    \item End goal is a full-source bootstrap of GCC
    \end{itemize}
  \end{frame}


  \begin{frame}{Bootstrappable: MES}
    Bootstrapping the ``Maxwell Equations of Software'':

    \begin{itemize}
    \item Minimal C-compiler written in Scheme
    \item Minimal Scheme-interpreter (currently in C, but intended to
      be rewritten in stage0 macros)
    \item End goal is full-source bootstrap of the entire GuixSD
    \end{itemize}
  \end{frame}

  \begin{frame}{Other platforms}
    \begin{itemize}
    \item Nix for Darwin is actively maintained
    \item F-Droid Android repository works towards fully reproducible
      builds of (open) Android software
    \item Mobile devices (phones, tablets, etc.) are a lost cause at
      the moment
    \end{itemize}
  \end{frame}

  \begin{frame}{Thanks!}
    Resources:
    \begin{itemize}
    \item bootstrappable.org
    \item reproducible-builds.org
    \end{itemize}

    @tazjin | mail@tazj.in
  \end{frame}
\end{document}