1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE QuantifiedConstraints #-}
--------------------------------------------------------------------------------
module Xanthous.Util
( EqEqProp(..)
, EqProp(..)
, foldlMapM
, foldlMapM'
, between
, appendVia
-- * Foldable
-- ** Uniqueness
-- *** Predicates on uniqueness
, isUniqueOf
, isUnique
-- *** Removing all duplicate elements in n * log n time
, uniqueOf
, unique
-- *** Removing sequentially duplicate elements in linear time
, uniqOf
, uniq
-- ** Bag sequence algorithms
, takeWhileInclusive
, smallestNotIn
, removeVectorIndex
, removeFirst
, maximum1
, minimum1
-- * Combinators
, times, times_, endoTimes
-- * State utilities
, modifyK, modifyKL
-- * Type-level programming utils
, KnownBool(..)
-- *
, AlphaChar(..)
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding (foldr)
--------------------------------------------------------------------------------
import Test.QuickCheck.Checkers
import Data.Foldable (foldr)
import Data.Monoid
import Data.Proxy
import qualified Data.Vector as V
import Data.Semigroup (Max(..), Min(..))
import Data.Semigroup.Foldable
import Control.Monad.State.Class
import Control.Monad.State (evalState)
--------------------------------------------------------------------------------
newtype EqEqProp a = EqEqProp a
deriving newtype Eq
instance Eq a => EqProp (EqEqProp a) where
(=-=) = eq
foldlMapM :: forall g b a m. (Foldable g, Monoid b, Applicative m) => (a -> m b) -> g a -> m b
foldlMapM f = foldr f' (pure mempty)
where
f' :: a -> m b -> m b
f' x = liftA2 mappend (f x)
-- Strict in the monoidal accumulator. For monads strict
-- in the left argument of bind, this will run in constant
-- space.
foldlMapM' :: forall g b a m. (Foldable g, Monoid b, Monad m) => (a -> m b) -> g a -> m b
foldlMapM' f xs = foldr f' pure xs mempty
where
f' :: a -> (b -> m b) -> b -> m b
f' x k bl = do
br <- f x
let !b = mappend bl br
k b
between
:: Ord a
=> a -- ^ lower bound
-> a -- ^ upper bound
-> a -- ^ scrutinee
-> Bool
between lower upper x = x >= lower && x <= upper
-- |
-- >>> appendVia Sum 1 2
-- 3
appendVia :: (Rewrapping s t, Semigroup s) => (Unwrapped s -> s) -> Unwrapped s -> Unwrapped s -> Unwrapped s
appendVia wrap x y = op wrap $ wrap x <> wrap y
--------------------------------------------------------------------------------
-- | Returns True if the targets of the given 'Fold' are unique per the 'Ord' instance for @a@
--
-- >>> isUniqueOf (folded . _1) ([(1, 2), (2, 2), (3, 2)] :: [(Int, Int)])
-- True
--
-- >>> isUniqueOf (folded . _2) ([(1, 2), (2, 2), (3, 2)] :: [(Int, Int)])
-- False
--
-- @
-- 'isUniqueOf' :: Ord a => 'Getter' s a -> s -> 'Bool'
-- 'isUniqueOf' :: Ord a => 'Fold' s a -> s -> 'Bool'
-- 'isUniqueOf' :: Ord a => 'Lens'' s a -> s -> 'Bool'
-- 'isUniqueOf' :: Ord a => 'Iso'' s a -> s -> 'Bool'
-- 'isUniqueOf' :: Ord a => 'Traversal'' s a -> s -> 'Bool'
-- 'isUniqueOf' :: Ord a => 'Prism'' s a -> s -> 'Bool'
-- @
isUniqueOf :: Ord a => Getting (Endo (Set a, Bool)) s a -> s -> Bool
isUniqueOf aFold = orOf _2 . foldrOf aFold rejectUnique (mempty, True)
where
rejectUnique x (seen, acc)
| seen ^. contains x = (seen, False)
| otherwise = (seen & contains x .~ True, acc)
-- | Returns true if the given 'Foldable' container contains only unique
-- elements, as determined by the 'Ord' instance for @a@
--
-- >>> isUnique ([3, 1, 2] :: [Int])
-- True
--
-- >>> isUnique ([1, 1, 2, 2, 3, 1] :: [Int])
-- False
isUnique :: (Foldable f, Ord a) => f a -> Bool
isUnique = isUniqueOf folded
-- | O(n * log n). Returns a monoidal, 'Cons'able container (a list, a Set,
-- etc.) consisting of the unique (per the 'Ord' instance for @a@) targets of
-- the given 'Fold'
--
-- >>> uniqueOf (folded . _2) ([(1, 2), (2, 2), (3, 2), (4, 3)] :: [(Int, Int)]) :: [Int]
-- [2,3]
--
-- @
-- 'uniqueOf' :: Ord a => 'Getter' s a -> s -> [a]
-- 'uniqueOf' :: Ord a => 'Fold' s a -> s -> [a]
-- 'uniqueOf' :: Ord a => 'Lens'' s a -> s -> [a]
-- 'uniqueOf' :: Ord a => 'Iso'' s a -> s -> [a]
-- 'uniqueOf' :: Ord a => 'Traversal'' s a -> s -> [a]
-- 'uniqueOf' :: Ord a => 'Prism'' s a -> s -> [a]
-- @
uniqueOf
:: (Monoid c, Ord w, Cons c c w w) => Getting (Endo (Set w, c)) a w -> a -> c
uniqueOf aFold = snd . foldrOf aFold rejectUnique (mempty, mempty)
where
rejectUnique x (seen, acc)
| seen ^. contains x = (seen, acc)
| otherwise = (seen & contains x .~ True, cons x acc)
-- | Returns a monoidal, 'Cons'able container (a list, a Set, etc.) consisting
-- of the unique (per the 'Ord' instance for @a@) contents of the given
-- 'Foldable' container
--
-- >>> unique [1, 1, 2, 2, 3, 1] :: [Int]
-- [2,3,1]
-- >>> unique [1, 1, 2, 2, 3, 1] :: Set Int
-- fromList [3,2,1]
unique :: (Foldable f, Cons c c a a, Ord a, Monoid c) => f a -> c
unique = uniqueOf folded
--------------------------------------------------------------------------------
-- | O(n). Returns a monoidal, 'Cons'able container (a list, a Vector, etc.)
-- consisting of the targets of the given 'Fold' with sequential duplicate
-- elements removed
--
-- This function (sorry for the confusing name) differs from 'uniqueOf' in that
-- it only compares /sequentially/ duplicate elements (and thus operates in
-- linear time).
-- cf 'Data.Vector.uniq' and POSIX @uniq@ for the name
--
-- >>> uniqOf (folded . _2) ([(1, 2), (2, 2), (3, 1), (4, 2)] :: [(Int, Int)]) :: [Int]
-- [2,1,2]
--
-- @
-- 'uniqOf' :: Eq a => 'Getter' s a -> s -> [a]
-- 'uniqOf' :: Eq a => 'Fold' s a -> s -> [a]
-- 'uniqOf' :: Eq a => 'Lens'' s a -> s -> [a]
-- 'uniqOf' :: Eq a => 'Iso'' s a -> s -> [a]
-- 'uniqOf' :: Eq a => 'Traversal'' s a -> s -> [a]
-- 'uniqOf' :: Eq a => 'Prism'' s a -> s -> [a]
-- @
uniqOf :: (Monoid c, Cons c c w w, Eq w) => Getting (Endo (Maybe w, c)) a w -> a -> c
uniqOf aFold = snd . foldrOf aFold rejectSeen (Nothing, mempty)
where
rejectSeen x (Nothing, acc) = (Just x, x <| acc)
rejectSeen x tup@(Just a, acc)
| x == a = tup
| otherwise = (Just x, x <| acc)
-- | O(n). Returns a monoidal, 'Cons'able container (a list, a Vector, etc.)
-- consisting of the targets of the given 'Foldable' container with sequential
-- duplicate elements removed
--
-- This function (sorry for the confusing name) differs from 'unique' in that
-- it only compares /sequentially/ unique elements (and thus operates in linear
-- time).
-- cf 'Data.Vector.uniq' and POSIX @uniq@ for the name
--
-- >>> uniq [1, 1, 1, 2, 2, 2, 3, 3, 1] :: [Int]
-- [1,2,3,1]
--
-- >>> uniq [1, 1, 1, 2, 2, 2, 3, 3, 1] :: Vector Int
-- [1,2,3,1]
--
uniq :: (Foldable f, Eq a, Cons c c a a, Monoid c) => f a -> c
uniq = uniqOf folded
-- | Like 'takeWhile', but inclusive
takeWhileInclusive :: (a -> Bool) -> [a] -> [a]
takeWhileInclusive _ [] = []
takeWhileInclusive p (x:xs) = x : if p x then takeWhileInclusive p xs else []
-- | Returns the smallest value not in a list
smallestNotIn :: (Ord a, Bounded a, Enum a) => [a] -> a
smallestNotIn xs = case uniq $ sort xs of
[] -> minBound
xs'@(x : _)
| x > minBound -> minBound
| otherwise
-> snd . headEx . filter (uncurry (/=)) $ zip (xs' ++ [minBound]) [minBound..]
-- | Remove the element at the given index, if any, from the given vector
removeVectorIndex :: Int -> Vector a -> Vector a
removeVectorIndex idx vect =
let (before, after) = V.splitAt idx vect
in before <> fromMaybe Empty (tailMay after)
-- | Remove the first element in a sequence that matches a given predicate
removeFirst :: IsSequence seq => (Element seq -> Bool) -> seq -> seq
removeFirst p
= flip evalState False
. filterM (\x -> do
found <- get
let matches = p x
when matches $ put True
pure $ found || not matches)
maximum1 :: (Ord a, Foldable1 f) => f a -> a
maximum1 = getMax . foldMap1 Max
minimum1 :: (Ord a, Foldable1 f) => f a -> a
minimum1 = getMin . foldMap1 Min
times :: (Applicative f, Num n, Enum n) => n -> (n -> f b) -> f [b]
times n f = traverse f [1..n]
times_ :: (Applicative f, Num n, Enum n) => n -> f a -> f [a]
times_ n fa = times n (const fa)
-- | Multiply an endomorphism by an integral
--
-- >>> endoTimes (4 :: Int) succ (5 :: Int)
-- 9
endoTimes :: Integral n => n -> (a -> a) -> a -> a
endoTimes n f = appEndo $ stimes n (Endo f)
--------------------------------------------------------------------------------
-- | This class gives a boolean associated with a type-level bool, a'la
-- 'KnownSymbol', 'KnownNat' etc.
class KnownBool (bool :: Bool) where
boolVal' :: forall proxy. proxy bool -> Bool
boolVal' _ = boolVal @bool
boolVal :: Bool
boolVal = boolVal' $ Proxy @bool
instance KnownBool 'True where boolVal = True
instance KnownBool 'False where boolVal = False
--------------------------------------------------------------------------------
-- | Modify some monadic state via the application of a kleisli endomorphism on
-- the state itself
--
-- Note that any changes made to the state during execution of @k@ will be
-- overwritten
--
-- @@
-- modifyK pure === pure ()
-- @@
modifyK :: MonadState s m => (s -> m s) -> m ()
modifyK k = get >>= k >>= put
-- | Modify some monadic state via the application of a kleisli endomorphism on
-- the target of a lens
--
-- Note that any changes made to the state during execution of @k@ will be
-- overwritten
--
-- @@
-- modifyKL id pure === pure ()
-- @@
modifyKL :: MonadState s m => LensLike m s s a b -> (a -> m b) -> m ()
modifyKL l k = get >>= traverseOf l k >>= put
--------------------------------------------------------------------------------
-- | A newtype wrapper around 'Char' whose 'Enum' and 'Bounded' instances only
-- include the characters @[a-zA-Z]@
--
-- >>> succ (AlphaChar 'z')
-- 'A'
newtype AlphaChar = AlphaChar { getAlphaChar :: Char }
deriving stock Show
deriving (Eq, Ord) via Char
instance Enum AlphaChar where
toEnum n
| between 0 25 n
= AlphaChar . toEnum $ n + fromEnum 'a'
| between 26 51 n
= AlphaChar . toEnum $ n - 26 + fromEnum 'A'
| otherwise
= error $ "Tag " <> show n <> " out of range [0, 51] for enum AlphaChar"
fromEnum (AlphaChar chr)
| between 'a' 'z' chr
= fromEnum chr - fromEnum 'a'
| between 'A' 'Z' chr
= fromEnum chr - fromEnum 'A'
| otherwise
= error $ "Invalid value for alpha char: " <> show chr
instance Bounded AlphaChar where
minBound = AlphaChar 'a'
maxBound = AlphaChar 'Z'
|