1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
|
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE RoleAnnotations #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE NoTypeSynonymInstances #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
--------------------------------------------------------------------------------
-- | Common data types for Xanthous ------------------------------------------------------------------------------
module Xanthous.Data
( Opposite(..)
-- *
, Position'(..)
, Position
, x
, y
-- **
, Positioned(..)
, _Positioned
, position
, positioned
, loc
, _Position
, positionFromPair
, positionFromV2
, addPositions
, diffPositions
, stepTowards
, isUnit
, distance
-- * Boxes
, Box(..)
, topLeftCorner
, bottomRightCorner
, setBottomRightCorner
, dimensions
, inBox
, boxIntersects
, boxCenter
, boxEdge
, module Linear.V2
-- * Unit math
, Scalar(..)
, Per(..)
, invertRate
, invertedRate
, (|+|)
, (|*|)
, (|/|)
, (:+:)
, (:*:)
, (:/:)
, (:**:)(..)
, Ticks(..)
, Tiles(..)
, TicksPerTile
, TilesPerTick
, timesTiles
, Square(..)
, squared
, Cubic(..)
, Grams
, Meters
, Uno(..)
, Unit(..)
, UnitSymbol(..)
-- *
, Dimensions'(..)
, Dimensions
, HasWidth(..)
, HasHeight(..)
-- *
, Direction(..)
, move
, asPosition
, directionOf
, Cardinal(..)
-- *
, Corner(..)
, Edge(..)
, cornerEdges
-- *
, Neighbors(..)
, edges
, neighborDirections
, neighborPositions
, neighborCells
, arrayNeighbors
, rotations
, HasTopLeft(..)
, HasTop(..)
, HasTopRight(..)
, HasLeft(..)
, HasRight(..)
, HasBottomLeft(..)
, HasBottom(..)
, HasBottomRight(..)
-- *
, Hitpoints(..)
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding (Left, Down, Right, (.=), elements)
--------------------------------------------------------------------------------
import Linear.V2 hiding (_x, _y)
import qualified Linear.V2 as L
import Linear.V4 hiding (_x, _y)
import Test.QuickCheck (CoArbitrary, Function, elements)
import Test.QuickCheck.Arbitrary.Generic
import Data.Group
import Brick (Location(Location), Edges(..))
import Data.Monoid (Product(..), Sum(..))
import Data.Array.IArray
import Data.Aeson.Generic.DerivingVia
import Data.Aeson
( ToJSON(..), FromJSON(..), object, (.=), (.:), withObject)
import Data.Random (Distribution)
import Data.Coerce
import Data.Proxy (Proxy(Proxy))
--------------------------------------------------------------------------------
import Xanthous.Util (EqEqProp(..), EqProp, between)
import Xanthous.Orphans ()
import Xanthous.Util.Graphics
import qualified Linear.Metric as Metric
--------------------------------------------------------------------------------
-- | opposite ∘ opposite ≡ id
class Opposite x where
opposite :: x -> x
--------------------------------------------------------------------------------
-- fromScalar ∘ scalar ≡ id
class Scalar a where
scalar :: a -> Double
fromScalar :: Double -> a
instance Scalar Double where
scalar = id
fromScalar = id
newtype ScalarIntegral a = ScalarIntegral a
deriving newtype (Eq, Ord, Num, Enum, Real, Integral)
instance Integral a => Scalar (ScalarIntegral a) where
scalar = fromIntegral
fromScalar = floor
deriving via (ScalarIntegral Integer) instance Scalar Integer
deriving via (ScalarIntegral Word) instance Scalar Word
-- | Units of measure
class Unit a where
unitSuffix :: Text
type UnitSymbol :: Symbol -> Type -> Type
newtype UnitSymbol suffix a = UnitSymbol a
instance KnownSymbol suffix => Unit (UnitSymbol suffix a) where
unitSuffix = pack $ symbolVal @suffix Proxy
newtype ShowUnitSuffix a b = ShowUnitSuffix a
instance (Show b, Unit a, Coercible a b) => Show (ShowUnitSuffix a b) where
show a = show (coerce @_ @b a) <> " " <> unpack (unitSuffix @a)
--------------------------------------------------------------------------------
data Position' a where
Position :: { _x :: a
, _y :: a
} -> (Position' a)
deriving stock (Show, Eq, Generic, Ord, Functor, Foldable, Traversable)
deriving anyclass (NFData, Hashable, CoArbitrary, Function)
deriving EqProp via EqEqProp (Position' a)
deriving (ToJSON, FromJSON)
via WithOptions '[ FieldLabelModifier '[Drop 1] ]
(Position' a)
x, y :: Lens' (Position' a) a
x = lens (\(Position xx _) -> xx) (\(Position _ yy) xx -> Position xx yy)
y = lens (\(Position _ yy) -> yy) (\(Position xx _) yy -> Position xx yy)
type Position = Position' Int
instance (Arbitrary a) => Arbitrary (Position' a) where
arbitrary = genericArbitrary
shrink (Position px py) = Position <$> shrink px <*> shrink py
instance Num a => Semigroup (Position' a) where
(Position x₁ y₁) <> (Position x₂ y₂) = Position (x₁ + x₂) (y₁ + y₂)
instance Num a => Monoid (Position' a) where
mempty = Position 0 0
instance Num a => Group (Position' a) where
invert (Position px py) = Position (negate px) (negate py)
-- | Positions convert to scalars by discarding their orientation and just
-- measuring the length from the origin
instance (Ord a, Num a, Scalar a) => Scalar (Position' a) where
scalar = fromIntegral . length . line 0 . view _Position
fromScalar n = Position (fromScalar n) (fromScalar n)
data Positioned a where
Positioned :: Position -> a -> Positioned a
deriving stock (Show, Eq, Ord, Functor, Foldable, Traversable, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
type role Positioned representational
_Positioned :: Iso (Position, a) (Position, b) (Positioned a) (Positioned b)
_Positioned = iso hither yon
where
hither (pos, a) = Positioned pos a
yon (Positioned pos b) = (pos, b)
instance Arbitrary a => Arbitrary (Positioned a) where
arbitrary = Positioned <$> arbitrary <*> arbitrary
instance ToJSON a => ToJSON (Positioned a) where
toJSON (Positioned pos val) = object
[ "position" .= pos
, "data" .= val
]
instance FromJSON a => FromJSON (Positioned a) where
parseJSON = withObject "Positioned" $ \obj ->
Positioned <$> obj .: "position" <*> obj .: "data"
position :: Lens' (Positioned a) Position
position = lens
(\(Positioned pos _) -> pos)
(\(Positioned _ a) pos -> Positioned pos a)
positioned :: Lens (Positioned a) (Positioned b) a b
positioned = lens
(\(Positioned _ x') -> x')
(\(Positioned pos _) x' -> Positioned pos x')
loc :: Iso' Position Location
loc = iso hither yon
where
hither (Position px py) = Location (px, py)
yon (Location (lx, ly)) = Position lx ly
_Position :: Iso' (Position' a) (V2 a)
_Position = iso hither yon
where
hither (Position px py) = V2 px py
yon (V2 lx ly) = Position lx ly
positionFromPair :: (Num a, Integral i, Integral j) => (i, j) -> Position' a
positionFromPair (i, j) = Position (fromIntegral i) (fromIntegral j)
positionFromV2 :: (Num a, Integral i) => V2 i -> Position' a
positionFromV2 (V2 xx yy) = Position (fromIntegral xx) (fromIntegral yy)
-- | Add two positions
--
-- Operation for the additive group on positions
addPositions :: Num a => Position' a -> Position' a -> Position' a
addPositions = (<>)
-- | Subtract two positions.
--
-- diffPositions pos₁ pos₂ = pos₁ `addPositions` (invert pos₂)
diffPositions :: Num a => Position' a -> Position' a -> Position' a
diffPositions (Position x₁ y₁) (Position x₂ y₂) = Position (x₁ - x₂) (y₁ - y₂)
-- | Is this position a unit position? or: When taken as a difference, does this
-- position represent a step of one tile?
--
-- ∀ dir :: Direction. isUnit ('asPosition' dir)
isUnit :: (Eq a, Num a) => Position' a -> Bool
isUnit (Position px py) =
abs px `elem` [0,1] && abs py `elem` [0, 1] && (px, py) /= (0, 0)
--------------------------------------------------------------------------------
data Dimensions' a = Dimensions
{ _width :: a
, _height :: a
}
deriving stock (Show, Eq, Functor, Generic)
deriving anyclass (CoArbitrary, Function)
makeFieldsNoPrefix ''Dimensions'
instance Arbitrary a => Arbitrary (Dimensions' a) where
arbitrary = Dimensions <$> arbitrary <*> arbitrary
type Dimensions = Dimensions' Word
--------------------------------------------------------------------------------
data Direction where
Up :: Direction
Down :: Direction
Left :: Direction
Right :: Direction
UpLeft :: Direction
UpRight :: Direction
DownLeft :: Direction
DownRight :: Direction
Here :: Direction
deriving stock (Show, Eq, Ord, Generic)
deriving anyclass (CoArbitrary, Function, NFData, ToJSON, FromJSON, Hashable)
deriving via (GenericArbitrary Direction) instance Arbitrary Direction
instance Opposite Direction where
opposite Up = Down
opposite Down = Up
opposite Left = Right
opposite Right = Left
opposite UpLeft = DownRight
opposite UpRight = DownLeft
opposite DownLeft = UpRight
opposite DownRight = UpLeft
opposite Here = Here
move :: Num a => Direction -> Position' a -> Position' a
move Up = y -~ 1
move Down = y +~ 1
move Left = x -~ 1
move Right = x +~ 1
move UpLeft = move Up . move Left
move UpRight = move Up . move Right
move DownLeft = move Down . move Left
move DownRight = move Down . move Right
move Here = id
asPosition :: Direction -> Position
asPosition dir = move dir mempty
-- | Returns the direction that a given position is from a given source position
directionOf
:: Position -- ^ Source
-> Position -- ^ Target
-> Direction
directionOf (Position x₁ y₁) (Position x₂ y₂) =
case (x₁ `compare` x₂, y₁ `compare` y₂) of
(EQ, EQ) -> Here
(EQ, LT) -> Down
(EQ, GT) -> Up
(LT, EQ) -> Right
(GT, EQ) -> Left
(LT, LT) -> DownRight
(GT, LT) -> DownLeft
(LT, GT) -> UpRight
(GT, GT) -> UpLeft
-- | Take one (potentially diagonal) step towards the given position
--
-- ∀ src tgt. isUnit (src `diffPositions` (src `stepTowards tgt`))
stepTowards
:: Position -- ^ Source
-> Position -- ^ Target
-> Position
stepTowards (view _Position -> p₁) (view _Position -> p₂)
| p₁ == p₂ = _Position # p₁
| otherwise =
let (_:p:_) = line p₁ p₂
in _Position # p
-- | Newtype controlling arbitrary generation to only include cardinal
-- directions ('Up', 'Down', 'Left', 'Right')
newtype Cardinal = Cardinal { getCardinal :: Direction }
deriving stock (Eq, Show, Ord, Generic)
deriving anyclass (NFData, Function, CoArbitrary)
deriving newtype (Opposite)
instance Arbitrary Cardinal where
arbitrary = Cardinal <$> elements [Up, Down, Left, Right]
--------------------------------------------------------------------------------
data Corner
= TopLeft
| TopRight
| BottomLeft
| BottomRight
deriving stock (Show, Eq, Ord, Enum, Bounded, Generic)
deriving Arbitrary via GenericArbitrary Corner
instance Opposite Corner where
opposite TopLeft = BottomRight
opposite TopRight = BottomLeft
opposite BottomLeft = TopRight
opposite BottomRight = TopLeft
data Edge
= TopEdge
| LeftEdge
| RightEdge
| BottomEdge
deriving stock (Show, Eq, Ord, Enum, Bounded, Generic)
deriving Arbitrary via GenericArbitrary Edge
instance Opposite Edge where
opposite TopEdge = BottomEdge
opposite BottomEdge = TopEdge
opposite LeftEdge = RightEdge
opposite RightEdge = LeftEdge
cornerEdges :: Corner -> (Edge, Edge)
cornerEdges TopLeft = (TopEdge, LeftEdge)
cornerEdges TopRight = (TopEdge, RightEdge)
cornerEdges BottomLeft = (BottomEdge, LeftEdge)
cornerEdges BottomRight = (BottomEdge, RightEdge)
--------------------------------------------------------------------------------
data Neighbors a = Neighbors
{ _topLeft
, _top
, _topRight
, _left
, _right
, _bottomLeft
, _bottom
, _bottomRight :: a
}
deriving stock (Show, Eq, Ord, Functor, Foldable, Traversable, Generic)
deriving anyclass (NFData, CoArbitrary, Function, MonoFoldable)
deriving via (GenericArbitrary (Neighbors a)) instance (Arbitrary a) => Arbitrary (Neighbors a)
type instance Element (Neighbors a) = a
makeFieldsNoPrefix ''Neighbors
instance Applicative Neighbors where
pure α = Neighbors
{ _topLeft = α
, _top = α
, _topRight = α
, _left = α
, _right = α
, _bottomLeft = α
, _bottom = α
, _bottomRight = α
}
nf <*> nx = Neighbors
{ _topLeft = nf ^. topLeft $ nx ^. topLeft
, _top = nf ^. top $ nx ^. top
, _topRight = nf ^. topRight $ nx ^. topRight
, _left = nf ^. left $ nx ^. left
, _right = nf ^. right $ nx ^. right
, _bottomLeft = nf ^. bottomLeft $ nx ^. bottomLeft
, _bottom = nf ^. bottom $ nx ^. bottom
, _bottomRight = nf ^. bottomRight $ nx ^. bottomRight
}
edges :: Neighbors a -> Edges a
edges neighs = Edges
{ eTop = neighs ^. top
, eBottom = neighs ^. bottom
, eLeft = neighs ^. left
, eRight = neighs ^. right
}
neighborDirections :: Neighbors Direction
neighborDirections = Neighbors
{ _topLeft = UpLeft
, _top = Up
, _topRight = UpRight
, _left = Left
, _right = Right
, _bottomLeft = DownLeft
, _bottom = Down
, _bottomRight = DownRight
}
neighborPositions :: Num a => Position' a -> Neighbors (Position' a)
neighborPositions pos = (`move` pos) <$> neighborDirections
neighborCells :: Num a => V2 a -> Neighbors (V2 a)
neighborCells = map (view _Position) . neighborPositions . review _Position
arrayNeighbors
:: (IArray a e, Ix i, Num i)
=> a (V2 i) e
-> V2 i
-> Neighbors (Maybe e)
arrayNeighbors arr center = arrLookup <$> neighborPositions (_Position # center)
where
arrLookup (view _Position -> pos)
| inRange (bounds arr) pos = Just $ arr ! pos
| otherwise = Nothing
-- | Returns a list of all 4 90-degree rotations of the given neighbors
rotations :: Neighbors a -> V4 (Neighbors a)
rotations orig@(Neighbors tl t tr l r bl b br) = V4
orig -- tl t tr
-- l r
-- bl b br
(Neighbors bl l tl b t br r tr) -- bl l tl
-- b t
-- br r tr
(Neighbors br b bl r l tr t tl) -- br b bl
-- r l
-- tr t tl
(Neighbors tr r br t b tl l bl) -- tr r br
-- t b
-- tl l bl
--------------------------------------------------------------------------------
newtype Per a b = Rate Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON)
via Double
deriving (Semigroup, Monoid) via Product Double
deriving Show via ShowUnitSuffix (Per a b) Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Per a b)
instance (Unit a, Unit b) => Unit (a `Per` b) where
unitSuffix = unitSuffix @a <> "/" <> unitSuffix @b
invertRate :: a `Per` b -> b `Per` a
invertRate (Rate p) = Rate $ 1 / p
invertedRate :: Iso (a `Per` b) (b' `Per` a') (b `Per` a) (a' `Per` b')
invertedRate = iso invertRate invertRate
type (:+:) :: Type -> Type -> Type
type family (:+:) a b where
a :+: a = a
a :+: (Uno b) = a
infixl 6 |+|
class AddUnit a b where
(|+|) :: a -> b -> a :+: b
instance Scalar a => AddUnit a a where
x' |+| y' = fromScalar $ scalar x' + scalar y'
instance (Scalar a, Scalar b) => AddUnit a (Uno b) where
x' |+| y' = fromScalar $ scalar x' + scalar y'
type (:*:) :: Type -> Type -> Type
type family (:*:) a b where
(a `Per` b) :*: b = a
(Square a) :*: a = Cubic a
a :*: a = Square a
a :*: Uno b = a
a :*: b = a :**: b
infixl 7 |*|
class MulUnit a b where
(|*|) :: a -> b -> a :*: b
instance (Scalar a, Scalar b) => MulUnit (a `Per` b) b where
(Rate rate) |*| b = fromScalar $ rate * scalar b
instance forall a. (Scalar a, a :*: a ~ Square a) => MulUnit a a where
x' |*| y' = Square @a . fromScalar $ scalar x' * scalar y'
instance forall a. (Scalar a) => MulUnit (Square a) a where
x' |*| y' = Cubic @a . fromScalar $ scalar x' * scalar y'
instance {-# INCOHERENT #-} forall a b.
(Scalar a, Scalar b, Scalar (a :*: Uno b))
=> MulUnit a (Uno b) where
x' |*| y' = fromScalar $ scalar x' * scalar y'
type (:/:) :: Type -> Type -> Type
type family (:/:) a b where
(Square a) :/: a = a
(Cubic a) :/: a = Square a
(Cubic a) :/: (Square a) = a
(a :**: b) :/: b = a
(a :**: b) :/: a = b
a :/: Uno b = a
a :/: b = a `Per` b
infixl 7 |/|
class DivUnit a b where
(|/|) :: a -> b -> a :/: b
instance Scalar a => DivUnit (Square a) a where
(Square a) |/| b = fromScalar $ scalar a / scalar b
instance Scalar a => DivUnit (Cubic a) a where
(Cubic a) |/| b = fromScalar $ scalar a / scalar b
instance (Scalar a, Cubic a :/: Square a ~ a)
=> DivUnit (Cubic a) (Square a) where
(Cubic a) |/| (Square b) = fromScalar $ scalar a / scalar b
instance (Scalar a, Scalar b) => DivUnit (a :**: b) b where
(Times a) |/| b = fromScalar $ scalar a / scalar b
instance (Scalar a, Scalar b) => DivUnit (a :**: b) a where
(Times a) |/| b = fromScalar $ scalar a / scalar b
instance {-# INCOHERENT #-} forall a b.
(Scalar a, Scalar b, Scalar (a :/: Uno b))
=> DivUnit a (Uno b) where
x' |/| y' = fromScalar $ scalar x' / scalar y'
-- | Dimensionless quantitites (mass per unit mass, radians, etc)
--
-- see <https://en.wikipedia.org/wiki/Parts-per_notation#Uno>
newtype Uno a = Uno a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar, Show
)
via a
deriving Unit via UnitSymbol "" (Uno a)
newtype Square a = Square a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar
)
via a
deriving via (a :: Type)
instance ( Distribution d a
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Square a)
instance Unit a => Unit (Square a) where
unitSuffix = unitSuffix @a <> "²"
instance Show a => Show (Square a) where
show (Square n) = show n <> "²"
squared :: (Scalar a, a :*: a ~ Square a) => a -> Square a
squared v = v |*| v
newtype Cubic a = Cubic a
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON
, Scalar
)
via a
deriving via (a :: Type)
instance ( Distribution d a
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (Cubic a)
instance Unit a => Unit (Cubic a) where
unitSuffix = unitSuffix @a <> "³"
instance Show a => Show (Cubic a) where
show (Cubic n) = show n <> "³"
newtype (:**:) a b = Times Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Arbitrary, Num, Ord, Enum, Real, Fractional, ToJSON, FromJSON)
via Double
deriving (Semigroup, Monoid) via Sum Double
deriving Show via ShowUnitSuffix (a :**: b) Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d (a :**: b)
instance (Unit a, Unit b) => Unit (a :**: b) where
unitSuffix = unitSuffix @a <> " " <> unitSuffix @b
--------------------------------------------------------------------------------
newtype Ticks = Ticks Word
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Num, Ord, Bounded, Enum, Integral, Real, ToJSON, FromJSON) via Word
deriving (Semigroup, Monoid) via (Sum Word)
deriving Scalar via ScalarIntegral Ticks
deriving Arbitrary via GenericArbitrary Ticks
deriving Unit via UnitSymbol "ticks" Ticks
deriving Show via ShowUnitSuffix Ticks Word
deriving via Word
instance ( Distribution d Word
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d Ticks
newtype Tiles = Tiles Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving (Num, Ord, Enum, Real, ToJSON, FromJSON, Scalar) via Double
deriving (Semigroup, Monoid) via (Sum Double)
deriving Arbitrary via GenericArbitrary Tiles
deriving Unit via UnitSymbol "m" Tiles
deriving Show via ShowUnitSuffix Tiles Double
deriving via Double
instance ( Distribution d Double
, forall xx yy. Coercible xx yy => Coercible (d xx) (d yy)
)
=> Distribution d Tiles
type TicksPerTile = Ticks `Per` Tiles
type TilesPerTick = Tiles `Per` Ticks
timesTiles :: TicksPerTile -> Tiles -> Ticks
timesTiles = (|*|)
-- | Calculate the (cartesian) distance between two 'Position's, floored and
-- represented as a number of 'Tile's
--
-- Note that this is imprecise, and may be different than the length of a
-- bresenham's line between the points
distance :: Position -> Position -> Tiles
distance
= (fromScalar .) . (Metric.distance `on` (fmap fromIntegral . view _Position))
--------------------------------------------------------------------------------
newtype Hitpoints = Hitpoints Word
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Bounded, Enum, Integral, Real, Scalar
, ToJSON, FromJSON
)
via Word
deriving (Semigroup, Monoid) via Sum Word
deriving Unit via UnitSymbol "hp" Hitpoints
deriving Show via ShowUnitSuffix Hitpoints Word
--------------------------------------------------------------------------------
-- | Grams, the fundamental measure of weight in Xanthous.
newtype Grams = Grams Double
deriving stock (Eq, Generic)
deriving anyclass (NFData, CoArbitrary, Function)
deriving ( Arbitrary, Num, Ord, Enum, Real, Floating, Fractional, RealFloat
, RealFrac, Scalar, ToJSON, FromJSON
)
via Double
deriving (Semigroup, Monoid) via Sum Double
deriving Unit via UnitSymbol "g" Grams
deriving Show via ShowUnitSuffix Grams Double
-- | Every tile is 1 meter
type Meters = Tiles
--------------------------------------------------------------------------------
data Box a = Box
{ _topLeftCorner :: V2 a
, _dimensions :: V2 a
}
deriving stock (Show, Eq, Ord, Functor, Generic)
makeFieldsNoPrefix ''Box
-- It seems to be necessary to have an `Arg (V2 a) a` constraint, as a is passed
-- to V2 internally, in order to make GHC figure out this deriving via correctly.
deriving via (GenericArbitrary (Box a)) instance (Arbitrary a) => Arbitrary (Box a)
bottomRightCorner :: Num a => Box a -> V2 a
bottomRightCorner box =
V2 (box ^. topLeftCorner . L._x + box ^. dimensions . L._x)
(box ^. topLeftCorner . L._y + box ^. dimensions . L._y)
setBottomRightCorner :: (Num a, Ord a) => Box a -> V2 a -> Box a
setBottomRightCorner box br@(V2 brx bry)
| brx < box ^. topLeftCorner . L._x || bry < box ^. topLeftCorner . L._y
= box & topLeftCorner .~ br
& dimensions . L._x .~ ((box ^. topLeftCorner . L._x) - brx)
& dimensions . L._y .~ ((box ^. topLeftCorner . L._y) - bry)
| otherwise
= box & dimensions . L._x .~ (brx - (box ^. topLeftCorner . L._x))
& dimensions . L._y .~ (bry - (box ^. topLeftCorner . L._y))
inBox :: (Ord a, Num a) => Box a -> V2 a -> Bool
inBox box pt = flip all [L._x, L._y] $ \component ->
between (box ^. topLeftCorner . component)
(box ^. to bottomRightCorner . component)
(pt ^. component)
boxIntersects :: (Ord a, Num a) => Box a -> Box a -> Bool
boxIntersects box₁ box₂
= any (inBox box₁) [box₂ ^. topLeftCorner, bottomRightCorner box₂]
boxCenter :: (Fractional a) => Box a -> V2 a
boxCenter box = V2 cx cy
where
cx = box ^. topLeftCorner . L._x + (box ^. dimensions . L._x / 2)
cy = box ^. topLeftCorner . L._y + (box ^. dimensions . L._y / 2)
boxEdge :: (Enum a, Num a) => Box a -> Edge -> [V2 a]
boxEdge box LeftEdge =
V2 (box ^. topLeftCorner . L._x)
<$> [box ^. topLeftCorner . L._y .. box ^. to bottomRightCorner . L._y]
boxEdge box RightEdge =
V2 (box ^. to bottomRightCorner . L._x)
<$> [box ^. to bottomRightCorner . L._y .. box ^. to bottomRightCorner . L._y]
boxEdge box TopEdge =
flip V2 (box ^. topLeftCorner . L._y)
<$> [box ^. topLeftCorner . L._x .. box ^. to bottomRightCorner . L._x]
boxEdge box BottomEdge =
flip V2 (box ^. to bottomRightCorner . L._y)
<$> [box ^. topLeftCorner . L._x .. box ^. to bottomRightCorner . L._x]
|