1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
{-# LANGUAGE TemplateHaskell #-}
-- | Graphics algorithms and utils for rendering things in 2D space
--------------------------------------------------------------------------------
module Xanthous.Util.Graphics
( circle
, filledCircle
, line
, straightLine
, delaunay
-- * Debugging and testing tools
, renderBooleanGraphics
, showBooleanGraphics
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude
--------------------------------------------------------------------------------
-- https://github.com/noinia/hgeometry/issues/28
-- import qualified Algorithms.Geometry.DelaunayTriangulation.DivideAndConquer
-- as Geometry
import qualified Algorithms.Geometry.DelaunayTriangulation.Naive
as Geometry
import qualified Algorithms.Geometry.DelaunayTriangulation.Types as Geometry
import Control.Monad.State (execState, State)
import qualified Data.Geometry.Point as Geometry
import Data.Ext ((:+)(..))
import Data.List (unfoldr)
import Data.List.NonEmpty (NonEmpty((:|)))
import qualified Data.List.NonEmpty as NE
import Data.Ix (Ix)
import Linear.V2
--------------------------------------------------------------------------------
-- | Generate a circle centered at the given point and with the given radius
-- using the <midpoint circle algorithm
-- https://en.wikipedia.org/wiki/Midpoint_circle_algorithm>.
--
-- Code taken from <https://rosettacode.org/wiki/Bitmap/Midpoint_circle_algorithm#Haskell>
circle :: (Num i, Ord i)
=> (i, i) -- ^ center
-> i -- ^ radius
-> [(i, i)]
circle (x₀, y₀) radius
-- Four initial points, plus the generated points
= (x₀, y₀ + radius) : (x₀, y₀ - radius) : (x₀ + radius, y₀) : (x₀ - radius, y₀) : points
where
-- Creates the (x, y) octet offsets, then maps them to absolute points in all octets.
points = concatMap generatePoints $ unfoldr step initialValues
generatePoints (x, y)
= [ (x₀ `xop` x', y₀ `yop` y')
| (x', y') <- [(x, y), (y, x)]
, xop <- [(+), (-)]
, yop <- [(+), (-)]
]
initialValues = (1 - radius, 1, (-2) * radius, 0, radius)
step (f, ddf_x, ddf_y, x, y)
| x >= y = Nothing
| otherwise = Just ((x', y'), (f', ddf_x', ddf_y', x', y'))
where
(f', ddf_y', y') | f >= 0 = (f + ddf_y' + ddf_x', ddf_y + 2, y - 1)
| otherwise = (f + ddf_x, ddf_y, y)
ddf_x' = ddf_x + 2
x' = x + 1
data FillState i
= FillState
{ _inCircle :: Bool
, _result :: NonEmpty (i, i)
}
makeLenses ''FillState
runFillState :: NonEmpty (i, i) -> State (FillState i) a -> [(i, i)]
runFillState circumference s
= toList
. view result
. execState s
$ FillState False circumference
-- | Generate a *filled* circle centered at the given point and with the given
-- radius by filling a circle generated with 'circle'
filledCircle :: (Num i, Integral i, Ix i)
=> (i, i) -- ^ center
-> i -- ^ radius
-> [(i, i)]
filledCircle origin radius =
case NE.nonEmpty (circle origin radius) of
Nothing -> []
Just circumference -> runFillState circumference $
-- the first and last lines of all circles are solid, so the whole "in the
-- circle, out of the circle" thing doesn't work... but that's fine since
-- we don't need to fill them. So just skip them
for_ [succ minX..pred maxX] $ \x ->
for_ [minY..maxY] $ \y -> do
let pt = (x, y)
next = (x, succ y)
whenM (use inCircle) $ result %= NE.cons pt
when (pt `elem` circumference && next `notElem` circumference)
$ inCircle %= not
where
((minX, minY), (maxX, maxY)) = minmaxes circumference
-- | Draw a line between two points using Bresenham's line drawing algorithm
--
-- Code taken from <https://wiki.haskell.org/Bresenham%27s_line_drawing_algorithm>
line :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
line pa@(xa, ya) pb@(xb, yb)
= (if maySwitch pa < maySwitch pb then id else reverse) points
where
points = map maySwitch . unfoldr go $ (x₁, y₁, 0)
steep = abs (yb - ya) > abs (xb - xa)
maySwitch = if steep then swap else id
[(x₁, y₁), (x₂, y₂)] = sort [maySwitch pa, maySwitch pb]
δx = x₂ - x₁
δy = abs (y₂ - y₁)
ystep = if y₁ < y₂ then 1 else -1
go (xTemp, yTemp, err)
| xTemp > x₂ = Nothing
| otherwise = Just ((xTemp, yTemp), (xTemp + 1, newY, newError))
where
tempError = err + δy
(newY, newError) = if (2 * tempError) >= δx
then (yTemp + ystep, tempError - δx)
else (yTemp, tempError)
straightLine :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
straightLine pa@(xa, _) pb@(_, yb) = line pa midpoint ++ line midpoint pb
where midpoint = (xa, yb)
delaunay
:: (Ord n, Fractional n)
=> NonEmpty (V2 n, p)
-> [((V2 n, p), (V2 n, p))]
delaunay
= map (over both fromPoint)
. Geometry.triangulationEdges
. Geometry.delaunayTriangulation
. map toPoint
where
toPoint (V2 px py, pid) = Geometry.Point2 px py :+ pid
fromPoint (Geometry.Point2 px py :+ pid) = (V2 px py, pid)
--------------------------------------------------------------------------------
renderBooleanGraphics :: forall i. (Num i, Ord i, Enum i) => [(i, i)] -> String
renderBooleanGraphics [] = ""
renderBooleanGraphics (pt : pts') = intercalate "\n" rows
where
rows = row <$> [minX..maxX]
row x = [minY..maxY] <&> \y -> if (x, y) `member` ptSet then 'X' else ' '
((minX, minY), (maxX, maxY)) = minmaxes pts
pts = pt :| pts'
ptSet :: Set (i, i)
ptSet = setFromList $ toList pts
showBooleanGraphics :: forall i. (Num i, Ord i, Enum i) => [(i, i)] -> IO ()
showBooleanGraphics = putStrLn . pack . renderBooleanGraphics
minmaxes :: forall i. (Ord i) => NonEmpty (i, i) -> ((i, i), (i, i))
minmaxes xs =
( ( minimum1Of (traverse1 . _1) xs
, minimum1Of (traverse1 . _2) xs
)
, ( maximum1Of (traverse1 . _1) xs
, maximum1Of (traverse1 . _2) xs
)
)
|