1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
|
{-# LANGUAGE QuantifiedConstraints #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
--------------------------------------------------------------------------------
module Xanthous.Generators.Util
( MCells
, Cells
, CellM
, randInitialize
, initializeEmpty
, numAliveNeighborsM
, numAliveNeighbors
, fillOuterEdgesM
, cloneMArray
, floodFill
, regions
, fillAll
, fillAllM
, fromPoints
, fromPointsM
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude hiding (Foldable, toList, for_)
import Data.Array.ST
import Data.Array.Unboxed
import Control.Monad.ST
import Control.Monad.Random
import Data.Monoid
import Data.Foldable (Foldable, toList, for_)
import qualified Data.Set as Set
import Data.Semigroup.Foldable
--------------------------------------------------------------------------------
import Xanthous.Util (foldlMapM', maximum1, minimum1)
import Xanthous.Data (Dimensions, width, height)
--------------------------------------------------------------------------------
type MCells s = STUArray s (Word, Word) Bool
type Cells = UArray (Word, Word) Bool
type CellM g s a = RandT g (ST s) a
randInitialize :: RandomGen g => Dimensions -> Double -> CellM g s (MCells s)
randInitialize dims aliveChance = do
res <- initializeEmpty dims
for_ [0..dims ^. width] $ \i ->
for_ [0..dims ^. height] $ \j -> do
val <- (>= aliveChance) <$> getRandomR (0, 1)
lift $ writeArray res (i, j) val
pure res
initializeEmpty :: RandomGen g => Dimensions -> CellM g s (MCells s)
initializeEmpty dims =
lift $ newArray ((0, 0), (dims ^. width, dims ^. height)) False
numAliveNeighborsM
:: forall a i j m
. (MArray a Bool m, Ix (i, j), Integral i, Integral j)
=> a (i, j) Bool
-> (i, j)
-> m Word
numAliveNeighborsM cells (x, y) = do
cellBounds <- getBounds cells
getSum <$> foldlMapM'
(fmap (Sum . fromIntegral . fromEnum) . boundedGet cellBounds)
neighborPositions
where
boundedGet :: ((i, j), (i, j)) -> (Int, Int) -> m Bool
boundedGet ((minX, minY), (maxX, maxY)) (i, j)
| x <= minX
|| y <= minY
|| x >= maxX
|| y >= maxY
= pure True
| otherwise =
let nx = fromIntegral $ fromIntegral x + i
ny = fromIntegral $ fromIntegral y + j
in readArray cells (nx, ny)
neighborPositions :: [(Int, Int)]
neighborPositions = [(i, j) | i <- [-1..1], j <- [-1..1], (i, j) /= (0, 0)]
numAliveNeighbors
:: forall a i j
. (IArray a Bool, Ix (i, j), Integral i, Integral j)
=> a (i, j) Bool
-> (i, j)
-> Word
numAliveNeighbors cells (x, y) =
let cellBounds = bounds cells
in getSum $ foldMap
(Sum . fromIntegral . fromEnum . boundedGet cellBounds)
neighborPositions
where
boundedGet :: ((i, j), (i, j)) -> (Int, Int) -> Bool
boundedGet ((minX, minY), (maxX, maxY)) (i, j)
| x <= minX
|| y <= minY
|| x >= maxX
|| y >= maxY
= True
| otherwise =
let nx = fromIntegral $ fromIntegral x + i
ny = fromIntegral $ fromIntegral y + j
in cells ! (nx, ny)
neighborPositions :: [(Int, Int)]
neighborPositions = [(i, j) | i <- [-1..1], j <- [-1..1], (i, j) /= (0, 0)]
fillOuterEdgesM :: (MArray a Bool m, Ix i, Ix j) => a (i, j) Bool -> m ()
fillOuterEdgesM arr = do
((minX, minY), (maxX, maxY)) <- getBounds arr
for_ (range (minX, maxX)) $ \x -> do
writeArray arr (x, minY) True
writeArray arr (x, maxY) True
for_ (range (minY, maxY)) $ \y -> do
writeArray arr (minX, y) True
writeArray arr (maxX, y) True
cloneMArray
:: forall a a' i e m.
( Ix i
, MArray a e m
, MArray a' e m
, IArray UArray e
)
=> a i e
-> m (a' i e)
cloneMArray = thaw @_ @UArray <=< freeze
--------------------------------------------------------------------------------
-- | Flood fill a cell array starting at a point, returning a list of all the
-- (true) cell locations reachable from that point
floodFill :: forall a i j.
( IArray a Bool
, Ix (i, j)
, Enum i , Enum j
, Bounded i , Bounded j
, Eq i , Eq j
, Show i, Show j
)
=> a (i, j) Bool -- ^ array
-> (i, j) -- ^ position
-> Set (i, j)
floodFill = go mempty
where
go :: Set (i, j) -> a (i, j) Bool -> (i, j) -> Set (i, j)
-- TODO pass result in rather than passing seen in, return result
go res arr@(bounds -> arrBounds) idx@(x, y)
| not (inRange arrBounds idx) = res
| not (arr ! idx) = res
| otherwise =
let neighbors
= filter (inRange arrBounds)
. filter (/= idx)
. filter (`notMember` res)
$ (,)
<$> [(if x == minBound then x else pred x)
..
(if x == maxBound then x else succ x)]
<*> [(if y == minBound then y else pred y)
..
(if y == maxBound then y else succ y)]
in foldl' (\r idx' ->
if arr ! idx'
then r <> go (r & contains idx' .~ True) arr idx'
else r)
(res & contains idx .~ True) neighbors
-- | Gives a list of all the disconnected regions in a cell array, represented
-- each as lists of points
regions :: forall a i j.
( IArray a Bool
, Ix (i, j)
, Enum i , Enum j
, Bounded i , Bounded j
, Eq i , Eq j
, Show i, Show j
)
=> a (i, j) Bool
-> [Set (i, j)]
regions arr
| Just firstPoint <- findFirstPoint arr =
let region = floodFill arr firstPoint
arr' = fillAll region arr
in region : regions arr'
| otherwise = []
where
findFirstPoint :: a (i, j) Bool -> Maybe (i, j)
findFirstPoint = fmap fst . headMay . filter snd . assocs
fillAll :: (IArray a Bool, Ix i, Foldable f) => f i -> a i Bool -> a i Bool
fillAll ixes a = accum (const fst) a $ (, (False, ())) <$> toList ixes
fillAllM :: (MArray a Bool m, Ix i, Foldable f) => f i -> a i Bool -> m ()
fillAllM ixes a = for_ ixes $ \i -> writeArray a i False
fromPoints
:: forall a f i.
( IArray a Bool
, Ix i
, Functor f
, Foldable1 f
)
=> f (i, i)
-> a (i, i) Bool
fromPoints points =
let pts = Set.fromList $ toList points
dims = ( (minimum1 $ fst <$> points, minimum1 $ snd <$> points)
, (maximum1 $ fst <$> points, maximum1 $ snd <$> points)
)
in array dims $ range dims <&> \i -> (i, i `member` pts)
fromPointsM
:: (MArray a Bool m, Ix i, Element f ~ i, MonoFoldable f)
=> NonNull f
-> m (a i Bool)
fromPointsM points = do
arr <- newArray (minimum points, maximum points) False
fillAllM (otoList points) arr
pure arr
|