about summary refs log tree commit diff
path: root/users/edef/weave/src/bin/swizzle.rs
blob: bcea3edfada970713231e18cfcf67a17e61c6329 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
//! Swizzle reads a `narinfo.parquet` file, usually produced by `narinfo2parquet`.
//!
//! It swizzles the reference list, ie it converts the references from absolute,
//! global identifiers (store path hashes) to indices into the `store_path_hash`
//! column (ie, row numbers), so that we can later walk the reference graph
//! efficiently.
//!
//! Path hashes are represented as non-null, 20-byte `Binary` values.
//! The indices are represented as 32-bit unsigned integers, with in-band nulls
//! represented by [INDEX_NULL] (the all-1 bit pattern), to permit swizzling
//! partial datasets.
//!
//! In essence, it converts from names to pointers, so that `weave` can simply
//! chase pointers to trace the live set. This replaces an `O(log(n))` lookup
//! with `O(1)` indexing, and produces a much denser representation that actually
//! fits in memory.
//!
//! The in-memory representation is at least 80% smaller, and the indices compress
//! well in Parquet due to both temporal locality of reference and the power law
//! distribution of reference "popularity".
//!
//! Only two columns are read from `narinfo.parquet`:
//!
//!  * `store_path_hash :: PathHash`
//!  * `references :: List[PathHash]`
//!
//! Output is written to `narinfo-references.parquet` in the form of a single
//! `List[u32]` column, `reference_idxs`.
//!
//! This file is inherently bound to the corresponding `narinfo.parquet`,
//! since it essentially contains pointers into this file.

use anyhow::Result;
use hashbrown::HashTable;
use polars::{
    lazy::dsl::{col, SpecialEq},
    prelude::*,
};

use weave::{as_fixed_binary, hash64, leak, load_ph_array, DONE, INDEX_NULL};

fn main() -> Result<()> {
    let ph_array: &'static [[u8; 20]] = leak(load_ph_array()?);

    // TODO(edef): re-parallelise this
    // We originally parallelised on chunks, but ph_array is only a single chunk, due to how Parquet loading works.
    // TODO(edef): outline the 64-bit hash prefix? it's an indirection, but it saves ~2G of memory
    eprint!("… build index\r");
    let ph_map: &'static HashTable<(u64, u32)> = {
        let mut ph_map = HashTable::with_capacity(ph_array.len());

        for (offset, item) in ph_array.iter().enumerate() {
            let offset = offset as u32;
            let hash = hash64(item);
            ph_map.insert_unique(hash, (hash, offset), |&(hash, _)| hash);
        }

        &*Box::leak(Box::new(ph_map))
    };
    eprintln!("{DONE}");

    let ph_to_idx = |key: &[u8; 20]| -> u32 {
        let hash = hash64(key);
        ph_map
            .find(hash, |&(candidate_hash, candidate_index)| {
                candidate_hash == hash && &ph_array[candidate_index as usize] == key
            })
            .map(|&(_, index)| index)
            .unwrap_or(INDEX_NULL)
    };

    eprint!("… swizzle references\r");
    LazyFrame::scan_parquet("narinfo.parquet", ScanArgsParquet::default())?
        .with_column(
            col("references")
                .map(
                    move |series: Series| -> PolarsResult<Option<Series>> {
                        Ok(Some(
                            series
                                .list()?
                                .apply_to_inner(&|series: Series| -> PolarsResult<Series> {
                                    let series = series.binary()?;
                                    let mut out: Vec<u32> = Vec::with_capacity(series.len());
                                    out.extend(as_fixed_binary(series).flatten().map(ph_to_idx));
                                    Ok(Series::from_vec("reference_idxs", out))
                                })?
                                .into_series(),
                        ))
                    },
                    SpecialEq::from_type(DataType::List(DataType::UInt32.into())),
                )
                .alias("reference_idxs"),
        )
        .select([col("reference_idxs")])
        .with_streaming(true)
        .sink_parquet(
            "narinfo-references.parquet".into(),
            ParquetWriteOptions::default(),
        )?;
    eprintln!("{DONE}");

    Ok(())
}