1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
//! Implements the slightly odd "base32" encoding that's used in Nix.
//!
//! Nix uses a custom alphabet. Contrary to other implementations (RFC4648),
//! encoding to "nix base32" doesn't use any padding, and reads in characters
//! in reverse order.
//!
//! This is also the main reason why we can't use `data_encoding::Encoding` -
//! it gets things wrong if there normally would be a need for padding.
use std::fmt::Write;
use thiserror::Error;
const ALPHABET: &'static [u8; 32] = b"0123456789abcdfghijklmnpqrsvwxyz";
/// Errors that can occur while decoding nixbase32-encoded data.
#[derive(Debug, Eq, PartialEq, Error)]
pub enum Nixbase32DecodeError {
#[error("character {0:x} not in alphabet")]
CharacterNotInAlphabet(u8),
#[error("nonzero carry")]
NonzeroCarry(),
}
/// Returns encoded input
pub fn encode(input: &[u8]) -> String {
let output_len = encode_len(input.len());
let mut output = String::with_capacity(output_len);
if output_len > 0 {
for n in (0..=output_len - 1).rev() {
let b = n * 5; // bit offset within the entire input
let i = b / 8; // input byte index
let j = b % 8; // bit offset within that input byte
let mut c = input[i] >> j;
if i + 1 < input.len() {
// we want to right shift, and discard shifted out bits (unchecked)
// To do this without panicing, we need to do the shifting in u16
// and convert back to u8 afterwards.
c |= ((input[i + 1] as u16) << 8 - j as u16) as u8
}
output
.write_char(ALPHABET[(c & 0x1f) as usize] as char)
.unwrap();
}
}
output
}
/// This maps a nixbase32-encoded character to its binary representation, which
/// is also the index of the character in the alphabet.
fn decode_char(encoded_char: &u8) -> Option<u8> {
Some(match encoded_char {
b'0'..=b'9' => encoded_char - b'0',
b'a'..=b'd' => encoded_char - b'a' + 10_u8,
b'f'..=b'n' => encoded_char - b'f' + 14_u8,
b'p'..=b's' => encoded_char - b'p' + 23_u8,
b'v'..=b'z' => encoded_char - b'v' + 27_u8,
_ => return None,
})
}
/// Returns decoded input
pub fn decode(input: &[u8]) -> Result<Vec<u8>, Nixbase32DecodeError> {
let output_len = decode_len(input.len());
let mut output: Vec<u8> = vec![0x00; output_len];
// loop over all characters in reverse, and keep the iteration count in n.
for (n, c) in input.iter().rev().enumerate() {
match decode_char(c) {
None => return Err(Nixbase32DecodeError::CharacterNotInAlphabet(*c)),
Some(c_decoded) => {
let b = n * 5;
let i = b / 8;
let j = b % 8;
let val = (c_decoded as u16).rotate_left(j as u32);
output[i] |= (val & 0x00ff) as u8;
let carry = ((val & 0xff00) >> 8) as u8;
// if we're at the end of dst…
if i == output_len - 1 {
// but have a nonzero carry, the encoding is invalid.
if carry != 0 {
return Err(Nixbase32DecodeError::NonzeroCarry());
}
} else {
output[i + 1] |= carry;
}
}
}
}
Ok(output)
}
/// Returns the decoded length of an input of length len.
pub fn decode_len(len: usize) -> usize {
return (len * 5) / 8;
}
/// Returns the encoded length of an input of length len
pub fn encode_len(len: usize) -> usize {
if len == 0 {
return 0;
}
return (len * 8 - 1) / 5 + 1;
}
#[cfg(test)]
mod tests {
use test_case::test_case;
#[test_case("", vec![] ; "empty bytes")]
#[test_case("0z", vec![0x1f]; "one byte")]
#[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", vec![
0x8a, 0x12, 0x32, 0x15, 0x22, 0xfd, 0x91, 0xef, 0xbd, 0x60, 0xeb, 0xb2, 0x48, 0x1a,
0xf8, 0x85, 0x80, 0xf6, 0x16, 0x00]; "store path")]
#[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", vec![
0xb3, 0xa2, 0x4d, 0xe9, 0x7a, 0x8f, 0xdb, 0xc8, 0x35, 0xb9, 0x83, 0x31, 0x69, 0x50, 0x10, 0x30,
0xb8, 0x97, 0x70, 0x31, 0xbc, 0xb5, 0x4b, 0x3b, 0x3a, 0xc1, 0x37, 0x40, 0xf8, 0x46, 0xab, 0x30,
]; "sha256")]
fn encode(enc: &str, dec: Vec<u8>) {
assert_eq!(enc, super::encode(&dec));
}
#[test_case("", Some(vec![]) ; "empty bytes")]
#[test_case("0z", Some(vec![0x1f]); "one byte")]
#[test_case("00bgd045z0d4icpbc2yyz4gx48ak44la", Some(vec![
0x8a, 0x12, 0x32, 0x15, 0x22, 0xfd, 0x91, 0xef, 0xbd, 0x60, 0xeb, 0xb2, 0x48, 0x1a,
0xf8, 0x85, 0x80, 0xf6, 0x16, 0x00]); "store path")]
#[test_case("0c5b8vw40dy178xlpddw65q9gf1h2186jcc3p4swinwggbllv8mk", Some(vec![
0xb3, 0xa2, 0x4d, 0xe9, 0x7a, 0x8f, 0xdb, 0xc8, 0x35, 0xb9, 0x83, 0x31, 0x69, 0x50, 0x10, 0x30,
0xb8, 0x97, 0x70, 0x31, 0xbc, 0xb5, 0x4b, 0x3b, 0x3a, 0xc1, 0x37, 0x40, 0xf8, 0x46, 0xab, 0x30,
]); "sha256")]
// this is invalid encoding, because it encodes 10 1-bytes, so the carry
// would be 2 1-bytes
#[test_case("zz", None; "invalid encoding-1")]
// this is an even more specific example - it'd decode as 00000000 11
#[test_case("c0", None; "invalid encoding-2")]
fn decode(enc: &str, dec: Option<Vec<u8>>) {
match dec {
Some(dec) => {
// The decode needs to match what's passed in dec
assert_eq!(dec, super::decode(enc.as_bytes()).unwrap());
}
None => {
// the decode needs to be an error
assert_eq!(true, super::decode(enc.as_bytes()).is_err());
}
}
}
#[test]
fn encode_len() {
assert_eq!(super::encode_len(20), 32)
}
#[test]
fn decode_len() {
assert_eq!(super::decode_len(32), 20)
}
}
|