1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
use std::{
io::Result,
pin::Pin,
task::{ready, Poll},
};
use bytes::{BufMut, BytesMut};
use pin_project_lite::pin_project;
use tokio::io::{AsyncRead, AsyncWrite, ReadBuf};
use crate::worker_protocol::STDERR_READ;
#[derive(Debug)]
struct U64WriteState {
bytes: [u8; 8],
written: usize,
}
impl U64WriteState {
fn remaining(&self) -> &[u8] {
&self.bytes[self.written..]
}
}
/// State machine for [`StderrReadFramedReader`].
///
/// As the reader progresses it linearly cycles through the states.
#[derive(Debug)]
enum StderrReaderState {
/// Represents the state indicating that we are about to request a new frame.
///
/// When poll_read is called, it writes STDERR_READ into the writer and
/// progresses to the [`StderrReaderState::RequestingFrameLen`] state
///
/// The reader always starts in this state and is reached after every frame has
/// been fully read.
RequestingNextFrame { write_state: U64WriteState },
/// At this point the reader writes the desired payload length we want to receive
/// based on read_buf.remaining().
RequestingFrameLen {
// We need to write 8 bytes of the length u64 value,
// this variable stores how many we've written so far.
write_state: U64WriteState,
},
/// At this point the reader just flushes the writer and gets ready to receive
/// the actual payload size that is about to be sent to us by transitioning to
/// the [`StderrReaderState::ReadingSize`] state.
FrameLenRequested,
/// The size is a u64 which is 8 bytes long, while it's likely that we will receive
/// the whole u64 in one read, it's possible that it will arrive in smaller chunks.
/// So in this state we read up to 8 bytes and transition to
/// [`StderrReaderState::ReadingPayload`] when done.
ReadingSize { buf: [u8; 8], filled: usize },
/// This is where we read the actual payload that is sent to us.
/// All of the previous states were just internal bookkeeping where we did not return
/// any data to the conumer, and only returned Poll::Pending.
///
/// Having read the full payload, progresses to the [`StderrReaderState::RequestingNextFrame`]
/// state to read the next frame when/if requested.
ReadingPayload {
/// Represents the remaining number of bytes we expect to read based on the value
/// read in the previous state.
remaining: u64,
/// Represents the remaining of padding we expect to read before switching back
/// to the RequestingNextFrame state.
pad: usize,
/// In an ideal case this reader does not allocate, but in the scenario where
/// we've read the whol payload frame but still have padding remaining, it's not
/// safe to return the payload to the consumer as there is risk that the reader
/// won't be called again, leaving dangling padding. In this case we store the
/// payload in this buffer until we've read the padding, and then return the data
/// from here.
tmp_buf: BytesMut,
},
}
impl StderrReaderState {
fn request_next_frame() -> Self {
Self::RequestingNextFrame {
write_state: U64WriteState {
bytes: STDERR_READ.to_le_bytes(),
written: 0,
},
}
}
fn read_written(len: u64) -> Self {
Self::RequestingFrameLen {
write_state: U64WriteState {
bytes: len.to_le_bytes(),
written: 0,
},
}
}
}
pin_project! {
/// Implements the reader protocol for STDERR_READ in nix protocol version 1.21..1.23.
///
/// See logging.md#stderr_read and [`StderrReaderState`] for details.
///
/// FUTUREWORK: As per the nix protocol, it should be possible to send logging messages
/// concurrently with reads, however this reader currently monopolizes the writer until eof is
/// reached or the writer is dropped. It's important we don't allow certain interleavings of
/// log writes, i.e. it's not ok to issue a log message right after we've requested
/// STDERR_READ, but before requesting the length.
pub struct StderrReadFramedReader<R, W> {
#[pin]
reader: R,
#[pin]
writer: W,
state: StderrReaderState
}
}
impl<R, W> StderrReadFramedReader<R, W> {
pub fn new(reader: R, writer: W) -> Self {
Self {
reader,
writer,
state: StderrReaderState::request_next_frame(),
}
}
}
impl<R: AsyncRead, W: AsyncWrite> AsyncRead for StderrReadFramedReader<R, W> {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
read_buf: &mut ReadBuf<'_>,
) -> Poll<Result<()>> {
loop {
let mut this = self.as_mut().project();
match this.state {
StderrReaderState::RequestingNextFrame { write_state } => {
write_state.written +=
ready!(this.writer.poll_write(cx, write_state.remaining()))?;
if write_state.written == 8 {
*this.state = StderrReaderState::read_written(read_buf.remaining() as u64);
}
}
StderrReaderState::RequestingFrameLen { write_state } => {
write_state.written +=
ready!(this.writer.poll_write(cx, write_state.remaining()))?;
if write_state.written == 8 {
*this.state = StderrReaderState::FrameLenRequested;
}
}
StderrReaderState::FrameLenRequested => {
ready!(this.writer.poll_flush(cx))?;
*this.state = StderrReaderState::ReadingSize {
buf: [0u8; 8],
filled: 0,
};
}
StderrReaderState::ReadingSize { buf, filled } => {
if *filled < buf.len() {
let mut size_buf = ReadBuf::new(buf);
size_buf.advance(*filled);
ready!(this.reader.poll_read(cx, &mut size_buf))?;
let bytes_read = size_buf.filled().len() - *filled;
if bytes_read == 0 {
// oef
return Poll::Ready(Ok(()));
}
*filled += bytes_read;
continue;
}
let size = u64::from_le_bytes(*buf);
if size == 0 {
// eof
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
let pad = (8 - (size % 8) as usize) % 8;
*this.state = StderrReaderState::ReadingPayload {
remaining: size,
pad,
tmp_buf: BytesMut::new(),
};
}
StderrReaderState::ReadingPayload {
remaining,
pad,
tmp_buf,
} => {
// Make sure we never try to read more than usize which is 4 bytes on 32-bit platforms.
let safe_remaining = if *remaining <= (usize::MAX - *pad) as u64 {
*remaining as usize + *pad
} else {
usize::MAX
};
if safe_remaining - *pad > 0 {
// The buffer is no larger than the amount of data that we expect.
// Otherwise we will trim the buffer below and come back here.
if read_buf.remaining() <= safe_remaining {
let filled_before = read_buf.filled().len();
ready!(this.reader.as_mut().poll_read(cx, read_buf))?;
let bytes_read = read_buf.filled().len() - filled_before;
let payload_size = std::cmp::min(bytes_read, safe_remaining - *pad);
// we don't want to include padding bytes in the result, so we remove them from read_buf.
read_buf.set_filled(filled_before + payload_size);
*remaining -= payload_size as u64;
if *remaining > 0 {
// We have more data to read so we just return ok, knowing that the consumer
// will read again.
return Poll::Ready(Ok(()));
}
// If we don't have any remaining data to read, consume any padding we may have just read.
*pad -= bytes_read - payload_size;
if *pad != 0 {
// We haven't read all the padding yet, so we stash it away to return to the caller
// once we've read the remaining padding.
tmp_buf.clear();
tmp_buf.put_slice(&read_buf.filled()[filled_before..payload_size]);
read_buf.set_filled(filled_before);
continue;
}
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
// Don't read more than remaining + pad bytes, it avoids unnecessary allocations and makes
// internal bookkeeping simpler.
let mut smaller_buf = read_buf.take(safe_remaining);
ready!(self.as_mut().poll_read(cx, &mut smaller_buf))?;
let bytes_read = smaller_buf.filled().len();
// SAFETY: we just read this number of bytes into read_buf's backing slice above.
unsafe { read_buf.assume_init(bytes_read) };
read_buf.advance(bytes_read);
return Poll::Ready(Ok(()));
} else if *pad > 0 {
// if we've read the whole payload but there is still padding remaining,
// we read it into a stack allocated array
let mut pad_arr = [0u8; 7];
let mut pad_buf = ReadBuf::new(&mut pad_arr);
pad_buf.advance(7 - *pad);
ready!(this.reader.poll_read(cx, &mut pad_buf))?;
*pad = pad_buf.remaining();
if *pad != 0 {
continue;
}
}
// now it's finally time to hand out the read data to the caller and reset to the RequestingNextFrame state.
read_buf.put_slice(tmp_buf);
tmp_buf.clear();
*this.state = StderrReaderState::request_next_frame();
return Poll::Ready(Ok(()));
}
}
}
}
}
#[cfg(test)]
mod tests {
use std::time::Duration;
use hex_literal::hex;
use tokio::io::{split, AsyncReadExt, BufReader};
use tokio_test::io::Builder;
use crate::{nix_daemon::framing::StderrReadFramedReader, worker_protocol::STDERR_READ};
#[tokio::test]
async fn test_single_two_byte_read_with_desired_size_ten() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&10u64.to_le_bytes())
.wait(Duration::ZERO)
// The client sent not 10 but 2 bytes
.read(&2u64.to_le_bytes())
// Immediately followed by the bytes and padding
.read("hi".as_bytes())
.read(&hex!("0000 0000 0000"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 2];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(2, n);
assert_eq!("hi".as_bytes(), result);
}
#[tokio::test]
async fn test_single_read_with_padding_delayed() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&10u64.to_le_bytes())
// The client sent 9 bytes not 10.
.read(&9u64.to_le_bytes())
// Immeditaly followed by bytes
.read(&hex!("0202 0104 ffff ffaa 00"))
// Followed by a delayed padding
.wait(Duration::ZERO)
.read(&hex!("0000 0000 0000 00"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 9];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(9, n);
assert_eq!(hex!("0202 0104 ffff ffaa 00"), result);
}
#[tokio::test]
async fn test_multiple_consecutive_reads_with_arbitrary_delays() {
let mock = Builder::new()
// The reader should first write STDERR_READ and requested number of bytes into the writer
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
.wait(Duration::ZERO)
// The client sends 6 bytes 'hello ' plus padding
.read(&6u64.to_le_bytes())
.wait(Duration::ZERO)
.read("hello ".as_bytes())
.read(&hex!("0000"))
// The reader sends desired length again
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
// The client sends 11 bytes 'racerunners' with 's' and padding delayed
.wait(Duration::ZERO)
.read(&11u64.to_le_bytes())
.read("racerunner".as_bytes())
.wait(Duration::ZERO)
.read("s".as_bytes())
.read(&hex!("0000 0000"))
.wait(Duration::ZERO)
.read(&hex!("00"))
.write(&STDERR_READ.to_le_bytes())
.write(&8192u64.to_le_bytes())
.wait(Duration::ZERO)
.read(&0u64.to_le_bytes())
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut res = String::new();
let mut buf_reader = BufReader::with_capacity(8192, &mut reader);
let n = buf_reader.read_to_string(&mut res).await.unwrap();
assert_eq!(17, n);
assert_eq!("hello racerunners", &res);
}
#[tokio::test]
async fn test_single_read_where_writing_stderr_and_desired_size_take_more_than_one_write() {
let stderr_bytes = STDERR_READ.to_le_bytes();
let length_bytes = 10u64.to_le_bytes();
let mock = Builder::new()
.write(&stderr_bytes[..4])
.wait(Duration::ZERO)
.write(&stderr_bytes[4..])
.wait(Duration::ZERO)
.write(&length_bytes[..4])
.wait(Duration::ZERO)
.write(&length_bytes[4..])
.wait(Duration::ZERO)
// The client sent not 10 but 2 bytes
.read(&2u64.to_le_bytes())
// Immediately followed by the bytes and padding
.read("hi".as_bytes())
.read(&hex!("0000 0000 0000"))
.build();
let (r, w) = split(mock);
let mut reader = StderrReadFramedReader::new(r, w);
let mut result = [0u8; 2];
let mut buf_reader = BufReader::with_capacity(10, &mut reader);
let n = buf_reader.read_exact(&mut result).await.unwrap();
assert_eq!(2, n);
assert_eq!("hi".as_bytes(), result);
}
#[tokio::test]
async fn hello() {}
}
|