1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.
use std::{collections::BTreeMap, rc::Rc};
use crate::{
chunk::Chunk,
errors::{Error, EvalResult},
opcode::OpCode,
value::{NixAttrs, NixList, NixString, Value},
};
pub struct VM {
ip: usize,
chunk: Chunk,
stack: Vec<Value>,
}
impl VM {
fn inc_ip(&mut self) -> OpCode {
let op = self.chunk.code[self.ip];
self.ip += 1;
op
}
fn peek(&self, at: usize) -> &Value {
&self.stack[self.stack.len() - 1 - at]
}
fn pop(&mut self) -> Value {
self.stack.pop().expect("TODO")
}
fn pop_number_pair(&mut self) -> EvalResult<NumberPair> {
let v2 = self.pop();
let v1 = self.pop();
match (v1, v2) {
(Value::Integer(i1), Value::Integer(i2)) => Ok(NumberPair::Integer(i1, i2)),
(Value::Float(f1), Value::Float(f2)) => Ok(NumberPair::Floats(f1, f2)),
(Value::Integer(i1), Value::Float(f2)) => Ok(NumberPair::Floats(i1 as f64, f2)),
(Value::Float(f1), Value::Integer(i2)) => Ok(NumberPair::Floats(f1, i2 as f64)),
(v1, v2) => Err(Error::TypeError {
expected: "number (either int or float)",
actual: if v1.is_number() {
v2.type_of()
} else {
v1.type_of()
},
}),
}
}
fn push(&mut self, value: Value) {
self.stack.push(value)
}
fn run(&mut self) -> EvalResult<Value> {
loop {
match self.inc_ip() {
OpCode::OpConstant(idx) => {
let c = self.chunk.constant(idx).clone();
self.push(c);
}
OpCode::OpAdd => match self.pop_number_pair()? {
NumberPair::Floats(f1, f2) => self.push(Value::Float(f1 + f2)),
NumberPair::Integer(i1, i2) => self.push(Value::Integer(i1 + i2)),
},
OpCode::OpSub => match self.pop_number_pair()? {
NumberPair::Floats(f1, f2) => self.push(Value::Float(f1 - f2)),
NumberPair::Integer(i1, i2) => self.push(Value::Integer(i1 - i2)),
},
OpCode::OpMul => match self.pop_number_pair()? {
NumberPair::Floats(f1, f2) => self.push(Value::Float(f1 * f2)),
NumberPair::Integer(i1, i2) => self.push(Value::Integer(i1 * i2)),
},
OpCode::OpDiv => match self.pop_number_pair()? {
NumberPair::Floats(f1, f2) => self.push(Value::Float(f1 / f2)),
NumberPair::Integer(i1, i2) => self.push(Value::Integer(i1 / i2)),
},
OpCode::OpInvert => {
let v = self.pop().as_bool()?;
self.push(Value::Bool(!v));
}
OpCode::OpNegate => match self.pop() {
Value::Integer(i) => self.push(Value::Integer(-i)),
Value::Float(f) => self.push(Value::Float(-f)),
v => {
return Err(Error::TypeError {
expected: "number (either int or float)",
actual: v.type_of(),
})
}
},
OpCode::OpEqual => {
let v2 = self.pop();
let v1 = self.pop();
let eq = match (v1, v2) {
(Value::Float(f), Value::Integer(i))
| (Value::Integer(i), Value::Float(f)) => f == (i as f64),
(v1, v2) => v1 == v2,
};
self.push(Value::Bool(eq))
}
OpCode::OpNull => self.push(Value::Null),
OpCode::OpTrue => self.push(Value::Bool(true)),
OpCode::OpFalse => self.push(Value::Bool(false)),
OpCode::OpAttrs(count) => self.run_attrset(count)?,
OpCode::OpAttrPath(count) => self.run_attr_path(count)?,
OpCode::OpList(count) => self.run_list(count)?,
OpCode::OpInterpolate(count) => self.run_interpolate(count)?,
}
if self.ip == self.chunk.code.len() {
return Ok(self.pop());
}
}
}
// Construct runtime representation of an attr path (essentially
// just a list of strings).
//
// The difference to the list construction operation is that this
// forces all elements into strings, as attribute set keys are
// required to be strict in Nix.
fn run_attr_path(&mut self, count: usize) -> EvalResult<()> {
debug_assert!(count > 1, "AttrPath needs at least two fragments");
let mut path = Vec::with_capacity(count);
for _ in 0..count {
path.push(self.pop().as_string()?);
}
self.push(Value::AttrPath(path));
Ok(())
}
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
// If the attribute count happens to be 2, we might be able to
// create the optimised name/value struct instead.
if count == 2 {
// When determining whether we are dealing with a
// name/value pair, we return the stack locations of name
// and value, using `0` as a sentinel value (i.e. if
// either is 0, we are dealing with some other attrset).
let is_pair = {
// The keys are located 1 & 3 values back in the
// stack.
let k1 = self.peek(1);
let k2 = self.peek(3);
match (k1, k2) {
(Value::String(NixString(s1)), Value::String(NixString(s2)))
if (s1 == "name" && s2 == "value") =>
{
(1, 2)
}
(Value::String(NixString(s1)), Value::String(NixString(s2)))
if (s1 == "value" && s2 == "name") =>
{
(2, 1)
}
// Technically this branch lets type errors pass,
// but they will be caught during normal attribute
// set construction instead.
_ => (0, 0),
}
};
match is_pair {
(1, 2) => {
// The value of 'name' is at stack slot 0, the
// value of 'value' is at stack slot 2.
let pair = Value::Attrs(Rc::new(NixAttrs::KV {
name: self.pop(),
value: {
self.pop(); // ignore the key
self.pop()
},
}));
// Clean up the last key fragment.
self.pop();
self.push(pair);
return Ok(());
}
(2, 1) => {
// The value of 'name' is at stack slot 2, the
// value of 'value' is at stack slot 0.
let pair = Value::Attrs(Rc::new(NixAttrs::KV {
value: self.pop(),
name: {
self.pop(); // ignore the key
self.pop()
},
}));
// Clean up the last key fragment.
self.pop();
self.push(pair);
return Ok(());
}
_ => {}
}
}
let mut attrs: BTreeMap<NixString, Value> = BTreeMap::new();
for _ in 0..count {
let value = self.pop();
// It is at this point that nested attribute sets need to
// be constructed (if they exist).
//
let key = self.pop();
match key {
Value::String(ks) => {
// TODO(tazjin): try_insert (rust#82766) or entry API
if attrs.insert(ks.clone(), value).is_some() {
return Err(Error::DuplicateAttrsKey { key: ks.0 });
}
}
Value::AttrPath(mut path) => {
set_nested_attr(
&mut attrs,
path.pop().expect("AttrPath is never empty"),
path,
value,
)?;
}
other => {
return Err(Error::InvalidKeyType {
given: other.type_of(),
})
}
}
}
// TODO(tazjin): extend_reserve(count) (rust#72631)
self.push(Value::Attrs(Rc::new(NixAttrs::Map(attrs))));
Ok(())
}
// Interpolate string fragments by popping the specified number of
// fragments of the stack, evaluating them to strings, and pushing
// the concatenated result string back on the stack.
fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
let mut out = String::new();
for _ in 0..count {
out.push_str(&self.pop().as_string()?.0);
}
self.push(Value::String(NixString(out)));
Ok(())
}
// Construct runtime representation of a list. Because the list
// items are on the stack in reverse order, the vector is created
// initialised and elements are directly assigned to their
// respective indices.
fn run_list(&mut self, count: usize) -> EvalResult<()> {
let mut list = vec![Value::Null; count];
for idx in 0..count {
list[count - idx - 1] = self.pop();
}
self.push(Value::List(NixList(list)));
Ok(())
}
}
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum NumberPair {
Floats(f64, f64),
Integer(i64, i64),
}
// Set a nested attribute inside of an attribute set, throwing a
// duplicate key error if a non-hashmap entry already exists on the
// path.
//
// There is some optimisation potential for this simple implementation
// if it becomes a problem.
fn set_nested_attr(
attrs: &mut BTreeMap<NixString, Value>,
key: NixString,
mut path: Vec<NixString>,
value: Value,
) -> EvalResult<()> {
let entry = attrs.entry(key);
// If there is no next key we are at the point where we
// should insert the value itself.
if path.is_empty() {
match entry {
std::collections::btree_map::Entry::Occupied(entry) => {
return Err(Error::DuplicateAttrsKey {
key: entry.key().0.clone(),
})
}
std::collections::btree_map::Entry::Vacant(entry) => {
entry.insert(value);
return Ok(());
}
};
}
// If there is not we go one step further down, in which case we
// need to ensure that there either is no entry, or the existing
// entry is a hashmap into which to insert the next value.
//
// If a value of a different type exists, the user specified a
// duplicate key.
match entry {
// Vacant entry -> new attribute set is needed.
std::collections::btree_map::Entry::Vacant(entry) => {
let mut map = BTreeMap::new();
// TODO(tazjin): technically recursing further is not
// required, we can create the whole hierarchy here, but
// it's noisy.
set_nested_attr(&mut map, path.pop().expect("next key exists"), path, value)?;
entry.insert(Value::Attrs(Rc::new(NixAttrs::Map(map))));
}
// Occupied entry: Either error out if there is something
// other than attrs, or insert the next value.
std::collections::btree_map::Entry::Occupied(mut entry) => match entry.get_mut() {
Value::Attrs(_attrs) => {
todo!("implement mutable attrsets")
}
_ => {
return Err(Error::DuplicateAttrsKey {
key: entry.key().0.clone(),
})
}
},
}
Ok(())
}
pub fn run_chunk(chunk: Chunk) -> EvalResult<Value> {
let mut vm = VM {
chunk,
ip: 0,
stack: vec![],
};
vm.run()
}
|