1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
|
//! This module implements the virtual (or abstract) machine that runs
//! Tvix bytecode.
use std::rc::Rc;
use crate::{
chunk::Chunk,
errors::{ErrorKind, EvalResult},
opcode::OpCode,
value::{Lambda, NixAttrs, NixList, Value},
};
#[cfg(feature = "disassembler")]
use crate::disassembler::Tracer;
struct CallFrame {
lambda: Lambda,
ip: usize,
stack_offset: usize,
}
pub struct VM {
frames: Vec<CallFrame>,
stack: Vec<Value>,
// Stack indices of attribute sets from which variables should be
// dynamically resolved (`with`).
with_stack: Vec<usize>,
}
macro_rules! arithmetic_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
let result = arithmetic_op!(a, b, $op);
$self.push(result);
}};
( $a:ident, $b:ident, $op:tt ) => {{
match ($a, $b) {
(Value::Integer(i1), Value::Integer(i2)) => Value::Integer(i1 $op i2),
(Value::Float(f1), Value::Float(f2)) => Value::Float(f1 $op f2),
(Value::Integer(i1), Value::Float(f2)) => Value::Float(i1 as f64 $op f2),
(Value::Float(f1), Value::Integer(i2)) => Value::Float(f1 $op i2 as f64),
(v1, v2) => return Err(ErrorKind::TypeError {
expected: "number (either int or float)",
actual: if v1.is_number() {
v2.type_of()
} else {
v1.type_of()
},
}.into()),
}
}};
}
macro_rules! cmp_op {
( $self:ident, $op:tt ) => {{
let b = $self.pop();
let a = $self.pop();
// Comparable (in terms of ordering) values are numbers and
// strings. Numbers need to be coerced similarly to arithmetic
// ops if mixed types are encountered.
let result = match (a, b) {
(Value::Integer(i1), Value::Integer(i2)) => i1 $op i2,
(Value::Float(f1), Value::Float(f2)) => f1 $op f2,
(Value::Integer(i1), Value::Float(f2)) => (i1 as f64) $op f2,
(Value::Float(f1), Value::Integer(i2)) => f1 $op (i2 as f64),
(Value::String(s1), Value::String(s2)) => s1 $op s2,
(lhs, rhs) => return Err(ErrorKind::Incomparable {
lhs: lhs.type_of(),
rhs: rhs.type_of(),
}.into()),
};
$self.push(Value::Bool(result));
}};
}
impl VM {
fn frame(&self) -> &CallFrame {
&self.frames[self.frames.len() - 1]
}
fn chunk(&self) -> &Chunk {
&self.frame().lambda.chunk
}
fn frame_mut(&mut self) -> &mut CallFrame {
let idx = self.frames.len() - 1;
&mut self.frames[idx]
}
fn inc_ip(&mut self) -> OpCode {
let op = self.chunk().code[self.frame().ip];
self.frame_mut().ip += 1;
op
}
fn pop(&mut self) -> Value {
self.stack.pop().expect("runtime stack empty")
}
fn push(&mut self, value: Value) {
self.stack.push(value)
}
fn peek(&self, offset: usize) -> &Value {
&self.stack[self.stack.len() - 1 - offset]
}
fn call(&mut self, lambda: Lambda, arg_count: usize) {
let frame = CallFrame {
lambda,
ip: 0,
stack_offset: self.stack.len() - arg_count,
};
self.frames.push(frame);
}
fn run(&mut self) -> EvalResult<Value> {
#[cfg(feature = "disassembler")]
let mut tracer = Tracer::new();
'dispatch: loop {
if self.frame().ip == self.chunk().code.len() {
// If this is the end of the top-level function,
// return, otherwise pop the call frame.
if self.frames.len() == 1 {
return Ok(self.pop());
}
self.frames.pop();
continue;
}
let op = self.inc_ip();
match op {
OpCode::OpConstant(idx) => {
let c = self.chunk().constant(idx).clone();
self.push(c);
}
OpCode::OpPop => {
self.pop();
}
OpCode::OpAdd => {
let b = self.pop();
let a = self.pop();
let result = if let (Value::String(s1), Value::String(s2)) = (&a, &b) {
Value::String(s1.concat(s2))
} else {
arithmetic_op!(a, b, +)
};
self.push(result)
}
OpCode::OpSub => arithmetic_op!(self, -),
OpCode::OpMul => arithmetic_op!(self, *),
OpCode::OpDiv => arithmetic_op!(self, /),
OpCode::OpInvert => {
let v = self.pop().as_bool()?;
self.push(Value::Bool(!v));
}
OpCode::OpNegate => match self.pop() {
Value::Integer(i) => self.push(Value::Integer(-i)),
Value::Float(f) => self.push(Value::Float(-f)),
v => {
return Err(ErrorKind::TypeError {
expected: "number (either int or float)",
actual: v.type_of(),
}
.into())
}
},
OpCode::OpEqual => {
let v2 = self.pop();
let v1 = self.pop();
self.push(Value::Bool(v1 == v2))
}
OpCode::OpLess => cmp_op!(self, <),
OpCode::OpLessOrEq => cmp_op!(self, <=),
OpCode::OpMore => cmp_op!(self, >),
OpCode::OpMoreOrEq => cmp_op!(self, >=),
OpCode::OpNull => self.push(Value::Null),
OpCode::OpTrue => self.push(Value::Bool(true)),
OpCode::OpFalse => self.push(Value::Bool(false)),
OpCode::OpAttrs(count) => self.run_attrset(count)?,
OpCode::OpAttrPath(count) => self.run_attr_path(count)?,
OpCode::OpAttrsUpdate => {
let rhs = self.pop().to_attrs()?;
let lhs = self.pop().to_attrs()?;
self.push(Value::Attrs(Rc::new(lhs.update(&rhs))))
}
OpCode::OpAttrsSelect => {
let key = self.pop().to_string()?;
let attrs = self.pop().to_attrs()?;
match attrs.select(key.as_str()) {
Some(value) => self.push(value.clone()),
None => {
return Err(ErrorKind::AttributeNotFound {
name: key.as_str().to_string(),
}
.into())
}
}
}
OpCode::OpAttrOrNotFound => {
let key = self.pop().to_string()?;
let value = match self.pop() {
Value::Attrs(attrs) => match attrs.select(key.as_str()) {
Some(value) => value.clone(),
None => Value::NotFound,
},
_ => Value::NotFound,
};
self.push(value);
}
OpCode::OpAttrsIsSet => {
let key = self.pop().to_string()?;
let result = match self.pop() {
Value::Attrs(attrs) => attrs.contains(key.as_str()),
// Nix allows use of `?` on non-set types, but
// always returns false in those cases.
_ => false,
};
self.push(Value::Bool(result));
}
OpCode::OpList(count) => {
let list =
NixList::construct(count, self.stack.split_off(self.stack.len() - count));
self.push(Value::List(list));
}
OpCode::OpConcat => {
let rhs = self.pop().to_list()?;
let lhs = self.pop().to_list()?;
self.push(Value::List(lhs.concat(&rhs)))
}
OpCode::OpInterpolate(count) => self.run_interpolate(count)?,
OpCode::OpJump(offset) => {
self.frame_mut().ip += offset;
}
OpCode::OpJumpIfTrue(offset) => {
if self.peek(0).as_bool()? {
self.frame_mut().ip += offset;
}
}
OpCode::OpJumpIfFalse(offset) => {
if !self.peek(0).as_bool()? {
self.frame_mut().ip += offset;
}
}
OpCode::OpJumpIfNotFound(offset) => {
if matches!(self.peek(0), Value::NotFound) {
self.pop();
self.frame_mut().ip += offset;
}
}
// These assertion operations error out if the stack
// top is not of the expected type. This is necessary
// to implement some specific behaviours of Nix
// exactly.
OpCode::OpAssertBool => {
let val = self.peek(0);
if !val.is_bool() {
return Err(ErrorKind::TypeError {
expected: "bool",
actual: val.type_of(),
}
.into());
}
}
// Remove the given number of elements from the stack,
// but retain the top value.
OpCode::OpCloseScope(count) => {
// Immediately move the top value into the right
// position.
let target_idx = self.stack.len() - 1 - count;
self.stack[target_idx] = self.pop();
// Then drop the remaining values.
for _ in 0..(count - 1) {
self.pop();
}
}
OpCode::OpGetLocal(local_idx) => {
let idx = self.frame().stack_offset + local_idx;
let value = self.stack[idx].clone();
self.push(value)
}
OpCode::OpPushWith(idx) => self.with_stack.push(idx),
OpCode::OpPopWith => {
self.with_stack.pop();
}
OpCode::OpResolveWith => {
let ident = self.pop().to_string()?;
// Attempt to resolve the variable, starting at
// the back of the with_stack.
'with: for idx in self.with_stack.iter().rev() {
let with = self.stack[*idx].as_attrs()?;
match with.select(ident.as_str()) {
None => continue 'with,
Some(val) => {
self.push(val.clone());
continue 'dispatch;
}
}
}
return Err(ErrorKind::UnknownDynamicVariable(ident.to_string()).into());
}
OpCode::OpAssert => {
if !self.pop().as_bool()? {
return Err(ErrorKind::AssertionFailed.into());
}
}
OpCode::OpCall => {
let callable = self.pop();
match callable {
Value::Lambda(lambda) => self.call(lambda, 1),
Value::Builtin(builtin) => {
let arg = self.pop();
let result = builtin.apply(arg)?;
self.push(result);
}
_ => return Err(ErrorKind::NotCallable.into()),
};
}
}
#[cfg(feature = "disassembler")]
{
tracer.trace(&op, self.frame().ip, &self.stack);
}
}
}
// Construct runtime representation of an attr path (essentially
// just a list of strings).
//
// The difference to the list construction operation is that this
// forces all elements into strings, as attribute set keys are
// required to be strict in Nix.
fn run_attr_path(&mut self, count: usize) -> EvalResult<()> {
debug_assert!(count > 1, "AttrPath needs at least two fragments");
let mut path = Vec::with_capacity(count);
for _ in 0..count {
path.push(self.pop().to_string()?);
}
self.push(Value::AttrPath(path));
Ok(())
}
fn run_attrset(&mut self, count: usize) -> EvalResult<()> {
let attrs = NixAttrs::construct(count, self.stack.split_off(self.stack.len() - count * 2))?;
self.push(Value::Attrs(Rc::new(attrs)));
Ok(())
}
// Interpolate string fragments by popping the specified number of
// fragments of the stack, evaluating them to strings, and pushing
// the concatenated result string back on the stack.
fn run_interpolate(&mut self, count: usize) -> EvalResult<()> {
let mut out = String::new();
for _ in 0..count {
out.push_str(self.pop().to_string()?.as_str());
}
self.push(Value::String(out.into()));
Ok(())
}
}
pub fn run_lambda(lambda: Lambda) -> EvalResult<Value> {
let mut vm = VM {
frames: vec![],
stack: vec![],
with_stack: vec![],
};
vm.call(lambda, 0);
vm.run()
}
|