1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
|
//! This module implements Nix language strings.
//!
//! Nix language strings never need to be modified on the language
//! level, allowing us to shave off some memory overhead and only
//! paying the cost when creating new strings.
use bstr::{BStr, BString, ByteSlice, Chars};
use nohash_hasher::BuildNoHashHasher;
use rnix::ast;
use rustc_hash::FxHashSet;
use rustc_hash::FxHasher;
use std::alloc::dealloc;
use std::alloc::{alloc, handle_alloc_error, Layout};
use std::borrow::{Borrow, Cow};
use std::cell::RefCell;
use std::ffi::c_void;
use std::fmt::{self, Debug, Display};
use std::hash::{Hash, Hasher};
use std::ops::Deref;
use std::ptr::{self, NonNull};
use std::slice;
use serde::de::{Deserializer, Visitor};
use serde::{Deserialize, Serialize};
#[derive(Clone, Debug, Serialize, Hash, PartialEq, Eq)]
pub enum NixContextElement {
/// A plain store path (e.g. source files copied to the store)
Plain(String),
/// Single output of a derivation, represented by its name and its derivation path.
Single { name: String, derivation: String },
/// A reference to a complete derivation
/// including its source and its binary closure.
/// It is used for the `drvPath` attribute context.
/// The referred string is the store path to
/// the derivation path.
Derivation(String),
}
/// Nix context strings representation in Tvix. This tracks a set of different kinds of string
/// dependencies that we can come across during manipulation of our language primitives, mostly
/// strings. There's some simple algebra of context strings and how they propagate w.r.t. primitive
/// operations, e.g. concatenation, interpolation and other string operations.
#[repr(transparent)]
#[derive(Clone, Debug, Serialize, Default)]
pub struct NixContext(FxHashSet<NixContextElement>);
impl From<NixContextElement> for NixContext {
fn from(value: NixContextElement) -> Self {
let mut set = FxHashSet::default();
set.insert(value);
Self(set)
}
}
impl From<FxHashSet<NixContextElement>> for NixContext {
fn from(value: FxHashSet<NixContextElement>) -> Self {
Self(value)
}
}
impl<const N: usize> From<[NixContextElement; N]> for NixContext {
fn from(value: [NixContextElement; N]) -> Self {
let mut set = FxHashSet::default();
for elt in value {
set.insert(elt);
}
Self(set)
}
}
impl NixContext {
/// Creates an empty context that can be populated
/// and passed to form a contextful [NixString], albeit
/// if the context is concretly empty, the resulting [NixString]
/// will be contextless.
pub fn new() -> Self {
Self::default()
}
/// For internal consumers, we let people observe
/// if the [NixContext] is actually empty or not
/// to decide whether they want to skip the allocation
/// of a full blown [HashSet].
pub(crate) fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Consumes a new [NixContextElement] and add it if not already
/// present in this context.
pub fn append(mut self, other: NixContextElement) -> Self {
self.0.insert(other);
self
}
/// Extends the existing context with more context elements.
pub fn extend<T>(&mut self, iter: T)
where
T: IntoIterator<Item = NixContextElement>,
{
self.0.extend(iter)
}
/// Copies from another [NixString] its context strings
/// in this context.
pub fn mimic(&mut self, other: &NixString) {
if let Some(context) = other.context() {
self.extend(context.iter().cloned());
}
}
/// Iterates over "plain" context elements, e.g. sources imported
/// in the store without more information, i.e. `toFile` or coerced imported paths.
/// It yields paths to the store.
pub fn iter_plain(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|elt| {
if let NixContextElement::Plain(s) = elt {
Some(s.as_str())
} else {
None
}
})
}
/// Iterates over "full derivations" context elements, e.g. something
/// referring to their `drvPath`, i.e. their full sources and binary closure.
/// It yields derivation paths.
pub fn iter_derivation(&self) -> impl Iterator<Item = &str> {
self.iter().filter_map(|elt| {
if let NixContextElement::Derivation(s) = elt {
Some(s.as_str())
} else {
None
}
})
}
/// Iterates over "single" context elements, e.g. single derived paths,
/// or also known as the single output of a given derivation.
/// The first element of the tuple is the output name
/// and the second element is the derivation path.
pub fn iter_single_outputs(&self) -> impl Iterator<Item = (&str, &str)> {
self.iter().filter_map(|elt| {
if let NixContextElement::Single { name, derivation } = elt {
Some((name.as_str(), derivation.as_str()))
} else {
None
}
})
}
/// Iterates over any element of the context.
pub fn iter(&self) -> impl Iterator<Item = &NixContextElement> {
self.0.iter()
}
/// Produces a list of owned references to this current context,
/// no matter its type.
pub fn to_owned_references(self) -> Vec<String> {
self.0
.into_iter()
.map(|ctx| match ctx {
NixContextElement::Derivation(drv_path) => drv_path,
NixContextElement::Plain(store_path) => store_path,
NixContextElement::Single { derivation, .. } => derivation,
})
.collect()
}
}
impl IntoIterator for NixContext {
type Item = NixContextElement;
type IntoIter = std::collections::hash_set::IntoIter<NixContextElement>;
fn into_iter(self) -> Self::IntoIter {
self.0.into_iter()
}
}
/// This type is never instantiated, but serves to document the memory layout of the actual heap
/// allocation for Nix strings.
#[allow(dead_code)]
struct NixStringInner {
/// The string context, if any. Note that this is boxed to take advantage of the null pointer
/// niche, otherwise this field ends up being very large:
///
/// ```notrust
/// >> std::mem::size_of::<Option<HashSet<String>>>()
/// 48
///
/// >> std::mem::size_of::<Option<Box<HashSet<String>>>>()
/// 8
/// ```
context: Option<Box<NixContext>>,
/// The length of the data, stored *inline in the allocation*
length: usize,
/// The actual data for the string itself. Will always be `length` bytes long
data: [u8],
}
#[allow(clippy::zst_offset)]
impl NixStringInner {
/// Construct a [`Layout`] for a nix string allocation with the given length.
///
/// Returns a tuple of:
/// 1. The layout itself.
/// 2. The offset of [`Self::length`] within the allocation, assuming the allocation starts at 0
/// 3. The offset of the data array within the allocation, assuming the allocation starts at 0
fn layout(len: usize) -> (Layout, usize, usize) {
let layout = Layout::new::<Option<Box<NixContext>>>();
let (layout, len_offset) = layout.extend(Layout::new::<usize>()).unwrap();
let (layout, data_offset) = layout.extend(Layout::array::<u8>(len).unwrap()).unwrap();
(layout, len_offset, data_offset)
}
/// Returns the [`Layout`] for an *already-allocated* nix string, loading the length from the
/// pointer.
///
/// Returns a tuple of:
/// 1. The layout itself.
/// 2. The offset of [`Self::length`] within the allocation, assuming the allocation starts at 0
/// 3. The offset of the data array within the allocation, assuming the allocation starts at 0
///
/// # Safety
///
/// This function must only be called on a pointer that has been properly initialized with
/// [`Self::alloc`]. The data buffer may not necessarily be initialized
unsafe fn layout_of(this: NonNull<c_void>) -> (Layout, usize, usize) {
let layout = Layout::new::<Option<Box<NixContext>>>();
let (_, len_offset) = layout.extend(Layout::new::<usize>()).unwrap();
// SAFETY: Layouts are linear, so even though we haven't involved data at all yet, we know
// the len_offset is a valid offset into the second field of the allocation
let len = *(this.as_ptr().add(len_offset) as *const usize);
Self::layout(len)
}
/// Allocate an *uninitialized* nix string with the given length. Writes the length to the
/// length value in the pointer, but leaves both context and data uninitialized
///
/// This function is safe to call (as constructing pointers of any sort of validity is always
/// safe in Rust) but it is unsafe to use the resulting pointer to do anything other than
///
/// 1. Read the length
/// 2. Write the context
/// 3. Write the data
///
/// until the string is fully initialized
fn alloc(len: usize) -> NonNull<c_void> {
let (layout, len_offset, _data_offset) = Self::layout(len);
debug_assert_ne!(layout.size(), 0);
unsafe {
// SAFETY: Layout has non-zero size, since the layout of the context and the
// layout of the len both have non-zero size
let ptr = alloc(layout);
if let Some(this) = NonNull::new(ptr as *mut _) {
// SAFETY: We've allocated with a layout that causes the len_offset to be in-bounds
// and writeable, and if the allocation succeeded it won't wrap
((this.as_ptr() as *mut u8).add(len_offset) as *mut usize).write(len);
debug_assert_eq!(Self::len(this), len);
this
} else {
handle_alloc_error(layout);
}
}
}
/// Deallocate the Nix string at the given pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`]
unsafe fn dealloc(this: NonNull<c_void>) {
let (layout, _, _) = Self::layout_of(this);
// SAFETY: okay because of the safety guarantees of this method
dealloc(this.as_ptr() as *mut u8, layout)
}
/// Return the length of the Nix string at the given pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`]
unsafe fn len(this: NonNull<c_void>) -> usize {
let (_, len_offset, _) = Self::layout_of(this);
// SAFETY: As long as the safety guarantees of this method are upheld, we've allocated with
// a layout that causes the len_offset to be in-bounds and writeable, and if the allocation
// succeeded it won't wrap
*(this.as_ptr().add(len_offset) as *const usize)
}
/// Return a pointer to the context value within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`]
unsafe fn context_ptr(this: NonNull<c_void>) -> *mut Option<Box<NixContext>> {
// SAFETY: The context is the first field in the layout of the allocation
this.as_ptr() as *mut Option<Box<NixContext>>
}
/// Construct a shared reference to the context value within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`], and where the context has been properly initialized (by writing to the
/// pointer returned from [`Self::context_ptr`]).
///
/// Also, all the normal Rust rules about pointer-to-reference conversion apply. See
/// [`NonNull::as_ref`] for more.
unsafe fn context_ref<'a>(this: NonNull<c_void>) -> &'a Option<Box<NixContext>> {
Self::context_ptr(this).as_ref().unwrap()
}
/// Construct a mutable reference to the context value within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`], and where the context has been properly initialized (by writing to the
/// pointer returned from [`Self::context_ptr`]).
///
/// Also, all the normal Rust rules about pointer-to-reference conversion apply. See
/// [`NonNull::as_mut`] for more.
unsafe fn context_mut<'a>(this: NonNull<c_void>) -> &'a mut Option<Box<NixContext>> {
Self::context_ptr(this).as_mut().unwrap()
}
/// Return a pointer to the data array within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`]
unsafe fn data_ptr(this: NonNull<c_void>) -> *mut u8 {
let (_, _, data_offset) = Self::layout_of(this);
// SAFETY: data is the third field in the layout of the allocation
this.as_ptr().add(data_offset) as *mut u8
}
/// Construct a shared reference to the data slice within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`], and where the data array has been properly initialized (by writing to the
/// pointer returned from [`Self::data_ptr`]).
///
/// Also, all the normal Rust rules about pointer-to-reference conversion apply. See
/// [`slice::from_raw_parts`] for more.
unsafe fn data_slice<'a>(this: NonNull<c_void>) -> &'a [u8] {
let len = Self::len(this);
let data = Self::data_ptr(this);
slice::from_raw_parts(data, len)
}
/// Construct a mutable reference to the data slice within the given Nix string pointer
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`], and where the data array has been properly initialized (by writing to the
/// pointer returned from [`Self::data_ptr`]).
///
/// Also, all the normal Rust rules about pointer-to-reference conversion apply. See
/// [`slice::from_raw_parts_mut`] for more.
#[allow(dead_code)]
unsafe fn data_slice_mut<'a>(this: NonNull<c_void>) -> &'a mut [u8] {
let len = Self::len(this);
let data = Self::data_ptr(this);
slice::from_raw_parts_mut(data, len)
}
/// Clone the Nix string pointed to by this pointer, and return a pointer to a new Nix string
/// containing the same data and context.
///
/// # Safety
///
/// This function must only be called with a pointer that has been properly initialized with
/// [`Self::alloc`], and where the context has been properly initialized (by writing to the
/// pointer returned from [`Self::context_ptr`]), and the data array has been properly
/// initialized (by writing to the pointer returned from [`Self::data_ptr`]).
unsafe fn clone(this: NonNull<c_void>) -> NonNull<c_void> {
let (layout, _, _) = Self::layout_of(this);
let ptr = alloc(layout);
if let Some(new) = NonNull::new(ptr as *mut _) {
ptr::copy_nonoverlapping(this.as_ptr(), new.as_ptr(), layout.size());
Self::context_ptr(new).write(Self::context_ref(this).clone());
new
} else {
handle_alloc_error(layout);
}
}
}
#[derive(Default)]
struct InternerInner {
#[allow(clippy::disallowed_types)] // Not using the default hasher
map: std::collections::HashMap<u64, NonNull<c_void>, BuildNoHashHasher<u64>>,
#[cfg(feature = "no_leak")]
#[allow(clippy::disallowed_types)] // Not using the default hasher
interned_strings: FxHashSet<NonNull<c_void>>,
}
unsafe impl Send for InternerInner {}
fn hash<T>(s: T) -> u64
where
T: Hash,
{
let mut hasher = FxHasher::default();
s.hash(&mut hasher);
hasher.finish()
}
impl InternerInner {
pub fn intern(&mut self, s: &[u8]) -> NixString {
let hash = hash(s);
if let Some(s) = self.map.get(&hash) {
return NixString(*s);
}
let string = NixString::new_inner(s, None);
self.map.insert(hash, string.0);
#[cfg(feature = "no_leak")]
self.interned_strings.insert(string.0);
string
}
}
#[derive(Default)]
struct Interner(RefCell<InternerInner>);
impl Interner {
pub fn intern(&self, s: &[u8]) -> NixString {
self.0.borrow_mut().intern(s)
}
#[cfg(feature = "no_leak")]
pub fn is_interned_string(&self, string: &NixString) -> bool {
self.0.borrow().interned_strings.contains(&string.0)
}
}
thread_local! {
static INTERNER: Interner = Interner::default();
}
/// Nix string values
///
/// # Internals
///
/// For performance reasons (to keep allocations small, and to avoid indirections), [`NixString`] is
/// represented as a single *thin* pointer to a packed data structure containing the
/// [context][NixContext] and the string data itself (which is a raw byte array, to match the Nix
/// string semantics that allow any array of bytes to be represented by a string).
/// This memory representation is documented in [`NixStringInner`], but since Rust prefers to deal
/// with slices via *fat pointers* (pointers that include the length in the *pointer*, not in the
/// heap allocation), we have to do mostly manual layout management and allocation for this
/// representation. See the documentation for the methods of [`NixStringInner`] for more information
pub struct NixString(NonNull<c_void>);
unsafe impl Send for NixString {}
unsafe impl Sync for NixString {}
impl Drop for NixString {
#[cfg(not(feature = "no_leak"))]
fn drop(&mut self) {
if self.context().is_some() {
// SAFETY: There's no way to construct a NixString that doesn't leave the allocation correct
// according to the rules of dealloc
unsafe {
NixStringInner::dealloc(self.0);
}
}
}
#[cfg(feature = "no_leak")]
fn drop(&mut self) {
if INTERNER.with(|i| i.is_interned_string(self)) {
return;
}
// SAFETY: There's no way to construct a NixString that doesn't leave the allocation correct
// according to the rules of dealloc
unsafe {
NixStringInner::dealloc(self.0);
}
}
}
impl Clone for NixString {
fn clone(&self) -> Self {
if cfg!(feature = "no_leak") || self.context().is_some() {
// SAFETY: There's no way to construct a NixString that doesn't leave the allocation correct
// according to the rules of clone
unsafe { Self(NixStringInner::clone(self.0)) }
} else {
// SAFETY:
//
// - NixStrings are never mutated
// - NixStrings are never freed
Self(self.0)
}
}
}
impl Debug for NixString {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if let Some(ctx) = self.context() {
f.debug_struct("NixString")
.field("context", ctx)
.field("data", &self.as_bstr())
.finish()
} else {
write!(f, "{:?}", self.as_bstr())
}
}
}
impl PartialEq for NixString {
fn eq(&self, other: &Self) -> bool {
self.0 == other.0 || self.as_bstr() == other.as_bstr()
}
}
impl Eq for NixString {}
impl PartialEq<&[u8]> for NixString {
fn eq(&self, other: &&[u8]) -> bool {
**self == **other
}
}
impl PartialEq<&str> for NixString {
fn eq(&self, other: &&str) -> bool {
**self == other.as_bytes()
}
}
impl PartialOrd for NixString {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for NixString {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
if self.0 == other.0 {
return std::cmp::Ordering::Equal;
}
self.as_bstr().cmp(other.as_bstr())
}
}
impl From<Box<BStr>> for NixString {
fn from(value: Box<BStr>) -> Self {
Self::new(&value, None)
}
}
impl From<BString> for NixString {
fn from(value: BString) -> Self {
Self::new(&value, None)
}
}
impl From<&BStr> for NixString {
fn from(value: &BStr) -> Self {
value.to_owned().into()
}
}
impl From<&[u8]> for NixString {
fn from(value: &[u8]) -> Self {
Self::from(value.to_owned())
}
}
impl From<Vec<u8>> for NixString {
fn from(value: Vec<u8>) -> Self {
value.into_boxed_slice().into()
}
}
impl From<Box<[u8]>> for NixString {
fn from(value: Box<[u8]>) -> Self {
Self::new(&value, None)
}
}
impl From<&str> for NixString {
fn from(s: &str) -> Self {
s.as_bytes().into()
}
}
impl From<String> for NixString {
fn from(s: String) -> Self {
s.into_bytes().into()
}
}
impl<T> From<(T, Option<Box<NixContext>>)> for NixString
where
NixString: From<T>,
{
fn from((s, ctx): (T, Option<Box<NixContext>>)) -> Self {
Self::new(NixString::from(s).as_ref(), ctx)
}
}
impl From<Box<str>> for NixString {
fn from(s: Box<str>) -> Self {
s.into_boxed_bytes().into()
}
}
impl From<ast::Ident> for NixString {
fn from(ident: ast::Ident) -> Self {
ident.ident_token().unwrap().text().into()
}
}
impl<'a> From<&'a NixString> for &'a BStr {
fn from(s: &'a NixString) -> Self {
s.as_bstr()
}
}
// No impl From<NixString> for String, that one quotes.
impl From<NixString> for BString {
fn from(s: NixString) -> Self {
s.as_bstr().to_owned()
}
}
impl AsRef<[u8]> for NixString {
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
impl Borrow<BStr> for NixString {
fn borrow(&self) -> &BStr {
self.as_bstr()
}
}
impl Hash for NixString {
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.as_bstr().hash(state)
}
}
impl<'de> Deserialize<'de> for NixString {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: Deserializer<'de>,
{
struct StringVisitor;
impl<'de> Visitor<'de> for StringVisitor {
type Value = NixString;
fn expecting(&self, formatter: &mut std::fmt::Formatter) -> std::fmt::Result {
formatter.write_str("a valid Nix string")
}
fn visit_string<E>(self, v: String) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(v.into())
}
fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
where
E: serde::de::Error,
{
Ok(v.into())
}
}
deserializer.deserialize_string(StringVisitor)
}
}
impl Deref for NixString {
type Target = BStr;
fn deref(&self) -> &Self::Target {
self.as_bstr()
}
}
#[cfg(feature = "arbitrary")]
mod arbitrary {
use super::*;
use proptest::prelude::{any_with, Arbitrary};
use proptest::strategy::{BoxedStrategy, Strategy};
impl Arbitrary for NixString {
type Parameters = <String as Arbitrary>::Parameters;
type Strategy = BoxedStrategy<Self>;
fn arbitrary_with(args: Self::Parameters) -> Self::Strategy {
any_with::<String>(args).prop_map(Self::from).boxed()
}
}
}
/// Set non-scientifically. TODO(aspen): think more about what this should be
const INTERN_THRESHOLD: usize = 32;
impl NixString {
fn new(contents: &[u8], context: Option<Box<NixContext>>) -> Self {
debug_assert!(
!context.as_deref().is_some_and(NixContext::is_empty),
"BUG: initialized with empty context"
);
if !cfg!(feature = "no_leak") /* It's only safe to intern if we leak strings, since there's
* nothing yet preventing interned strings from getting freed
* (and then used by other copies) otherwise
*/
&& contents.len() <= INTERN_THRESHOLD
&& context.is_none()
{
return INTERNER.with(|i| i.intern(contents));
}
Self::new_inner(contents, context)
}
fn new_inner(contents: &[u8], context: Option<Box<NixContext>>) -> Self {
// SAFETY: We're always fully initializing a NixString here:
//
// 1. NixStringInner::alloc sets up the len for us
// 2. We set the context, using ptr::write to make sure that the uninitialized memory isn't
// read or dropped
// 3. We set the data, using copy_from_nonoverlapping to make sure that the uninitialized
// memory isn't read or dropped
//
// Only *then* can we construct a NixString
unsafe {
let inner = NixStringInner::alloc(contents.len());
NixStringInner::context_ptr(inner).write(context);
NixStringInner::data_ptr(inner)
.copy_from_nonoverlapping(contents.as_ptr(), contents.len());
Self(inner)
}
}
pub fn new_inherit_context_from<T>(other: &NixString, new_contents: T) -> Self
where
NixString: From<T>,
{
Self::new(
Self::from(new_contents).as_ref(),
other.context().map(|c| Box::new(c.clone())),
)
}
pub fn new_context_from<T>(context: NixContext, contents: T) -> Self
where
NixString: From<T>,
{
Self::new(
Self::from(contents).as_ref(),
if context.is_empty() {
None
} else {
Some(Box::new(context))
},
)
}
pub fn as_bstr(&self) -> &BStr {
BStr::new(self.as_bytes())
}
pub fn as_bytes(&self) -> &[u8] {
// SAFETY: There's no way to construct an uninitialized NixString (see the SAFETY comment in
// `new`)
unsafe { NixStringInner::data_slice(self.0) }
}
pub fn into_bstring(self) -> BString {
self.as_bstr().to_owned()
}
/// Return a displayable representation of the string as an
/// identifier.
///
/// This is used when printing out strings used as e.g. attribute
/// set keys, as those are only escaped in the presence of special
/// characters.
pub fn ident_str(&self) -> Cow<str> {
let escaped = match self.to_str_lossy() {
Cow::Borrowed(s) => nix_escape_string(s),
Cow::Owned(s) => nix_escape_string(&s).into_owned().into(),
};
match escaped {
// A borrowed string is unchanged and can be returned as
// is.
Cow::Borrowed(_) => {
if is_valid_nix_identifier(&escaped) && !is_keyword(&escaped) {
escaped
} else {
Cow::Owned(format!("\"{}\"", escaped))
}
}
// An owned string has escapes, and needs the outer quotes
// for display.
Cow::Owned(s) => Cow::Owned(format!("\"{}\"", s)),
}
}
pub fn concat(&self, other: &Self) -> Self {
let mut s = self.to_vec();
s.extend(&(***other));
let context = [self.context(), other.context()]
.into_iter()
.flatten()
.fold(NixContext::new(), |mut acc_ctx, new_ctx| {
// TODO: consume new_ctx?
acc_ctx.extend(new_ctx.iter().cloned());
acc_ctx
});
Self::new_context_from(context, s)
}
pub(crate) fn context(&self) -> Option<&NixContext> {
// SAFETY: There's no way to construct an uninitialized or invalid NixString (see the SAFETY
// comment in `new`).
//
// Also, we're using the same lifetime and mutability as self, to fit the
// pointer-to-reference conversion rules
let context = unsafe { NixStringInner::context_ref(self.0).as_deref() };
debug_assert!(
!context.is_some_and(NixContext::is_empty),
"BUG: empty context"
);
context
}
pub(crate) fn context_mut(&mut self) -> &mut Option<Box<NixContext>> {
// SAFETY: There's no way to construct an uninitialized or invalid NixString (see the SAFETY
// comment in `new`).
//
// Also, we're using the same lifetime and mutability as self, to fit the
// pointer-to-reference conversion rules
let context = unsafe { NixStringInner::context_mut(self.0) };
debug_assert!(
!context.as_deref().is_some_and(NixContext::is_empty),
"BUG: empty context"
);
context
}
/// Iterates over all context elements.
/// See [iter_plain], [iter_derivation], [iter_single_outputs].
pub fn iter_context(&self) -> impl Iterator<Item = &NixContext> {
self.context().into_iter()
}
/// Iterates over "plain" context elements, e.g. sources imported
/// in the store without more information, i.e. `toFile` or coerced imported paths.
/// It yields paths to the store.
pub fn iter_ctx_plain(&self) -> impl Iterator<Item = &str> {
self.iter_context().flat_map(|context| context.iter_plain())
}
/// Iterates over "full derivations" context elements, e.g. something
/// referring to their `drvPath`, i.e. their full sources and binary closure.
/// It yields derivation paths.
pub fn iter_ctx_derivation(&self) -> impl Iterator<Item = &str> {
return self
.iter_context()
.flat_map(|context| context.iter_derivation());
}
/// Iterates over "single" context elements, e.g. single derived paths,
/// or also known as the single output of a given derivation.
/// The first element of the tuple is the output name
/// and the second element is the derivation path.
pub fn iter_ctx_single_outputs(&self) -> impl Iterator<Item = (&str, &str)> {
return self
.iter_context()
.flat_map(|context| context.iter_single_outputs());
}
/// Returns whether this Nix string possess a context or not.
pub fn has_context(&self) -> bool {
self.context().is_some()
}
/// This clears the context of the string, returning
/// the removed dependency tracking information.
pub fn take_context(&mut self) -> Option<Box<NixContext>> {
self.context_mut().take()
}
/// This clears the context of that string, losing
/// all dependency tracking information.
pub fn clear_context(&mut self) {
let _ = self.take_context();
}
pub fn chars(&self) -> Chars<'_> {
self.as_bstr().chars()
}
}
fn nix_escape_char(ch: char, next: Option<&char>) -> Option<&'static str> {
match (ch, next) {
('\\', _) => Some("\\\\"),
('"', _) => Some("\\\""),
('\n', _) => Some("\\n"),
('\t', _) => Some("\\t"),
('\r', _) => Some("\\r"),
('$', Some('{')) => Some("\\$"),
_ => None,
}
}
/// Return true if this string is a keyword -- character strings
/// which lexically match the "identifier" production but are not
/// parsed as identifiers. See also cppnix commit
/// b72bc4a972fe568744d98b89d63adcd504cb586c.
fn is_keyword(s: &str) -> bool {
matches!(
s,
"if" | "then" | "else" | "assert" | "with" | "let" | "in" | "rec" | "inherit"
)
}
/// Return true if this string can be used as an identifier in Nix.
fn is_valid_nix_identifier(s: &str) -> bool {
// adapted from rnix-parser's tokenizer.rs
let mut chars = s.chars();
match chars.next() {
Some('a'..='z' | 'A'..='Z' | '_') => (),
_ => return false,
}
for c in chars {
match c {
'a'..='z' | 'A'..='Z' | '0'..='9' | '_' | '-' | '\'' => (),
_ => return false,
}
}
true
}
/// Escape a Nix string for display, as most user-visible representation
/// are escaped strings.
///
/// Note that this does not add the outer pair of surrounding quotes.
fn nix_escape_string(input: &str) -> Cow<str> {
let mut iter = input.char_indices().peekable();
while let Some((i, c)) = iter.next() {
if let Some(esc) = nix_escape_char(c, iter.peek().map(|(_, c)| c)) {
let mut escaped = String::with_capacity(input.len());
escaped.push_str(&input[..i]);
escaped.push_str(esc);
// In theory we calculate how many bytes it takes to represent `esc`
// in UTF-8 and use that for the offset. It is, however, safe to
// assume that to be 1, as all characters that can be escaped in a
// Nix string are ASCII.
let mut inner_iter = input[i + 1..].chars().peekable();
while let Some(c) = inner_iter.next() {
match nix_escape_char(c, inner_iter.peek()) {
Some(esc) => escaped.push_str(esc),
None => escaped.push(c),
}
}
return Cow::Owned(escaped);
}
}
Cow::Borrowed(input)
}
impl Display for NixString {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str("\"")?;
f.write_str(&nix_escape_string(&self.to_str_lossy()))?;
f.write_str("\"")
}
}
#[cfg(all(test, feature = "arbitrary"))]
mod tests {
use test_strategy::proptest;
use super::*;
use crate::properties::{eq_laws, hash_laws, ord_laws};
#[test]
fn size() {
assert_eq!(std::mem::size_of::<NixString>(), 8);
}
#[proptest]
fn clone_strings(s: NixString) {
drop(s.clone())
}
eq_laws!(NixString);
hash_laws!(NixString);
ord_laws!(NixString);
}
|