1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
|
//! This module implements compiler logic related to name/value binding
//! definitions (that is, attribute sets and let-expressions).
//!
//! In the case of recursive scopes these cases share almost all of their
//! (fairly complex) logic.
use std::iter::Peekable;
use rnix::ast::HasEntry;
use rowan::ast::AstChildren;
use crate::spans::{EntireFile, OrEntireFile};
use super::*;
type PeekableAttrs = Peekable<AstChildren<ast::Attr>>;
/// What kind of bindings scope is being compiled?
#[derive(Clone, Copy, PartialEq)]
enum BindingsKind {
/// Standard `let ... in ...`-expression.
LetIn,
/// Non-recursive attribute set.
Attrs,
/// Recursive attribute set.
RecAttrs,
}
impl BindingsKind {
fn is_attrs(&self) -> bool {
matches!(self, BindingsKind::Attrs | BindingsKind::RecAttrs)
}
}
// Internal representation of an attribute set used for merging sets, or
// inserting nested keys.
#[derive(Clone)]
struct AttributeSet {
/// Original span at which this set was first encountered.
span: Span,
/// Tracks the kind of set (rec or not).
kind: BindingsKind,
/// All inherited entries
inherits: Vec<ast::Inherit>,
/// All internal entries
entries: Vec<(Span, PeekableAttrs, ast::Expr)>,
}
impl ToSpan for AttributeSet {
fn span_for(&self, _: &codemap::File) -> Span {
self.span
}
}
impl AttributeSet {
fn from_ast(c: &Compiler, node: &ast::AttrSet) -> Self {
AttributeSet {
span: c.span_for(node),
// Kind of the attrs depends on the first time it is
// encountered. We actually believe this to be a Nix
// bug: https://github.com/NixOS/nix/issues/7111
kind: if node.rec_token().is_some() {
BindingsKind::RecAttrs
} else {
BindingsKind::Attrs
},
inherits: ast::HasEntry::inherits(node).collect(),
entries: ast::HasEntry::attrpath_values(node)
.map(|entry| {
let span = c.span_for(&entry);
(
span,
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
})
.collect(),
}
}
}
// Data structures to track the bindings observed in the second pass, and
// forward the information needed to compile their value.
enum Binding {
InheritFrom {
namespace: ast::Expr,
name: SmolStr,
span: Span,
},
Plain {
expr: ast::Expr,
},
Set(AttributeSet),
}
impl Binding {
/// Merge the provided value into the current binding, or emit an
/// error if this turns out to be impossible.
fn merge(
&mut self,
c: &mut Compiler,
span: Span,
mut remaining_path: PeekableAttrs,
value: ast::Expr,
) {
match self {
Binding::InheritFrom { name, ref span, .. } => {
c.emit_error(span, ErrorKind::UnmergeableInherit { name: name.clone() })
}
// If the value is not yet a nested binding, flip the representation
// and recurse.
Binding::Plain { expr } => match expr {
ast::Expr::AttrSet(existing) => {
let nested = AttributeSet::from_ast(c, existing);
*self = Binding::Set(nested);
self.merge(c, span, remaining_path, value);
}
_ => c.emit_error(&value, ErrorKind::UnmergeableValue),
},
// If the value is nested further, it is simply inserted into the
// bindings with its full path and resolved recursively further
// down.
Binding::Set(existing) if remaining_path.peek().is_some() => {
existing.entries.push((span, remaining_path, value))
}
Binding::Set(existing) => {
if let ast::Expr::AttrSet(new) = value {
existing.inherits.extend(ast::HasEntry::inherits(&new));
existing
.entries
.extend(ast::HasEntry::attrpath_values(&new).map(|entry| {
let span = c.span_for(&entry);
(
span,
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
}));
} else {
// This branch is unreachable because in cases where the
// path is empty (i.e. there is no further nesting), the
// previous try_merge function already verified that the
// expression is an attribute set.
// TODO(tazjin): Consider making this branch live by
// shuffling that check around and emitting a static error
// here instead of a runtime error.
unreachable!()
}
}
}
}
}
enum KeySlot {
/// There is no key slot (`let`-expressions do not emit their key).
None { name: SmolStr },
/// The key is statically known and has a slot.
Static { slot: LocalIdx, name: SmolStr },
/// The key is dynamic, i.e. only known at runtime, and must be compiled
/// into its slot.
Dynamic { slot: LocalIdx, attr: ast::Attr },
}
struct TrackedBinding {
key_slot: KeySlot,
value_slot: LocalIdx,
binding: Binding,
}
impl TrackedBinding {
/// Does this binding match the given key?
///
/// Used to determine which binding to merge another one into.
fn matches(&self, key: &str) -> bool {
match &self.key_slot {
KeySlot::None { name } => name == key,
KeySlot::Static { name, .. } => name == key,
KeySlot::Dynamic { .. } => false,
}
}
}
struct TrackedBindings {
bindings: Vec<TrackedBinding>,
}
impl TrackedBindings {
fn new() -> Self {
TrackedBindings { bindings: vec![] }
}
/// Attempt to merge an entry into an existing matching binding, assuming
/// that the provided binding is mergable (i.e. either a nested key or an
/// attribute set literal).
///
/// Returns true if the binding was merged, false if it needs to be compiled
/// separately as a new binding.
fn try_merge(
&mut self,
c: &mut Compiler,
span: Span,
name: &ast::Attr,
mut remaining_path: PeekableAttrs,
value: ast::Expr,
) -> bool {
// If the path has no more entries, and if the entry is not an
// attribute set literal, the entry can not be merged.
if remaining_path.peek().is_none() && !matches!(value, ast::Expr::AttrSet(_)) {
return false;
}
// If the first element of the path is not statically known, the entry
// can not be merged.
let name = match expr_static_attr_str(name) {
Some(name) => name,
None => return false,
};
// If there is no existing binding with this key, the entry can not be
// merged.
// TODO: benchmark whether using a map or something is useful over the
// `find` here
let binding = match self.bindings.iter_mut().find(|b| b.matches(&name)) {
Some(b) => b,
None => return false,
};
// No more excuses ... the binding can be merged!
binding.binding.merge(c, span, remaining_path, value);
true
}
/// Add a completely new binding to the tracked bindings.
fn track_new(&mut self, key_slot: KeySlot, value_slot: LocalIdx, binding: Binding) {
self.bindings.push(TrackedBinding {
key_slot,
value_slot,
binding,
});
}
}
/// Wrapper around the `ast::HasEntry` trait as that trait can not be
/// implemented for custom types.
trait HasEntryProxy {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>>;
fn attributes<'a>(
&self,
file: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a>;
}
impl<N: HasEntry> HasEntryProxy for N {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>> {
Box::new(ast::HasEntry::inherits(self))
}
fn attributes<'a>(
&self,
file: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a> {
Box::new(ast::HasEntry::attrpath_values(self).map(move |entry| {
(
entry.span_for(file),
entry.attrpath().unwrap().attrs().peekable(),
entry.value().unwrap(),
)
}))
}
}
impl HasEntryProxy for AttributeSet {
fn inherits(&self) -> Box<dyn Iterator<Item = ast::Inherit>> {
Box::new(self.inherits.clone().into_iter())
}
fn attributes<'a>(
&self,
_: &'a codemap::File,
) -> Box<dyn Iterator<Item = (Span, PeekableAttrs, ast::Expr)> + 'a> {
Box::new(self.entries.clone().into_iter())
}
}
/// AST-traversing functions related to bindings.
impl Compiler<'_, '_> {
/// Compile all inherits of a node with entries that do *not* have a
/// namespace to inherit from, and return the remaining ones that do.
fn compile_plain_inherits<N>(
&mut self,
slot: LocalIdx,
kind: BindingsKind,
count: &mut usize,
node: &N,
) -> Vec<(ast::Expr, SmolStr, Span)>
where
N: ToSpan + HasEntryProxy,
{
// Pass over all inherits, resolving only those without namespaces.
// Since they always resolve in a higher scope, we can just compile and
// declare them immediately.
//
// Inherits with namespaces are returned to the caller.
let mut inherit_froms: Vec<(ast::Expr, SmolStr, Span)> = vec![];
for inherit in node.inherits() {
if inherit.attrs().peekable().peek().is_none() {
self.emit_warning(&inherit, WarningKind::EmptyInherit);
continue;
}
match inherit.from() {
// Within a `let` binding, inheriting from the outer scope is a
// no-op *if* there are no dynamic bindings.
None if !kind.is_attrs() && !self.has_dynamic_ancestor() => {
self.emit_warning(&inherit, WarningKind::UselessInherit);
continue;
}
None => {
for attr in inherit.attrs() {
let name = match expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
// If the identifier resolves statically in a `let`, it
// has precedence over dynamic bindings, and the inherit
// is useless.
if kind == BindingsKind::LetIn
&& matches!(
self.scope_mut().resolve_local(&name),
LocalPosition::Known(_)
)
{
self.emit_warning(&attr, WarningKind::UselessInherit);
continue;
}
*count += 1;
// Place key on the stack when compiling attribute sets.
if kind.is_attrs() {
self.emit_constant(name.as_str().into(), &attr);
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, true);
}
// Place the value on the stack. Note that because plain
// inherits are always in the outer scope, the slot of
// *this* scope itself is used.
self.compile_identifier_access(slot, &name, &attr);
// In non-recursive attribute sets, the key slot must be
// a phantom (i.e. the identifier can not be resolved in
// this scope).
let idx = if kind == BindingsKind::Attrs {
let span = self.span_for(&attr);
self.scope_mut().declare_phantom(span, false)
} else {
self.declare_local(&attr, name)
};
self.scope_mut().mark_initialised(idx);
}
}
Some(from) => {
for attr in inherit.attrs() {
let name = match expr_static_attr_str(&attr) {
Some(name) => name,
None => {
self.emit_error(&attr, ErrorKind::DynamicKeyInScope("inherit"));
continue;
}
};
*count += 1;
inherit_froms.push((from.expr().unwrap(), name, self.span_for(&attr)));
}
}
}
}
inherit_froms
}
/// Declare all namespaced inherits, that is inherits which are inheriting
/// values from an attribute set.
///
/// This only ensures that the locals stack is aware of the inherits, it
/// does not yet emit bytecode that places them on the stack. This is up to
/// the owner of the `bindings` vector, which this function will populate.
fn declare_namespaced_inherits(
&mut self,
kind: BindingsKind,
inherit_froms: Vec<(ast::Expr, SmolStr, Span)>,
bindings: &mut TrackedBindings,
) {
for (from, name, span) in inherit_froms {
let key_slot = if kind.is_attrs() {
// In an attribute set, the keys themselves are placed on the
// stack but their stack slot is inaccessible (it is only
// consumed by `OpAttrs`).
KeySlot::Static {
slot: self.scope_mut().declare_phantom(span, false),
name: name.clone(),
}
} else {
KeySlot::None { name: name.clone() }
};
let value_slot = match kind {
// In recursive scopes, the value needs to be accessible on the
// stack.
BindingsKind::LetIn | BindingsKind::RecAttrs => {
self.declare_local(&span, name.clone())
}
// In non-recursive attribute sets, the value is inaccessible
// (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(span, false),
};
bindings.track_new(
key_slot,
value_slot,
Binding::InheritFrom {
namespace: from,
name,
span,
},
);
}
}
/// Declare all regular bindings (i.e. `key = value;`) in a bindings scope,
/// but do not yet compile their values.
fn declare_bindings<N>(
&mut self,
kind: BindingsKind,
count: &mut usize,
bindings: &mut TrackedBindings,
node: &N,
) where
N: ToSpan + HasEntryProxy,
{
for (span, mut path, value) in node.attributes(self.file) {
let key = path.next().unwrap();
if bindings.try_merge(self, span, &key, path.clone(), value.clone()) {
// Binding is nested, or already exists and was merged, move on.
continue;
}
*count += 1;
let key_span = self.span_for(&key);
let key_slot = match expr_static_attr_str(&key) {
Some(name) if kind.is_attrs() => KeySlot::Static {
name,
slot: self.scope_mut().declare_phantom(key_span, false),
},
Some(name) => KeySlot::None { name },
None if kind.is_attrs() => KeySlot::Dynamic {
attr: key,
slot: self.scope_mut().declare_phantom(key_span, false),
},
None => {
self.emit_error(&key, ErrorKind::DynamicKeyInScope("let-expression"));
continue;
}
};
let value_slot = match kind {
BindingsKind::LetIn | BindingsKind::RecAttrs => match &key_slot {
// In recursive scopes, the value needs to be accessible on the
// stack if it is statically known
KeySlot::None { name } | KeySlot::Static { name, .. } => {
self.declare_local(&key_span, name.as_str())
}
// Dynamic values are never resolvable (as their names are
// of course only known at runtime).
//
// Note: This branch is unreachable in `let`-expressions.
KeySlot::Dynamic { .. } => self.scope_mut().declare_phantom(key_span, false),
},
// In non-recursive attribute sets, the value is inaccessible
// (only consumed by `OpAttrs`).
BindingsKind::Attrs => self.scope_mut().declare_phantom(key_span, false),
};
let binding = if path.peek().is_some() {
Binding::Set(AttributeSet {
span,
kind: BindingsKind::Attrs,
inherits: vec![],
entries: vec![(span, path, value)],
})
} else {
Binding::Plain { expr: value }
};
bindings.track_new(key_slot, value_slot, binding);
}
}
/// Compile attribute set literals into equivalent bytecode.
///
/// This is complicated by a number of features specific to Nix attribute
/// sets, most importantly:
///
/// 1. Keys can be dynamically constructed through interpolation.
/// 2. Keys can refer to nested attribute sets.
/// 3. Attribute sets can (optionally) be recursive.
pub(super) fn compile_attr_set(&mut self, slot: LocalIdx, node: &ast::AttrSet) {
// Open a scope to track the positions of the temporaries used by the
// `OpAttrs` instruction.
self.scope_mut().begin_scope();
let kind = if node.rec_token().is_some() {
BindingsKind::RecAttrs
} else {
BindingsKind::Attrs
};
self.compile_bindings(slot, kind, node);
// Remove the temporary scope, but do not emit any additional cleanup
// (OpAttrs consumes all of these locals).
self.scope_mut().end_scope();
}
/// Emit definitions for all variables in the top-level global env passed to the evaluation (eg
/// local variables in the REPL)
pub(super) fn compile_env(&mut self, env: &HashMap<SmolStr, Value>) {
for (name, value) in env {
self.scope_mut().declare_constant(name.to_string());
self.emit_constant(value.clone(), &EntireFile);
}
}
/// Actually binds all tracked bindings by emitting the bytecode that places
/// them in their stack slots.
fn bind_values(&mut self, bindings: TrackedBindings) {
let mut value_indices: Vec<LocalIdx> = vec![];
for binding in bindings.bindings.into_iter() {
value_indices.push(binding.value_slot);
match binding.key_slot {
KeySlot::None { .. } => {} // nothing to do here
KeySlot::Static { slot, name } => {
let span = self.scope()[slot].span;
self.emit_constant(name.as_str().into(), &OrEntireFile(span));
self.scope_mut().mark_initialised(slot);
}
KeySlot::Dynamic { slot, attr } => {
self.compile_attr(slot, &attr);
self.scope_mut().mark_initialised(slot);
}
}
match binding.binding {
// This entry is an inherit (from) expr. The value is placed on
// the stack by selecting an attribute.
Binding::InheritFrom {
namespace,
name,
span,
} => {
// Create a thunk wrapping value (which may be one as well)
// to avoid forcing the from expr too early.
self.thunk(binding.value_slot, &namespace, |c, s| {
c.compile(s, namespace.clone());
c.emit_force(&namespace);
c.emit_constant(name.as_str().into(), &span);
c.push_op(OpCode::OpAttrsSelect, &span);
})
}
// Binding is "just" a plain expression that needs to be
// compiled.
Binding::Plain { expr } => self.compile(binding.value_slot, expr),
// Binding is a merged or nested attribute set, and needs to be
// recursively compiled as another binding.
Binding::Set(set) => self.thunk(binding.value_slot, &set, |c, _| {
c.scope_mut().begin_scope();
c.compile_bindings(binding.value_slot, set.kind, &set);
c.scope_mut().end_scope();
}),
}
// Any code after this point will observe the value in the right
// stack slot, so mark it as initialised.
self.scope_mut().mark_initialised(binding.value_slot);
}
// Final pass to emit finaliser instructions if necessary.
for idx in value_indices {
if self.scope()[idx].needs_finaliser {
let stack_idx = self.scope().stack_index(idx);
let span = self.scope()[idx].span;
self.push_op(OpCode::OpFinalise(stack_idx), &OrEntireFile(span));
}
}
}
fn compile_bindings<N>(&mut self, slot: LocalIdx, kind: BindingsKind, node: &N)
where
N: ToSpan + HasEntryProxy,
{
let mut count = 0;
self.scope_mut().begin_scope();
// Vector to track all observed bindings.
let mut bindings = TrackedBindings::new();
let inherit_froms = self.compile_plain_inherits(slot, kind, &mut count, node);
self.declare_namespaced_inherits(kind, inherit_froms, &mut bindings);
self.declare_bindings(kind, &mut count, &mut bindings, node);
// Check if we can bail out on empty bindings
if count == 0 {
// still need an attrset to exist, but it is empty.
if kind.is_attrs() {
self.emit_constant(Value::Attrs(Box::new(NixAttrs::empty())), node);
return;
}
self.emit_warning(node, WarningKind::EmptyLet);
return;
}
// Actually bind values and ensure they are on the stack.
self.bind_values(bindings);
if kind.is_attrs() {
self.push_op(OpCode::OpAttrs(Count(count)), node);
}
if count == 0 {
self.unthunk();
}
}
/// Compile a standard `let ...; in ...` expression.
///
/// Unless in a non-standard scope, the encountered values are simply pushed
/// on the stack and their indices noted in the entries vector.
pub(super) fn compile_let_in(&mut self, slot: LocalIdx, node: &ast::LetIn) {
self.compile_bindings(slot, BindingsKind::LetIn, node);
// Deal with the body, then clean up the locals afterwards.
self.compile(slot, node.body().unwrap());
self.cleanup_scope(node);
}
pub(super) fn compile_legacy_let(&mut self, slot: LocalIdx, node: &ast::LegacyLet) {
self.emit_warning(node, WarningKind::DeprecatedLegacyLet);
self.scope_mut().begin_scope();
self.compile_bindings(slot, BindingsKind::RecAttrs, node);
// Remove the temporary scope, but do not emit any additional cleanup
// (OpAttrs consumes all of these locals).
self.scope_mut().end_scope();
self.emit_constant("body".into(), node);
self.push_op(OpCode::OpAttrsSelect, node);
}
/// Is the given identifier defined *by the user* in any current scope?
pub(super) fn is_user_defined(&mut self, ident: &str) -> bool {
matches!(
self.scope_mut().resolve_local(ident),
LocalPosition::Known(_) | LocalPosition::Recursive(_)
)
}
/// Resolve and compile access to an identifier in the scope.
fn compile_identifier_access<N: ToSpan + Clone>(
&mut self,
slot: LocalIdx,
ident: &str,
node: &N,
) {
match self.scope_mut().resolve_local(ident) {
LocalPosition::Unknown => {
// Are we possibly dealing with an upvalue?
if let Some(idx) = self.resolve_upvalue(self.contexts.len() - 1, ident, node) {
self.push_op(OpCode::OpGetUpvalue(idx), node);
return;
}
// Globals are the "upmost upvalues": they behave
// exactly like a `let ... in` prepended to the
// program's text, and the global scope is nothing
// more than the parent scope of the root scope.
if let Some(global) = self.globals.get(ident) {
self.emit_constant(global.clone(), &self.span_for(node));
return;
}
// If there is a non-empty `with`-stack (or a parent context
// with one), emit a runtime dynamic resolution instruction.
//
// Since it is possible for users to e.g. assign a variable to a
// dynamic resolution without actually using it, this operation
// is wrapped in an extra thunk.
if self.has_dynamic_ancestor() {
self.thunk(slot, node, |c, _| {
c.context_mut().captures_with_stack = true;
c.emit_constant(ident.into(), node);
c.push_op(OpCode::OpResolveWith, node);
});
return;
}
// Otherwise, this variable is missing.
self.emit_error(node, ErrorKind::UnknownStaticVariable);
}
LocalPosition::Known(idx) => {
let stack_idx = self.scope().stack_index(idx);
self.push_op(OpCode::OpGetLocal(stack_idx), node);
}
// This identifier is referring to a value from the same scope which
// is not yet defined. This identifier access must be thunked.
LocalPosition::Recursive(idx) => self.thunk(slot, node, move |compiler, _| {
let upvalue_idx = compiler.add_upvalue(
compiler.contexts.len() - 1,
node,
UpvalueKind::Local(idx),
);
compiler.push_op(OpCode::OpGetUpvalue(upvalue_idx), node);
}),
};
}
pub(super) fn compile_ident(&mut self, slot: LocalIdx, node: &ast::Ident) {
let ident = node.ident_token().unwrap();
self.compile_identifier_access(slot, ident.text(), node);
}
}
/// Private compiler helpers related to bindings.
impl Compiler<'_, '_> {
fn resolve_upvalue<N: ToSpan>(
&mut self,
ctx_idx: usize,
name: &str,
node: &N,
) -> Option<UpvalueIdx> {
if ctx_idx == 0 {
// There can not be any upvalue at the outermost context.
return None;
}
// Determine whether the upvalue is a local in the enclosing context.
match self.contexts[ctx_idx - 1].scope.resolve_local(name) {
// recursive upvalues are dealt with the same way as standard known
// ones, as thunks and closures are guaranteed to be placed on the
// stack (i.e. in the right position) *during* their runtime
// construction
LocalPosition::Known(idx) | LocalPosition::Recursive(idx) => {
return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Local(idx)))
}
LocalPosition::Unknown => { /* continue below */ }
};
// If the upvalue comes from even further up, we need to recurse to make
// sure that the upvalues are created at each level.
if let Some(idx) = self.resolve_upvalue(ctx_idx - 1, name, node) {
return Some(self.add_upvalue(ctx_idx, node, UpvalueKind::Upvalue(idx)));
}
None
}
fn add_upvalue<N: ToSpan>(
&mut self,
ctx_idx: usize,
node: &N,
kind: UpvalueKind,
) -> UpvalueIdx {
// If there is already an upvalue closing over the specified index,
// retrieve that instead.
for (idx, existing) in self.contexts[ctx_idx].scope.upvalues.iter().enumerate() {
if existing.kind == kind {
return UpvalueIdx(idx);
}
}
let span = self.span_for(node);
self.contexts[ctx_idx]
.scope
.upvalues
.push(Upvalue { kind, span });
let idx = UpvalueIdx(self.contexts[ctx_idx].lambda.upvalue_count);
self.contexts[ctx_idx].lambda.upvalue_count += 1;
idx
}
}
|