about summary refs log tree commit diff
path: root/tvix/eval/src/compiler/attrs.rs
blob: bb48ffbb0945349239693377e4245f4c3336eee6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
//! This module implements compiler logic related to attribute sets
//! (construction, access operators, ...).

use super::*;

impl Compiler<'_, '_> {
    pub(super) fn compile_attr(&mut self, slot: LocalIdx, node: ast::Attr) {
        match node {
            ast::Attr::Dynamic(dynamic) => {
                self.compile(slot, dynamic.expr().unwrap());
                self.emit_force(&dynamic.expr().unwrap());
            }

            ast::Attr::Str(s) => {
                self.compile_str(slot, s.clone());
                self.emit_force(&s);
            }

            ast::Attr::Ident(ident) => self.emit_literal_ident(&ident),
        }
    }

    /// Compile attribute set literals into equivalent bytecode.
    ///
    /// This is complicated by a number of features specific to Nix
    /// attribute sets, most importantly:
    ///
    /// 1. Keys can be dynamically constructed through interpolation.
    /// 2. Keys can refer to nested attribute sets.
    /// 3. Attribute sets can (optionally) be recursive.
    pub(super) fn compile_attr_set(&mut self, slot: LocalIdx, node: ast::AttrSet) {
        if node.rec_token().is_some() {
            let span = self.span_for(&node);
            self.emit_warning(
                span,
                WarningKind::NotImplemented("recursive attribute sets"),
            );
        }

        // Open a scope to track the positions of the temporaries used
        // by the `OpAttrs` instruction.
        self.scope_mut().begin_scope();

        let mut count = self.compile_inherit_attrs(slot, node.inherits());

        for kv in node.attrpath_values() {
            count += 1;

            // Because attribute set literals can contain nested keys,
            // there is potentially more than one key fragment. If
            // this is the case, a special operation to construct a
            // runtime value representing the attribute path is
            // emitted.
            let mut key_count = 0;
            let key_span = self.span_for(&kv.attrpath().unwrap());
            let key_idx = self.scope_mut().declare_phantom(key_span, false);

            for fragment in kv.attrpath().unwrap().attrs() {
                // Key fragments can contain dynamic expressions,
                // which makes accounting for their stack slots very
                // tricky.
                //
                // In order to ensure the locals are correctly cleaned
                // up, we essentially treat any key fragment after the
                // first one (which has a locals index that will
                // become that of the final key itself) as being part
                // of a separate scope, which results in the somewhat
                // annoying setup logic below.
                let fragment_slot = match key_count {
                    0 => key_idx,
                    1 => {
                        self.scope_mut().begin_scope();
                        self.scope_mut().declare_phantom(key_span, false)
                    }
                    _ => self.scope_mut().declare_phantom(key_span, false),
                };

                key_count += 1;
                self.compile_attr(fragment_slot, fragment);
                self.scope_mut().mark_initialised(fragment_slot);
            }

            // We're done with the key if there was only one fragment,
            // otherwise we need to emit an instruction to construct
            // the attribute path.
            if key_count > 1 {
                self.push_op(
                    OpCode::OpAttrPath(Count(key_count)),
                    &kv.attrpath().unwrap(),
                );

                // Close the temporary scope that was set up for the
                // key fragments.
                self.scope_mut().end_scope();
            }

            // The value is just compiled as normal so that its
            // resulting value is on the stack when the attribute set
            // is constructed at runtime.
            let value_span = self.span_for(&kv.value().unwrap());
            let value_slot = self.scope_mut().declare_phantom(value_span, false);
            self.compile(value_slot, kv.value().unwrap());
            self.scope_mut().mark_initialised(value_slot);
        }

        self.push_op(OpCode::OpAttrs(Count(count)), &node);

        // Remove the temporary scope, but do not emit any additional
        // cleanup (OpAttrs consumes all of these locals).
        self.scope_mut().end_scope();
    }

    pub(super) fn compile_has_attr(&mut self, slot: LocalIdx, node: ast::HasAttr) {
        // Put the attribute set on the stack.
        self.compile(slot, node.expr().unwrap());

        // Push all path fragments with an operation for fetching the
        // next nested element, for all fragments except the last one.
        for (count, fragment) in node.attrpath().unwrap().attrs().enumerate() {
            if count > 0 {
                self.push_op(OpCode::OpAttrsTrySelect, &fragment);
            }

            self.compile_attr(slot, fragment);
        }

        // After the last fragment, emit the actual instruction that
        // leaves a boolean on the stack.
        self.push_op(OpCode::OpAttrsIsSet, &node);
    }

    pub(super) fn compile_select(&mut self, slot: LocalIdx, node: ast::Select) {
        let set = node.expr().unwrap();
        let path = node.attrpath().unwrap();

        if node.or_token().is_some() {
            self.compile_select_or(slot, set, path, node.default_expr().unwrap());
            return;
        }

        // Push the set onto the stack
        self.compile(slot, set.clone());
        self.emit_force(&set);

        // Compile each key fragment and emit access instructions.
        //
        // TODO: multi-select instruction to avoid re-pushing attrs on
        // nested selects.
        for fragment in path.attrs() {
            self.compile_attr(slot, fragment.clone());
            self.push_op(OpCode::OpAttrsSelect, &fragment);
        }
    }

    /// Compile an `or` expression into a chunk of conditional jumps.
    ///
    /// If at any point during attribute set traversal a key is
    /// missing, the `OpAttrOrNotFound` instruction will leave a
    /// special sentinel value on the stack.
    ///
    /// After each access, a conditional jump evaluates the top of the
    /// stack and short-circuits to the default value if it sees the
    /// sentinel.
    ///
    /// Code like `{ a.b = 1; }.a.c or 42` yields this bytecode and
    /// runtime stack:
    ///
    /// ```notrust
    ///            Bytecode                     Runtime stack
    ///  ┌────────────────────────────┐   ┌─────────────────────────┐
    ///  │    ...                     │   │ ...                     │
    ///  │ 5  OP_ATTRS(1)             │ → │ 5  [ { a.b = 1; }     ] │
    ///  │ 6  OP_CONSTANT("a")        │ → │ 6  [ { a.b = 1; } "a" ] │
    ///  │ 7  OP_ATTR_OR_NOT_FOUND    │ → │ 7  [ { b = 1; }       ] │
    ///  │ 8  JUMP_IF_NOT_FOUND(13)   │ → │ 8  [ { b = 1; }       ] │
    ///  │ 9  OP_CONSTANT("C")        │ → │ 9  [ { b = 1; } "c"   ] │
    ///  │ 10 OP_ATTR_OR_NOT_FOUND    │ → │ 10 [ NOT_FOUND        ] │
    ///  │ 11 JUMP_IF_NOT_FOUND(13)   │ → │ 11 [                  ] │
    ///  │ 12 JUMP(14)                │   │ ..     jumped over      │
    ///  │ 13 CONSTANT(42)            │ → │ 12 [ 42 ]               │
    ///  │ 14 ...                     │   │ ..   ....               │
    ///  └────────────────────────────┘   └─────────────────────────┘
    /// ```
    fn compile_select_or(
        &mut self,
        slot: LocalIdx,
        set: ast::Expr,
        path: ast::Attrpath,
        default: ast::Expr,
    ) {
        self.compile(slot, set.clone());
        self.emit_force(&set);
        let mut jumps = vec![];

        for fragment in path.attrs() {
            self.compile_attr(slot, fragment.clone());
            self.push_op(OpCode::OpAttrsTrySelect, &fragment);
            jumps.push(self.push_op(OpCode::OpJumpIfNotFound(JumpOffset(0)), &fragment));
        }

        let final_jump = self.push_op(OpCode::OpJump(JumpOffset(0)), &path);

        for jump in jumps {
            self.patch_jump(jump);
        }

        // Compile the default value expression and patch the final
        // jump to point *beyond* it.
        self.compile(slot, default);
        self.patch_jump(final_jump);
    }
}