1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
|
use std::collections::{HashMap, HashSet};
use bstr::ByteSlice;
use petgraph::{
graph::{DiGraph, NodeIndex},
visit::Bfs,
};
use tracing::instrument;
use crate::{
proto::{self, Directory},
B3Digest, Error,
};
/// This can be used to validate a Directory closure (DAG of connected
/// Directories), and their insertion order.
///
/// Directories need to be inserted (via `add`), in an order from the leaves to
/// the root (DFS Post-Order).
/// During insertion, We validate as much as we can at that time:
///
/// - individual validation of Directory messages
/// - validation of insertion order (no upload of not-yet-known Directories)
/// - validation of size fields of referred Directories
///
/// Internally it keeps all received Directories in a directed graph,
/// with node weights being the Directories and edges pointing to child
/// directories.
///
/// Once all Directories have been inserted, a finalize function can be
/// called to get a (deduplicated and) validated list of directories, in
/// insertion order.
/// During finalize, a check for graph connectivity is performed too, to ensure
/// there's no disconnected components, and only one root.
#[derive(Default)]
pub struct ClosureValidator {
// A directed graph, using Directory as node weight, without edge weights.
// Edges point from parents to children.
graph: DiGraph<Directory, ()>,
// A lookup table from directory digest to node index.
digest_to_node_ix: HashMap<B3Digest, NodeIndex>,
/// Keeps track of the last-inserted directory graph node index.
/// On a correct insert, this will be the root node, from which the DFS post
/// order traversal will start from.
last_directory_ix: Option<NodeIndex>,
}
impl ClosureValidator {
/// Insert a new Directory into the closure.
/// Perform individual Directory validation, validation of insertion order
/// and size fields.
#[instrument(level = "trace", skip_all, fields(directory.digest=%directory.digest(), directory.size=%directory.size()), err)]
pub fn add(&mut self, directory: proto::Directory) -> Result<(), Error> {
let digest = directory.digest();
// If we already saw this node previously, it's already validated and in the graph.
if self.digest_to_node_ix.contains_key(&digest) {
return Ok(());
}
// Do some general validation
directory
.validate()
.map_err(|e| Error::InvalidRequest(e.to_string()))?;
// Ensure the directory only refers to directories which we already accepted.
// We lookup their node indices and add them to a HashSet.
let mut child_ixs = HashSet::new();
for dir in &directory.directories {
let child_digest = B3Digest::try_from(dir.digest.to_owned()).unwrap(); // validated
// Ensure the digest has already been seen
let child_ix = *self.digest_to_node_ix.get(&child_digest).ok_or_else(|| {
Error::InvalidRequest(format!(
"'{}' refers to unseen child dir: {}",
dir.name.as_bstr(),
&child_digest
))
})?;
// Ensure the size specified in the child node matches the directory size itself.
let recorded_child_size = self
.graph
.node_weight(child_ix)
.expect("node not found")
.size();
// Ensure the size specified in the child node matches our records.
if dir.size != recorded_child_size {
return Err(Error::InvalidRequest(format!(
"'{}' has wrong size, specified {}, recorded {}",
dir.name.as_bstr(),
dir.size,
recorded_child_size
)));
}
child_ixs.insert(child_ix);
}
// Insert node into the graph, and add edges to all children.
let node_ix = self.graph.add_node(directory);
for child_ix in child_ixs {
self.graph.add_edge(node_ix, child_ix, ());
}
// Record the mapping from digest to node_ix in our lookup table.
self.digest_to_node_ix.insert(digest, node_ix);
// Update last_directory_ix.
self.last_directory_ix = Some(node_ix);
Ok(())
}
/// Ensure that all inserted Directories are connected, then return a
/// (deduplicated) and validated list of directories, in from-leaves-to-root
/// order.
/// In case no elements have been inserted, returns an empty list.
#[instrument(level = "trace", skip_all, err)]
pub(crate) fn finalize(self) -> Result<Vec<Directory>, Error> {
// If no nodes were inserted, an empty list is returned.
let last_directory_ix = if let Some(x) = self.last_directory_ix {
x
} else {
return Ok(vec![]);
};
// do a BFS traversal of the graph, starting with the root node to get
// (the count of) all nodes reachable from there.
let mut traversal = Bfs::new(&self.graph, last_directory_ix);
let mut visited_directory_count = 0;
#[cfg(debug_assertions)]
let mut visited_directory_ixs = HashSet::new();
while let Some(directory_ix) = traversal.next(&self.graph) {
#[cfg(debug_assertions)]
visited_directory_ixs.insert(directory_ix);
visited_directory_count += 1;
}
// If the number of nodes collected equals the total number of nodes in
// the graph, we know all nodes are connected.
if visited_directory_count != self.graph.node_count() {
// more or less exhaustive error reporting.
#[cfg(debug_assertions)]
{
let all_directory_ixs: HashSet<_> = self.graph.node_indices().collect();
let unvisited_directories: HashSet<_> = all_directory_ixs
.difference(&visited_directory_ixs)
.map(|ix| self.graph.node_weight(*ix).expect("node not found"))
.collect();
return Err(Error::InvalidRequest(format!(
"found {} disconnected directories: {:?}",
self.graph.node_count() - visited_directory_ixs.len(),
unvisited_directories
)));
}
#[cfg(not(debug_assertions))]
{
return Err(Error::InvalidRequest(format!(
"found {} disconnected directories",
self.graph.node_count() - visited_directory_count
)));
}
}
// Dissolve the graph, returning the nodes as a Vec.
// As the graph was populated in a valid DFS PostOrder, we can return
// nodes in that same order.
let (nodes, _edges) = self.graph.into_nodes_edges();
Ok(nodes.into_iter().map(|x| x.weight).collect())
}
}
#[cfg(test)]
mod tests {
use crate::{
fixtures::{DIRECTORY_A, DIRECTORY_B, DIRECTORY_C},
proto::{self, Directory},
};
use lazy_static::lazy_static;
use rstest::rstest;
lazy_static! {
pub static ref BROKEN_DIRECTORY : Directory = Directory {
symlinks: vec![proto::SymlinkNode {
name: "".into(), // invalid name!
target: "doesntmatter".into(),
}],
..Default::default()
};
pub static ref BROKEN_PARENT_DIRECTORY: Directory = Directory {
directories: vec![proto::DirectoryNode {
name: "foo".into(),
digest: DIRECTORY_A.digest().into(),
size: DIRECTORY_A.size() + 42, // wrong!
}],
..Default::default()
};
}
use super::ClosureValidator;
#[rstest]
/// Uploading an empty directory should succeed.
#[case::empty_directory(&[&*DIRECTORY_A], false, Some(vec![&*DIRECTORY_A]))]
/// Uploading A, then B (referring to A) should succeed.
#[case::simple_closure(&[&*DIRECTORY_A, &*DIRECTORY_B], false, Some(vec![&*DIRECTORY_A, &*DIRECTORY_B]))]
/// Uploading A, then A, then C (referring to A twice) should succeed.
/// We pretend to be a dumb client not deduping directories.
#[case::same_child(&[&*DIRECTORY_A, &*DIRECTORY_A, &*DIRECTORY_C], false, Some(vec![&*DIRECTORY_A, &*DIRECTORY_C]))]
/// Uploading A, then C (referring to A twice) should succeed.
#[case::same_child_dedup(&[&*DIRECTORY_A, &*DIRECTORY_C], false, Some(vec![&*DIRECTORY_A, &*DIRECTORY_C]))]
/// Uploading A, then C (referring to A twice), then B (itself referring to A) should fail during close,
/// as B itself would be left unconnected.
#[case::unconnected_node(&[&*DIRECTORY_A, &*DIRECTORY_C, &*DIRECTORY_B], false, None)]
/// Uploading B (referring to A) should fail immediately, because A was never uploaded.
#[case::dangling_pointer(&[&*DIRECTORY_B], true, None)]
/// Uploading a directory failing validation should fail immediately.
#[case::failing_validation(&[&*BROKEN_DIRECTORY], true, None)]
/// Uploading a directory which refers to another Directory with a wrong size should fail.
#[case::wrong_size_in_parent(&[&*DIRECTORY_A, &*BROKEN_PARENT_DIRECTORY], true, None)]
fn test_uploads(
#[case] directories_to_upload: &[&Directory],
#[case] exp_fail_upload_last: bool,
#[case] exp_finalize: Option<Vec<&Directory>>, // Some(_) if finalize successful, None if not.
) {
let mut dcv = ClosureValidator::default();
let len_directories_to_upload = directories_to_upload.len();
for (i, d) in directories_to_upload.iter().enumerate() {
let resp = dcv.add((*d).clone());
if i == len_directories_to_upload - 1 && exp_fail_upload_last {
assert!(resp.is_err(), "expect last put to fail");
// We don't really care anymore what finalize() would return, as
// the add() failed.
return;
} else {
assert!(resp.is_ok(), "expect put to succeed");
}
}
// everything was uploaded successfully. Test finalize().
let resp = dcv.finalize();
match exp_finalize {
Some(directories) => {
assert_eq!(
Vec::from_iter(directories.iter().map(|e| (*e).to_owned())),
resp.expect("drain should succeed")
);
}
None => {
resp.expect_err("drain should fail");
}
}
}
}
|