1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
#include "libutil/compression.hh"
#include <cstdio>
#include <cstring>
#include <iostream>
#include <brotli/decode.h>
#include <brotli/encode.h>
#include <bzlib.h>
#include <glog/logging.h>
#include <lzma.h>
#include "libutil/finally.hh"
#include "libutil/util.hh"
namespace nix {
// Don't feed brotli too much at once.
struct ChunkedCompressionSink : CompressionSink {
uint8_t outbuf[32 * 1024];
void write(const unsigned char* data, size_t len) override {
const size_t CHUNK_SIZE = sizeof(outbuf) << 2;
while (len != 0u) {
size_t n = std::min(CHUNK_SIZE, len);
writeInternal(data, n);
data += n;
len -= n;
}
}
virtual void writeInternal(const unsigned char* data, size_t len) = 0;
};
struct NoneSink : CompressionSink {
Sink& nextSink;
explicit NoneSink(Sink& nextSink) : nextSink(nextSink) {}
void finish() override { flush(); }
void write(const unsigned char* data, size_t len) override {
nextSink(data, len);
}
};
struct XzDecompressionSink : CompressionSink {
Sink& nextSink;
uint8_t outbuf[BUFSIZ];
lzma_stream strm = LZMA_STREAM_INIT;
bool finished = false;
explicit XzDecompressionSink(Sink& nextSink) : nextSink(nextSink) {
lzma_ret ret = lzma_stream_decoder(&strm, UINT64_MAX, LZMA_CONCATENATED);
if (ret != LZMA_OK) {
throw CompressionError("unable to initialise lzma decoder");
}
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
}
~XzDecompressionSink() override { lzma_end(&strm); }
void finish() override {
CompressionSink::flush();
write(nullptr, 0);
}
void write(const unsigned char* data, size_t len) override {
strm.next_in = data;
strm.avail_in = len;
while (!finished && ((data == nullptr) || (strm.avail_in != 0u))) {
checkInterrupt();
lzma_ret ret = lzma_code(&strm, data != nullptr ? LZMA_RUN : LZMA_FINISH);
if (ret != LZMA_OK && ret != LZMA_STREAM_END) {
throw CompressionError("error %d while decompressing xz file", ret);
}
finished = ret == LZMA_STREAM_END;
if (strm.avail_out < sizeof(outbuf) || strm.avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - strm.avail_out);
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
}
}
}
};
struct BzipDecompressionSink : ChunkedCompressionSink {
Sink& nextSink;
bz_stream strm;
bool finished = false;
explicit BzipDecompressionSink(Sink& nextSink) : nextSink(nextSink) {
memset(&strm, 0, sizeof(strm));
int ret = BZ2_bzDecompressInit(&strm, 0, 0);
if (ret != BZ_OK) {
throw CompressionError("unable to initialise bzip2 decoder");
}
strm.next_out = (char*)outbuf;
strm.avail_out = sizeof(outbuf);
}
~BzipDecompressionSink() override { BZ2_bzDecompressEnd(&strm); }
void finish() override {
flush();
write(nullptr, 0);
}
void writeInternal(const unsigned char* data, size_t len) override {
assert(len <= std::numeric_limits<decltype(strm.avail_in)>::max());
strm.next_in = (char*)data;
strm.avail_in = len;
while (strm.avail_in != 0u) {
checkInterrupt();
int ret = BZ2_bzDecompress(&strm);
if (ret != BZ_OK && ret != BZ_STREAM_END) {
throw CompressionError("error while decompressing bzip2 file");
}
finished = ret == BZ_STREAM_END;
if (strm.avail_out < sizeof(outbuf) || strm.avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - strm.avail_out);
strm.next_out = (char*)outbuf;
strm.avail_out = sizeof(outbuf);
}
}
}
};
struct BrotliDecompressionSink : ChunkedCompressionSink {
Sink& nextSink;
BrotliDecoderState* state;
bool finished = false;
explicit BrotliDecompressionSink(Sink& nextSink) : nextSink(nextSink) {
state = BrotliDecoderCreateInstance(nullptr, nullptr, nullptr);
if (state == nullptr) {
throw CompressionError("unable to initialize brotli decoder");
}
}
~BrotliDecompressionSink() override { BrotliDecoderDestroyInstance(state); }
void finish() override {
flush();
writeInternal(nullptr, 0);
}
void writeInternal(const unsigned char* data, size_t len) override {
const uint8_t* next_in = data;
size_t avail_in = len;
uint8_t* next_out = outbuf;
size_t avail_out = sizeof(outbuf);
while (!finished && ((data == nullptr) || (avail_in != 0u))) {
checkInterrupt();
if (BrotliDecoderDecompressStream(state, &avail_in, &next_in, &avail_out,
&next_out, nullptr) == 0u) {
throw CompressionError("error while decompressing brotli file");
}
if (avail_out < sizeof(outbuf) || avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - avail_out);
next_out = outbuf;
avail_out = sizeof(outbuf);
}
finished = (BrotliDecoderIsFinished(state) != 0);
}
}
};
ref<std::string> decompress(const std::string& method, const std::string& in) {
StringSink ssink;
auto sink = makeDecompressionSink(method, ssink);
(*sink)(in);
sink->finish();
return ssink.s;
}
ref<CompressionSink> makeDecompressionSink(const std::string& method,
Sink& nextSink) {
if (method == "none" || method.empty()) {
return make_ref<NoneSink>(nextSink);
}
if (method == "xz") {
return make_ref<XzDecompressionSink>(nextSink);
} else if (method == "bzip2") {
return make_ref<BzipDecompressionSink>(nextSink);
} else if (method == "br") {
return make_ref<BrotliDecompressionSink>(nextSink);
} else {
throw UnknownCompressionMethod("unknown compression method '%s'", method);
}
}
struct XzCompressionSink : CompressionSink {
Sink& nextSink;
uint8_t outbuf[BUFSIZ];
lzma_stream strm = LZMA_STREAM_INIT;
bool finished = false;
XzCompressionSink(Sink& nextSink, bool parallel) : nextSink(nextSink) {
lzma_ret ret;
bool done = false;
if (parallel) {
#ifdef HAVE_LZMA_MT
lzma_mt mt_options = {};
mt_options.flags = 0;
mt_options.timeout = 300; // Using the same setting as the xz cmd line
mt_options.preset = LZMA_PRESET_DEFAULT;
mt_options.filters = NULL;
mt_options.check = LZMA_CHECK_CRC64;
mt_options.threads = lzma_cputhreads();
mt_options.block_size = 0;
if (mt_options.threads == 0) {
mt_options.threads = 1;
}
// FIXME: maybe use lzma_stream_encoder_mt_memusage() to control the
// number of threads.
ret = lzma_stream_encoder_mt(&strm, &mt_options);
done = true;
#else
LOG(ERROR) << "parallel XZ compression requested but not supported, "
<< "falling back to single-threaded compression";
#endif
}
if (!done) {
ret = lzma_easy_encoder(&strm, 6, LZMA_CHECK_CRC64);
}
if (ret != LZMA_OK) {
throw CompressionError("unable to initialise lzma encoder");
}
// FIXME: apply the x86 BCJ filter?
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
}
~XzCompressionSink() override { lzma_end(&strm); }
void finish() override {
CompressionSink::flush();
write(nullptr, 0);
}
void write(const unsigned char* data, size_t len) override {
strm.next_in = data;
strm.avail_in = len;
while (!finished && ((data == nullptr) || (strm.avail_in != 0u))) {
checkInterrupt();
lzma_ret ret = lzma_code(&strm, data != nullptr ? LZMA_RUN : LZMA_FINISH);
if (ret != LZMA_OK && ret != LZMA_STREAM_END) {
throw CompressionError("error %d while compressing xz file", ret);
}
finished = ret == LZMA_STREAM_END;
if (strm.avail_out < sizeof(outbuf) || strm.avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - strm.avail_out);
strm.next_out = outbuf;
strm.avail_out = sizeof(outbuf);
}
}
}
};
struct BzipCompressionSink : ChunkedCompressionSink {
Sink& nextSink;
bz_stream strm;
bool finished = false;
explicit BzipCompressionSink(Sink& nextSink) : nextSink(nextSink) {
memset(&strm, 0, sizeof(strm));
int ret = BZ2_bzCompressInit(&strm, 9, 0, 30);
if (ret != BZ_OK) {
throw CompressionError("unable to initialise bzip2 encoder");
}
strm.next_out = (char*)outbuf;
strm.avail_out = sizeof(outbuf);
}
~BzipCompressionSink() override { BZ2_bzCompressEnd(&strm); }
void finish() override {
flush();
writeInternal(nullptr, 0);
}
void writeInternal(const unsigned char* data, size_t len) override {
assert(len <= std::numeric_limits<decltype(strm.avail_in)>::max());
strm.next_in = (char*)data;
strm.avail_in = len;
while (!finished && ((data == nullptr) || (strm.avail_in != 0u))) {
checkInterrupt();
int ret = BZ2_bzCompress(&strm, data != nullptr ? BZ_RUN : BZ_FINISH);
if (ret != BZ_RUN_OK && ret != BZ_FINISH_OK && ret != BZ_STREAM_END) {
throw CompressionError("error %d while compressing bzip2 file", ret);
}
finished = ret == BZ_STREAM_END;
if (strm.avail_out < sizeof(outbuf) || strm.avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - strm.avail_out);
strm.next_out = (char*)outbuf;
strm.avail_out = sizeof(outbuf);
}
}
}
};
struct BrotliCompressionSink : ChunkedCompressionSink {
Sink& nextSink;
uint8_t outbuf[BUFSIZ];
BrotliEncoderState* state;
bool finished = false;
explicit BrotliCompressionSink(Sink& nextSink) : nextSink(nextSink) {
state = BrotliEncoderCreateInstance(nullptr, nullptr, nullptr);
if (state == nullptr) {
throw CompressionError("unable to initialise brotli encoder");
}
}
~BrotliCompressionSink() override { BrotliEncoderDestroyInstance(state); }
void finish() override {
flush();
writeInternal(nullptr, 0);
}
void writeInternal(const unsigned char* data, size_t len) override {
const uint8_t* next_in = data;
size_t avail_in = len;
uint8_t* next_out = outbuf;
size_t avail_out = sizeof(outbuf);
while (!finished && ((data == nullptr) || (avail_in != 0u))) {
checkInterrupt();
if (BrotliEncoderCompressStream(state,
data != nullptr ? BROTLI_OPERATION_PROCESS
: BROTLI_OPERATION_FINISH,
&avail_in, &next_in, &avail_out,
&next_out, nullptr) == 0) {
throw CompressionError("error while compressing brotli compression");
}
if (avail_out < sizeof(outbuf) || avail_in == 0) {
nextSink(outbuf, sizeof(outbuf) - avail_out);
next_out = outbuf;
avail_out = sizeof(outbuf);
}
finished = (BrotliEncoderIsFinished(state) != 0);
}
}
};
ref<CompressionSink> makeCompressionSink(const std::string& method,
Sink& nextSink, const bool parallel) {
if (method == "none") {
return make_ref<NoneSink>(nextSink);
}
if (method == "xz") {
return make_ref<XzCompressionSink>(nextSink, parallel);
} else if (method == "bzip2") {
return make_ref<BzipCompressionSink>(nextSink);
} else if (method == "br") {
return make_ref<BrotliCompressionSink>(nextSink);
} else {
throw UnknownCompressionMethod(format("unknown compression method '%s'") %
method);
}
}
ref<std::string> compress(const std::string& method, const std::string& in,
const bool parallel) {
StringSink ssink;
auto sink = makeCompressionSink(method, ssink, parallel);
(*sink)(in);
sink->finish();
return ssink.s;
}
} // namespace nix
|