1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
#include "libexpr/attr-set.hh"
#include <new>
#include <absl/container/btree_map.h>
#include <gc/gc_cpp.h>
#include <glog/logging.h>
#include "libexpr/eval-inline.hh"
#include "libutil/visitor.hh"
namespace nix {
constexpr size_t ATTRS_CAPACITY_PIVOT = 32;
BindingsIterator& BindingsIterator::operator++() {
std::visit(util::overloaded{
[](AttributeMap::iterator& iter) { ++iter; },
[](AttributeVector::iterator& iter) { ++iter; },
},
_iterator);
return *this;
}
BindingsIterator BindingsIterator::operator++(int) {
auto old = *this;
std::visit(util::overloaded{
[](AttributeMap::iterator& iter) { iter++; },
[](AttributeVector::iterator& iter) { iter++; },
},
_iterator);
return old;
}
bool BindingsIterator::operator==(const BindingsIterator& other) const {
return _iterator == other._iterator;
}
bool BindingsIterator::operator!=(const BindingsIterator& other) const {
return _iterator != other._iterator;
}
BindingsIterator::reference BindingsIterator::operator*() const {
return std::visit(
util::overloaded{
[](AttributeMap::iterator iter) -> std::pair<const Symbol, Attr>& {
return *iter;
},
[](AttributeVector::iterator iter) -> std::pair<const Symbol, Attr>& {
// this cast is effectively upcasting the left-hand side of the
// pair, which in the vector case *must* be const so that insert and
// friends can shift it around, but in the map case *must not* be
// const so that the key ordering semantics don't change out from
// under the map. So we pick const as the LUB of the two types and
// then upcast here. The static_assert, per the docs for
// reinterpret_cast, is proving that this is safe
static_assert(
std::is_standard_layout<std::pair<const Symbol, Attr>>::value);
return *reinterpret_cast<std::pair<const Symbol, Attr>*>(&*iter);
},
},
_iterator);
}
class BTreeBindings : public Bindings {
public:
size_t size() override;
bool empty() override;
void push_back(const Attr& attr) override;
Bindings::iterator find(const Symbol& name) override;
Bindings::iterator begin() override;
Bindings::iterator end() override;
void merge(Bindings& other) override;
[[deprecated]] virtual std::vector<const Attr*> lexicographicOrder() override;
private:
AttributeMap attributes_;
};
// This function inherits its name from previous implementations, in
// which Bindings was backed by an array of elements which was scanned
// linearly.
//
// In that setup, inserting duplicate elements would always yield the
// first element (until the next sort, which wasn't stable, after
// which things are more or less undefined).
//
// This behaviour is mimicked by using .insert(), which will *not*
// override existing values.
void BTreeBindings::push_back(const Attr& attr) {
auto [_, inserted] = attributes_.insert({attr.name, attr});
if (!inserted) {
DLOG(WARNING) << "attempted to insert duplicate attribute for key '"
<< attr.name << "'";
}
}
size_t BTreeBindings::size() { return attributes_.size(); }
bool BTreeBindings::empty() { return attributes_.empty(); }
std::vector<const Attr*> BTreeBindings::lexicographicOrder() {
std::vector<const Attr*> res;
res.reserve(attributes_.size());
for (const auto& [key, value] : attributes_) {
res.emplace_back(&value);
}
return res;
}
Bindings::iterator BTreeBindings::find(const Symbol& name) {
return BindingsIterator{attributes_.find(name)};
}
Bindings::iterator BTreeBindings::begin() {
return BindingsIterator{attributes_.begin()};
}
Bindings::iterator BTreeBindings::end() {
return BindingsIterator{attributes_.end()};
}
void BTreeBindings::merge(Bindings& other) {
for (auto& [key, value] : other) {
this->attributes_.insert_or_assign(key, value);
}
}
class VectorBindings : public Bindings {
public:
VectorBindings() {};
VectorBindings(size_t capacity) : attributes_() {
attributes_.reserve(capacity);
};
size_t size() override;
bool empty() override;
void push_back(const Attr& attr) override;
Bindings::iterator find(const Symbol& name) override;
Bindings::iterator begin() override;
Bindings::iterator end() override;
void merge(Bindings& other) override;
[[deprecated]] virtual std::vector<const Attr*> lexicographicOrder() override;
private:
AttributeVector attributes_;
};
size_t VectorBindings::size() { return attributes_.size(); }
bool VectorBindings::empty() { return attributes_.empty(); }
void VectorBindings::merge(Bindings& other) {
AttributeVector new_attributes;
new_attributes.reserve(size() + other.size());
auto m_it = attributes_.begin();
auto other_it = other.begin();
while (other_it != other.end() && m_it != attributes_.end()) {
if (other_it->first < m_it->first) {
new_attributes.push_back(*(m_it++));
} else {
if (m_it->first == other_it->first) {
++m_it;
}
new_attributes.push_back(*(other_it++));
}
}
if (m_it != attributes_.end()) {
std::copy(m_it, attributes_.end(), std::back_inserter(new_attributes));
}
if (other_it != other.end()) {
std::copy(other_it, other.end(), std::back_inserter(new_attributes));
}
new_attributes.shrink_to_fit();
attributes_ = new_attributes;
}
void VectorBindings::push_back(const Attr& attr) {
attributes_.emplace_back(attr.name, attr);
}
std::vector<const Attr*> VectorBindings::lexicographicOrder() {
std::vector<const Attr*> result(attributes_.size());
for (auto& [_, attr] : attributes_) {
result.push_back(&attr);
}
return result;
}
Bindings::iterator VectorBindings::find(const Symbol& name) {
return BindingsIterator{
std::find_if(attributes_.begin(), attributes_.end(),
[&name](const auto& pair) { return pair.first == name; })};
}
Bindings::iterator VectorBindings::begin() {
return BindingsIterator{attributes_.begin()};
}
Bindings::iterator VectorBindings::end() {
return BindingsIterator{attributes_.end()};
}
Bindings* Bindings::NewGC(size_t capacity) {
if (capacity > ATTRS_CAPACITY_PIVOT) {
return new (GC) BTreeBindings;
} else {
return new (GC) VectorBindings(capacity);
}
}
void EvalState::mkAttrs(Value& v, size_t capacity) {
clearValue(v);
v.type = tAttrs;
v.attrs = Bindings::NewGC(capacity);
assert(v.attrs->begin() == v.attrs->begin());
assert(v.attrs->end() == v.attrs->end());
nrAttrsets++;
nrAttrsInAttrsets += capacity;
}
/* Create a new attribute named 'name' on an existing attribute set stored
in 'vAttrs' and return the newly allocated Value which is associated with
this attribute. */
Value* EvalState::allocAttr(Value& vAttrs, const Symbol& name) {
Value* v = allocValue();
vAttrs.attrs->push_back(Attr(name, v));
return v;
}
} // namespace nix
|