1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
|
//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include "benchmark/vector/common.hpp"
namespace {
constexpr auto concat_steps = 10u;
template <typename Vektor,
typename PushFn=push_back_fn>
auto benchmark_concat()
{
return [] (nonius::chronometer meter)
{
auto n = meter.param<N>();
auto v = Vektor{};
for (auto i = 0u; i < n; ++i)
v = PushFn{}(std::move(v), i);
measure(meter, [&] {
return v + v;
});
};
}
template <typename Fn>
auto benchmark_concat_librrb(Fn maker)
{
return
[=] (nonius::chronometer meter) {
auto n = meter.param<N>();
auto v = maker(n);
measure(meter, [&] {
return rrb_concat(v, v);
});
};
}
template <typename Vektor,
typename PushFn=push_back_fn>
auto benchmark_concat_incr()
{
return
[] (nonius::chronometer meter)
{
auto n = meter.param<N>();
auto v = Vektor{};
for (auto i = 0u; i < n / concat_steps; ++i)
v = PushFn{}(std::move(v), i);
measure(meter, [&] {
auto r = Vektor{};
for (auto i = 0u; i < concat_steps; ++i)
r = r + v;
return r;
});
};
}
template <typename Vektor>
auto benchmark_concat_incr_mut()
{
return
[] (nonius::chronometer meter)
{
auto n = meter.param<N>();
auto v = Vektor{}.transient();
for (auto i = 0u; i < n / concat_steps; ++i)
v.push_back(i);
measure(meter, [&] (int run) {
auto r = Vektor{}.transient();
for (auto i = 0u; i < concat_steps; ++i)
r.append(v);
return r;
});
};
}
template <typename Vektor>
auto benchmark_concat_incr_mut2()
{
return
[] (nonius::chronometer meter)
{
auto n = meter.param<N>();
using transient_t = typename Vektor::transient_type;
using steps_t = std::vector<transient_t, gc_allocator<transient_t>>;
auto vs = std::vector<steps_t, gc_allocator<steps_t>>(meter.runs());
for (auto k = 0u; k < vs.size(); ++k) {
vs[k].reserve(concat_steps);
for (auto j = 0u; j < concat_steps; ++j) {
auto vv = Vektor{}.transient();
for (auto i = 0u; i < n / concat_steps; ++i)
vv.push_back(i);
vs[k].push_back(std::move(vv));
}
}
measure(meter, [&] (int run) {
auto& vr = vs[run];
auto r = Vektor{}.transient();
assert(vr.size() == concat_steps);
for (auto i = 0u; i < concat_steps; ++i)
r.append(std::move(vr[i]));
return r;
});
};
}
template <typename Vektor>
auto benchmark_concat_incr_chunkedseq()
{
return
[] (nonius::chronometer meter)
{
auto n = meter.param<N>();
using steps_t = std::vector<Vektor>;
auto vs = std::vector<steps_t>(meter.runs());
for (auto k = 0u; k < vs.size(); ++k) {
for (auto j = 0u; j < concat_steps; ++j) {
auto vv = Vektor{};
for (auto i = 0u; i < n / concat_steps; ++i)
vv.push_back(i);
vs[k].push_back(std::move(vv));
}
}
measure(meter, [&] (int run) {
auto& vr = vs[run];
auto r = Vektor{};
for (auto i = 0u; i < concat_steps; ++i)
r.concat(vr[i]);
return r;
});
};
}
template <typename Fn>
auto benchmark_concat_incr_librrb(Fn maker)
{
return
[=] (nonius::chronometer meter) {
auto n = meter.param<N>();
auto v = maker(n / concat_steps);
measure(meter, [&] {
auto r = rrb_create();
for (auto i = 0ul; i < concat_steps; ++i)
r = rrb_concat(r, v);
return r;
});
};
}
} // anonymous namespace
|