1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// Unit tests for StatusOr
#include "absl/status/statusor.h"
#include <memory>
#include <type_traits>
#include "absl/base/internal/exception_testing.h"
#include "gtest/gtest.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
class Base1 {
public:
virtual ~Base1() {}
int pad_;
};
class Base2 {
public:
virtual ~Base2() {}
int yetotherpad_;
};
class Derived : public Base1, public Base2 {
public:
~Derived() override {}
int evenmorepad_;
};
class CopyNoAssign {
public:
explicit CopyNoAssign(int value) : foo_(value) {}
CopyNoAssign(const CopyNoAssign& other) : foo_(other.foo_) {}
int foo_;
private:
const CopyNoAssign& operator=(const CopyNoAssign&);
};
class NoDefaultConstructor {
public:
explicit NoDefaultConstructor(int foo);
};
static_assert(!std::is_default_constructible<NoDefaultConstructor>(),
"Should not be default-constructible.");
StatusOr<std::unique_ptr<int>> ReturnUniquePtr() {
// Uses implicit constructor from T&&
return std::unique_ptr<int>(new int(0));
}
TEST(StatusOr, ElementType) {
static_assert(std::is_same<StatusOr<int>::element_type, int>(), "");
static_assert(std::is_same<StatusOr<char>::element_type, char>(), "");
}
TEST(StatusOr, NullPointerStatusOr) {
// As a very special case, null-plain-pointer StatusOr used to be an
// error. Test that it no longer is.
StatusOr<int*> null_status(nullptr);
EXPECT_TRUE(null_status.ok());
EXPECT_EQ(null_status.ValueOrDie(), nullptr);
}
TEST(StatusOr, TestNoDefaultConstructorInitialization) {
// Explicitly initialize it with an error code.
StatusOr<NoDefaultConstructor> statusor(CancelledError(""));
EXPECT_FALSE(statusor.ok());
EXPECT_EQ(statusor.status().code(), absl::StatusCode::kCancelled);
// Default construction of StatusOr initializes it with an UNKNOWN error code.
StatusOr<NoDefaultConstructor> statusor2;
EXPECT_FALSE(statusor2.ok());
EXPECT_EQ(statusor2.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOr, TestMoveOnlyInitialization) {
StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
EXPECT_EQ(0, *thing.ValueOrDie());
int* previous = thing.ValueOrDie().get();
thing = ReturnUniquePtr();
EXPECT_TRUE(thing.ok());
EXPECT_EQ(0, *thing.ValueOrDie());
EXPECT_NE(previous, thing.ValueOrDie().get());
}
TEST(StatusOr, TestMoveOnlyStatusCtr) {
StatusOr<std::unique_ptr<int>> thing(CancelledError(""));
ASSERT_FALSE(thing.ok());
}
TEST(StatusOr, TestMoveOnlyValueExtraction) {
StatusOr<std::unique_ptr<int>> thing(ReturnUniquePtr());
ASSERT_TRUE(thing.ok());
std::unique_ptr<int> ptr = thing.ConsumeValueOrDie();
EXPECT_EQ(0, *ptr);
thing = std::move(ptr);
ptr = std::move(thing.ValueOrDie());
EXPECT_EQ(0, *ptr);
}
TEST(StatusOr, TestMoveOnlyConversion) {
StatusOr<std::unique_ptr<const int>> const_thing(ReturnUniquePtr());
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, *const_thing.ValueOrDie());
// Test rvalue converting assignment
const int* const_previous = const_thing.ValueOrDie().get();
const_thing = ReturnUniquePtr();
EXPECT_TRUE(const_thing.ok());
EXPECT_EQ(0, *const_thing.ValueOrDie());
EXPECT_NE(const_previous, const_thing.ValueOrDie().get());
}
TEST(StatusOr, TestMoveOnlyVector) {
// Sanity check that StatusOr<MoveOnly> works in vector.
std::vector<StatusOr<std::unique_ptr<int>>> vec;
vec.push_back(ReturnUniquePtr());
vec.resize(2);
auto another_vec = std::move(vec);
EXPECT_EQ(0, *another_vec[0].ValueOrDie());
EXPECT_EQ(absl::StatusCode::kUnknown, another_vec[1].status().code());
}
TEST(StatusOr, TestMoveWithValuesAndErrors) {
StatusOr<std::string> status_or(std::string(1000, '0'));
StatusOr<std::string> value1(std::string(1000, '1'));
StatusOr<std::string> value2(std::string(1000, '2'));
StatusOr<std::string> error1(UnknownError("error1"));
StatusOr<std::string> error2(UnknownError("error2"));
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '0'), status_or.ValueOrDie());
// Overwrite the value in status_or with another value.
status_or = std::move(value1);
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '1'), status_or.ValueOrDie());
// Overwrite the value in status_or with an error.
status_or = std::move(error1);
ASSERT_FALSE(status_or.ok());
EXPECT_EQ("error1", status_or.status().message());
// Overwrite the error in status_or with another error.
status_or = std::move(error2);
ASSERT_FALSE(status_or.ok());
EXPECT_EQ("error2", status_or.status().message());
// Overwrite the error with a value.
status_or = std::move(value2);
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '2'), status_or.ValueOrDie());
}
TEST(StatusOr, TestCopyWithValuesAndErrors) {
StatusOr<std::string> status_or(std::string(1000, '0'));
StatusOr<std::string> value1(std::string(1000, '1'));
StatusOr<std::string> value2(std::string(1000, '2'));
StatusOr<std::string> error1(UnknownError("error1"));
StatusOr<std::string> error2(UnknownError("error2"));
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '0'), status_or.ValueOrDie());
// Overwrite the value in status_or with another value.
status_or = value1;
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '1'), status_or.ValueOrDie());
// Overwrite the value in status_or with an error.
status_or = error1;
ASSERT_FALSE(status_or.ok());
EXPECT_EQ("error1", status_or.status().message());
// Overwrite the error in status_or with another error.
status_or = error2;
ASSERT_FALSE(status_or.ok());
EXPECT_EQ("error2", status_or.status().message());
// Overwrite the error with a value.
status_or = value2;
ASSERT_TRUE(status_or.ok());
EXPECT_EQ(std::string(1000, '2'), status_or.ValueOrDie());
// Verify original values unchanged.
EXPECT_EQ(std::string(1000, '1'), value1.ValueOrDie());
EXPECT_EQ("error1", error1.status().message());
EXPECT_EQ("error2", error2.status().message());
EXPECT_EQ(std::string(1000, '2'), value2.ValueOrDie());
}
TEST(StatusOr, TestDefaultCtor) {
StatusOr<int> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOrDeathTest, TestDefaultCtorValue) {
StatusOr<int> thing;
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "");
const StatusOr<int> thing2;
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "");
}
TEST(StatusOr, TestStatusCtor) {
StatusOr<int> thing(Status(absl::StatusCode::kCancelled, ""));
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kCancelled);
}
TEST(StatusOr, TestValueCtor) {
const int kI = 4;
const StatusOr<int> thing(kI);
EXPECT_TRUE(thing.ok());
EXPECT_EQ(kI, thing.ValueOrDie());
}
TEST(StatusOr, TestCopyCtorStatusOk) {
const int kI = 4;
const StatusOr<int> original(kI);
const StatusOr<int> copy(original);
EXPECT_EQ(copy.status(), original.status());
EXPECT_EQ(original.ValueOrDie(), copy.ValueOrDie());
}
TEST(StatusOr, TestCopyCtorStatusNotOk) {
StatusOr<int> original(Status(absl::StatusCode::kCancelled, ""));
StatusOr<int> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestCopyCtorNonAssignable) {
const int kI = 4;
CopyNoAssign value(kI);
StatusOr<CopyNoAssign> original(value);
StatusOr<CopyNoAssign> copy(original);
EXPECT_EQ(copy.status(), original.status());
EXPECT_EQ(original.ValueOrDie().foo_, copy.ValueOrDie().foo_);
}
TEST(StatusOr, TestCopyCtorStatusOKConverting) {
const int kI = 4;
StatusOr<int> original(kI);
StatusOr<double> copy(original);
EXPECT_EQ(copy.status(), original.status());
EXPECT_DOUBLE_EQ(original.ValueOrDie(), copy.ValueOrDie());
}
TEST(StatusOr, TestCopyCtorStatusNotOkConverting) {
StatusOr<int> original(Status(absl::StatusCode::kCancelled, ""));
StatusOr<double> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestAssignmentStatusOk) {
const int kI = 4;
StatusOr<int> source(kI);
StatusOr<int> target;
target = source;
EXPECT_EQ(target.status(), source.status());
EXPECT_EQ(source.ValueOrDie(), target.ValueOrDie());
}
TEST(StatusOr, TestAssignmentStatusNotOk) {
StatusOr<int> source(Status(absl::StatusCode::kCancelled, ""));
StatusOr<int> target;
target = source;
EXPECT_EQ(target.status(), source.status());
}
TEST(StatusOr, TestStatus) {
StatusOr<int> good(4);
EXPECT_TRUE(good.ok());
StatusOr<int> bad(Status(absl::StatusCode::kCancelled, ""));
EXPECT_FALSE(bad.ok());
EXPECT_EQ(bad.status(), Status(absl::StatusCode::kCancelled, ""));
}
TEST(StatusOr, TestValue) {
const int kI = 4;
StatusOr<int> thing(kI);
EXPECT_EQ(kI, thing.ValueOrDie());
}
TEST(StatusOr, TestValueConst) {
const int kI = 4;
const StatusOr<int> thing(kI);
EXPECT_EQ(kI, thing.ValueOrDie());
}
TEST(StatusOrDeathTest, TestValueNotOk) {
StatusOr<int> thing(Status(absl::StatusCode::kCancelled, "cancelled"));
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "cancelled");
}
TEST(StatusOrDeathTest, TestValueNotOkConst) {
const StatusOr<int> thing(Status(absl::StatusCode::kUnknown, ""));
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "");
}
TEST(StatusOr, TestPointerDefaultCtor) {
StatusOr<int*> thing;
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status().code(), absl::StatusCode::kUnknown);
}
TEST(StatusOrDeathTest, TestPointerDefaultCtorValue) {
StatusOr<int*> thing;
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "");
}
TEST(StatusOr, TestPointerStatusCtor) {
StatusOr<int*> thing(Status(absl::StatusCode::kCancelled, ""));
EXPECT_FALSE(thing.ok());
EXPECT_EQ(thing.status(), Status(absl::StatusCode::kCancelled, ""));
}
TEST(StatusOr, TestPointerValueCtor) {
const int kI = 4;
StatusOr<const int*> thing(&kI);
EXPECT_TRUE(thing.ok());
EXPECT_EQ(&kI, thing.ValueOrDie());
}
TEST(StatusOr, TestPointerCopyCtorStatusOk) {
const int kI = 0;
StatusOr<const int*> original(&kI);
StatusOr<const int*> copy(original);
EXPECT_EQ(copy.status(), original.status());
EXPECT_EQ(original.ValueOrDie(), copy.ValueOrDie());
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOk) {
StatusOr<int*> original(Status(absl::StatusCode::kCancelled, ""));
StatusOr<int*> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestPointerCopyCtorStatusOKConverting) {
Derived derived;
StatusOr<Derived*> original(&derived);
StatusOr<Base2*> copy(original);
EXPECT_EQ(copy.status(), original.status());
EXPECT_EQ(static_cast<const Base2*>(original.ValueOrDie()),
copy.ValueOrDie());
}
TEST(StatusOr, TestPointerCopyCtorStatusNotOkConverting) {
StatusOr<Derived*> original(Status(absl::StatusCode::kCancelled, ""));
StatusOr<Base2*> copy(original);
EXPECT_EQ(copy.status(), original.status());
}
TEST(StatusOr, TestPointerAssignmentStatusOk) {
const int kI = 0;
StatusOr<const int*> source(&kI);
StatusOr<const int*> target;
target = source;
EXPECT_EQ(target.status(), source.status());
EXPECT_EQ(source.ValueOrDie(), target.ValueOrDie());
}
TEST(StatusOr, TestPointerAssignmentStatusNotOk) {
StatusOr<int*> source(Status(absl::StatusCode::kCancelled, ""));
StatusOr<int*> target;
target = source;
EXPECT_EQ(target.status(), source.status());
}
TEST(StatusOr, TestPointerStatus) {
const int kI = 0;
StatusOr<const int*> good(&kI);
EXPECT_TRUE(good.ok());
StatusOr<const int*> bad(Status(absl::StatusCode::kCancelled, ""));
EXPECT_EQ(bad.status(), Status(absl::StatusCode::kCancelled, ""));
}
TEST(StatusOr, TestPointerValue) {
const int kI = 0;
StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, thing.ValueOrDie());
}
TEST(StatusOr, TestPointerValueConst) {
const int kI = 0;
const StatusOr<const int*> thing(&kI);
EXPECT_EQ(&kI, thing.ValueOrDie());
}
TEST(StatusOr, TestArrowOperator) {
StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr();
EXPECT_EQ(*uptr->get(), 0);
}
TEST(StatusOr, TestArrowOperatorNotOk) {
StatusOr<Base1> error(Status(absl::StatusCode::kCancelled, "cancelled"));
ABSL_BASE_INTERNAL_EXPECT_FAIL(error->pad_++, absl::Status, "cancelled");
}
TEST(StatusOr, TestStarOperator) {
StatusOr<std::unique_ptr<int>> uptr = ReturnUniquePtr();
EXPECT_EQ(**uptr, 0);
}
TEST(StatusOr, TestStarOperatorDeath) {
StatusOr<Base1> error(Status(absl::StatusCode::kCancelled, "cancelled"));
ABSL_BASE_INTERNAL_EXPECT_FAIL(*error, absl::Status, "cancelled");
}
// NOTE(tucker): StatusOr does not support this kind
// of resize op.
// TEST(StatusOr, StatusOrVectorOfUniquePointerCanResize) {
// using EvilType = std::vector<std::unique_ptr<int>>;
// static_assert(std::is_copy_constructible<EvilType>::value, "");
// std::vector<StatusOr<EvilType>> v(5);
// v.reserve(v.capacity() + 10);
// }
TEST(StatusOrDeathTest, TestPointerValueNotOk) {
StatusOr<int*> thing(Status(absl::StatusCode::kCancelled, "cancelled"));
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "cancelled");
}
TEST(StatusOrDeathTest, TestPointerValueNotOkConst) {
const StatusOr<int*> thing(Status(absl::StatusCode::kCancelled, "cancelled"));
ABSL_BASE_INTERNAL_EXPECT_FAIL(thing.ValueOrDie(), absl::Status, "cancelled");
}
static void AssertOkAndAssignBody(absl::StatusOr<int> consume) {
ASSERT_OK_AND_ASSIGN(int value, consume);
EXPECT_EQ(value, 1);
}
TEST(StatusOr, TestAssertOkAndAssign) {
const int kI = 1;
AssertOkAndAssignBody(kI);
}
TEST(StatusOrDeathTest, TestAssertOkAndAssignNotOk) {
// Can't actually test this, as calling ASSERT_TRUE fails the test.
}
static absl::Status AssignOrReturnBody(absl::StatusOr<int*> maybe) {
ASSIGN_OR_RETURN(int *iptr, maybe);
EXPECT_EQ(*iptr, 1);
*iptr = 4;
return OkStatus();
}
TEST(StatusOr, TestAssignOrReturn) {
int i = 1;
EXPECT_TRUE(AssignOrReturnBody(&i).ok());
EXPECT_EQ(i, 4);
}
TEST(StatusOr, TestAssignOrReturnNotOk) {
const StatusOr<int*> thing(Status(absl::StatusCode::kCancelled, "cancelled"));
const Status result = AssignOrReturnBody(thing);
EXPECT_FALSE(result.ok());
EXPECT_EQ(result, thing.status());
}
static absl::Status ReturnIfErrorBody(absl::Status status, int* iptr) {
RETURN_IF_ERROR(status);
EXPECT_EQ(*iptr, 1);
*iptr = 4;
return OkStatus();
}
TEST(StatusOr, TestReturnIfError) {
int i = 1;
EXPECT_TRUE(ReturnIfErrorBody(OkStatus(), &i).ok());
EXPECT_EQ(i, 4);
}
TEST(StatusOr, TestReturnIfErrorNotOk) {
int i = 1;
Status thing(absl::StatusCode::kCancelled, "");
EXPECT_FALSE(ReturnIfErrorBody(thing, &i).ok());
EXPECT_EQ(i, 1);
}
/*
static StatusOr<int> MakeStatus() { return 100; }
// A factory to help us benchmark the various factory styles. All of
// the factory methods are marked as non-inlineable so as to more
// accurately simulate calling a factory for which you do not have
// visibility of implementation. Similarly, the value_ variable is
// marked volatile to prevent the compiler from getting too clever
// about detecting that the same value is used in all loop iterations.
template <typename T>
class BenchmarkFactory {
public:
// Construct a new factory. Allocate an object which will always
// be the result of the factory methods.
BenchmarkFactory() : value_(new T) {}
// Destroy this factory, including the result value.
~BenchmarkFactory() { delete value_; }
// A trivial factory that just returns the value. There is no status
// object that could be returned to encapsulate an error
T* TrivialFactory() ABSL_ATTRIBUTE_NOINLINE { return value_; }
// A more sophisticated factory, which returns a status to indicate
// the result of the operation. The factory result is populated into
// the user provided pointer result.
Status ArgumentFactory(T** result) ABSL_ATTRIBUTE_NOINLINE {
*result = value_;
return Status::OK();
}
Status ArgumentFactoryFail(T** result) ABSL_ATTRIBUTE_NOINLINE {
*result = nullptr;
return CancelledError("");
}
Status ArgumentFactoryFailShortMsg(T** result) ABSL_ATTRIBUTE_NOINLINE {
*result = nullptr;
return InternalError("");
}
Status ArgumentFactoryFailLongMsg(T** result) ABSL_ATTRIBUTE_NOINLINE {
*result = nullptr;
return InternalError(,
"a big string of message junk that will never be read");
}
// A factory that returns a StatusOr<T*>. If the factory operation
// is OK, then the StatusOr<T*> will hold a T*. Otherwise, it will
// hold a status explaining the error.
StatusOr<T*> StatusOrFactory() ABSL_ATTRIBUTE_NOINLINE {
return static_cast<T*>(value_);
}
StatusOr<T*> StatusOrFactoryFail() ABSL_ATTRIBUTE_NOINLINE {
return CancelledError("");
}
StatusOr<T*> StatusOrFactoryFailShortMsg() ABSL_ATTRIBUTE_NOINLINE {
return InternalError("i");
}
StatusOr<T*> StatusOrFactoryFailLongMsg() ABSL_ATTRIBUTE_NOINLINE {
return InternalError(
"a big string of message junk that will never be read");
}
private:
T* volatile value_;
ABSL_DISALLOW_COPY_AND_ASSIGN(BenchmarkFactory);
};
// A simple type we use with the factory.
class BenchmarkType {
public:
BenchmarkType() {}
virtual ~BenchmarkType() {}
virtual void DoWork() ABSL_ATTRIBUTE_NOINLINE {}
private:
ABSL_DISALLOW_COPY_AND_ASSIGN(BenchmarkType);
};
// Calibrate the amount of time spent just calling DoWork, since each of our
// tests will do this, we can subtract this out of benchmark results.
void BM_CalibrateWorkLoop(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
BenchmarkType* result = factory.TrivialFactory();
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
if (result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_CalibrateWorkLoop);
// Measure the time taken to call into the factory, return the value,
// determine that it is OK, and invoke a trivial function.
void BM_TrivialFactory(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
BenchmarkType* result = factory.TrivialFactory();
if (result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_TrivialFactory);
// Measure the time taken to call into the factory, providing an
// out-param for the result, evaluating the status result and the
// result pointer, and invoking the trivial function.
void BM_ArgumentFactory(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
BenchmarkType* result = nullptr;
Status status = factory.ArgumentFactory(&result);
if (status.ok() && result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_ArgumentFactory);
// Measure the time to use the StatusOr<T*> factory, evaluate the result,
// and invoke the trivial function.
void BM_StatusOrFactory(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
StatusOr<BenchmarkType*> result = factory.StatusOrFactory();
if (result.ok()) {
result.ValueOrDie()->DoWork();
}
}
}
BENCHMARK(BM_StatusOrFactory);
// Measure the time taken to call into the factory, providing an
// out-param for the result, evaluating the status result and the
// result pointer, and invoking the trivial function.
void BM_ArgumentFactoryFail(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
BenchmarkType* result = nullptr;
Status status = factory.ArgumentFactoryFail(&result);
if (status.ok() && result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_ArgumentFactoryFail);
// Measure the time to use the StatusOr<T*> factory, evaluate the result,
// and invoke the trivial function.
void BM_StatusOrFactoryFail(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFail();
if (result.ok()) {
result.ValueOrDie()->DoWork();
}
}
}
BENCHMARK(BM_StatusOrFactoryFail);
// Measure the time taken to call into the factory, providing an
// out-param for the result, evaluating the status result and the
// result pointer, and invoking the trivial function.
void BM_ArgumentFactoryFailShortMsg(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
BenchmarkType* result = nullptr;
Status status = factory.ArgumentFactoryFailShortMsg(&result);
if (status.ok() && result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_ArgumentFactoryFailShortMsg);
// Measure the time to use the StatusOr<T*> factory, evaluate the result,
// and invoke the trivial function.
void BM_StatusOrFactoryFailShortMsg(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailShortMsg();
if (result.ok()) {
result.ValueOrDie()->DoWork();
}
}
}
BENCHMARK(BM_StatusOrFactoryFailShortMsg);
// Measure the time taken to call into the factory, providing an
// out-param for the result, evaluating the status result and the
// result pointer, and invoking the trivial function.
void BM_ArgumentFactoryFailLongMsg(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
BenchmarkType* result = nullptr;
Status status = factory.ArgumentFactoryFailLongMsg(&result);
if (status.ok() && result != nullptr) {
result->DoWork();
}
}
}
BENCHMARK(BM_ArgumentFactoryFailLongMsg);
// Measure the time to use the StatusOr<T*> factory, evaluate the result,
// and invoke the trivial function.
void BM_StatusOrFactoryFailLongMsg(int iters) {
tensorflow::testing::StopTiming();
BenchmarkFactory<BenchmarkType> factory;
tensorflow::testing::StartTiming();
for (int i = 0; i != iters; ++i) {
StatusOr<BenchmarkType*> result = factory.StatusOrFactoryFailLongMsg();
if (result.ok()) {
result.ValueOrDie()->DoWork();
}
}
}
BENCHMARK(BM_StatusOrFactoryFailLongMsg);
*/
} // namespace
ABSL_NAMESPACE_END
} // namespace absl
|