1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
|
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
// StatusOr<T> is the union of a Status object and a T object. StatusOr models
// the concept of an object that is either a value, or an error Status
// explaining why such a value is not present. To this end, StatusOr<T> does not
// allow its Status value to be StatusCode::kOk.
//
// The primary use-case for StatusOr<T> is as the return value of a
// function which may fail.
//
// Example client usage for a StatusOr<T>, where T is not a pointer:
//
// StatusOr<float> result = DoBigCalculationThatCouldFail();
// if (result.ok()) {
// float answer = result.ValueOrDie();
// printf("Big calculation yielded: %f", answer);
// } else {
// LOG(ERROR) << result.status();
// }
//
// Example client usage for a StatusOr<T*>:
//
// StatusOr<Foo*> result = FooFactory::MakeNewFoo(arg);
// if (result.ok()) {
// std::unique_ptr<Foo> foo(result.ValueOrDie());
// foo->DoSomethingCool();
// } else {
// LOG(ERROR) << result.status();
// }
//
// Example client usage for a StatusOr<std::unique_ptr<T>>:
//
// StatusOr<std::unique_ptr<Foo>> result = FooFactory::MakeNewFoo(arg);
// if (result.ok()) {
// std::unique_ptr<Foo> foo = std::move(result.ValueOrDie());
// foo->DoSomethingCool();
// } else {
// LOG(ERROR) << result.status();
// }
//
// Example factory implementation returning StatusOr<T*>:
//
// StatusOr<Foo*> FooFactory::MakeNewFoo(int arg) {
// if (arg <= 0) {
// return absl::InvalidArgumentError("Arg must be positive");
// } else {
// return new Foo(arg);
// }
// }
//
// Note that the assignment operators require that destroying the currently
// stored value cannot invalidate the argument; in other words, the argument
// cannot be an alias for the current value, or anything owned by the current
// value.
#ifndef ABSL_STATUS_STATUSOR_H_
#define ABSL_STATUS_STATUSOR_H_
#include "absl/status/status.h"
#include "absl/status/statusor_internals.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
template <typename T>
class StatusOr : private internal_statusor::StatusOrData<T>,
private internal_statusor::TraitsBase<
std::is_copy_constructible<T>::value,
std::is_move_constructible<T>::value> {
template <typename U>
friend class StatusOr;
typedef internal_statusor::StatusOrData<T> Base;
public:
typedef T element_type; // DEPRECATED: use `value_type`.
typedef T value_type;
// Constructs a new StatusOr with Status::UNKNOWN status. This is marked
// 'explicit' to try to catch cases like 'return {};', where people think
// StatusOr<std::vector<int>> will be initialized with an empty vector,
// instead of a Status::UNKNOWN status.
explicit StatusOr();
// StatusOr<T> will be copy constructible/assignable if T is copy
// constructible.
StatusOr(const StatusOr&) = default;
StatusOr& operator=(const StatusOr&) = default;
// StatusOr<T> will be move constructible/assignable if T is move
// constructible.
StatusOr(StatusOr&&) = default;
StatusOr& operator=(StatusOr&&) = default;
// Conversion copy/move constructor, T must be convertible from U.
template <typename U, typename std::enable_if<
std::is_convertible<U, T>::value>::type* = nullptr>
StatusOr(const StatusOr<U>& other);
template <typename U, typename std::enable_if<
std::is_convertible<U, T>::value>::type* = nullptr>
StatusOr(StatusOr<U>&& other);
// Conversion copy/move assignment operator, T must be convertible from U.
template <typename U, typename std::enable_if<
std::is_convertible<U, T>::value>::type* = nullptr>
StatusOr& operator=(const StatusOr<U>& other);
template <typename U, typename std::enable_if<
std::is_convertible<U, T>::value>::type* = nullptr>
StatusOr& operator=(StatusOr<U>&& other);
// Constructs a new StatusOr with the given value. After calling this
// constructor, calls to ValueOrDie() will succeed, and calls to status() will
// return OK.
//
// NOTE: Not explicit - we want to use StatusOr<T> as a return type
// so it is convenient and sensible to be able to do 'return T()'
// when the return type is StatusOr<T>.
//
// REQUIRES: T is copy constructible.
StatusOr(const T& value);
// Constructs a new StatusOr with the given non-ok status. After calling
// this constructor, calls to ValueOrDie() will CHECK-fail.
//
// NOTE: Not explicit - we want to use StatusOr<T> as a return
// value, so it is convenient and sensible to be able to do 'return
// Status()' when the return type is StatusOr<T>.
//
// REQUIRES: !status.ok(). This requirement is enforced with either an
// exception (the passed absl::Status) or a FATAL log.
StatusOr(const Status& status);
StatusOr& operator=(const Status& status);
// TODO(b/62186997): Add operator=(T) overloads.
// Similar to the `const T&` overload.
//
// REQUIRES: T is move constructible.
StatusOr(T&& value);
// RValue versions of the operations declared above.
StatusOr(Status&& status);
StatusOr& operator=(Status&& status);
// Returns this->status().ok()
bool ok() const { return this->status_.ok(); }
// Returns a reference to our status. If this contains a T, then
// returns OkStatus().
const Status& status() const &;
Status status() &&;
// Returns a reference to our current value, or CHECK-fails if !this->ok().
//
// Note: for value types that are cheap to copy, prefer simple code:
//
// T value = statusor.ValueOrDie();
//
// Otherwise, if the value type is expensive to copy, but can be left
// in the StatusOr, simply assign to a reference:
//
// T& value = statusor.ValueOrDie(); // or `const T&`
//
// Otherwise, if the value type supports an efficient move, it can be
// used as follows:
//
// T value = std::move(statusor).ValueOrDie();
//
// The std::move on statusor instead of on the whole expression enables
// warnings about possible uses of the statusor object after the move.
// C++ style guide waiver for ref-qualified overloads granted in cl/143176389
// See go/ref-qualifiers for more details on such overloads.
const T& ValueOrDie() const &;
T& ValueOrDie() &;
const T&& ValueOrDie() const &&;
T&& ValueOrDie() &&;
// Returns a reference to the current value.
//
// REQUIRES: this->ok() == true, otherwise the behavior is undefined.
//
// Use this->ok() or `operator bool()` to verify that there is a current
// value. Alternatively, see ValueOrDie() for a similar API that guarantees
// CHECK-failing if there is no current value.
const T& operator*() const&;
T& operator*() &;
const T&& operator*() const&&;
T&& operator*() &&;
// Returns a pointer to the current value.
//
// REQUIRES: this->ok() == true, otherwise the behavior is undefined.
//
// Use this->ok() or `operator bool()` to verify that there is a current
// value.
const T* operator->() const;
T* operator->();
T ConsumeValueOrDie() { return std::move(ValueOrDie()); }
// Ignores any errors. This method does nothing except potentially suppress
// complaints from any tools that are checking that errors are not dropped on
// the floor.
void IgnoreError() const;
};
////////////////////////////////////////////////////////////////////////////////
// Implementation details for StatusOr<T>
template <typename T>
StatusOr<T>::StatusOr() : Base(Status(StatusCode::kUnknown, "")) {}
template <typename T>
StatusOr<T>::StatusOr(const T& value) : Base(value) {}
template <typename T>
StatusOr<T>::StatusOr(const Status& status) : Base(status) {}
template <typename T>
StatusOr<T>& StatusOr<T>::operator=(const Status& status) {
this->Assign(status);
return *this;
}
template <typename T>
StatusOr<T>::StatusOr(T&& value) : Base(std::move(value)) {}
template <typename T>
StatusOr<T>::StatusOr(Status&& status) : Base(std::move(status)) {}
template <typename T>
StatusOr<T>& StatusOr<T>::operator=(Status&& status) {
this->Assign(std::move(status));
return *this;
}
template <typename T>
template <typename U,
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
inline StatusOr<T>::StatusOr(const StatusOr<U>& other)
: Base(static_cast<const typename StatusOr<U>::Base&>(other)) {}
template <typename T>
template <typename U,
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
inline StatusOr<T>& StatusOr<T>::operator=(const StatusOr<U>& other) {
if (other.ok())
this->Assign(other.ValueOrDie());
else
this->Assign(other.status());
return *this;
}
template <typename T>
template <typename U,
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
inline StatusOr<T>::StatusOr(StatusOr<U>&& other)
: Base(static_cast<typename StatusOr<U>::Base&&>(other)) {}
template <typename T>
template <typename U,
typename std::enable_if<std::is_convertible<U, T>::value>::type*>
inline StatusOr<T>& StatusOr<T>::operator=(StatusOr<U>&& other) {
if (other.ok()) {
this->Assign(std::move(other).ValueOrDie());
} else {
this->Assign(std::move(other).status());
}
return *this;
}
template <typename T>
const Status& StatusOr<T>::status() const & {
return this->status_;
}
template <typename T>
Status StatusOr<T>::status() && {
// Note that we copy instead of moving the status here so that
// ~StatusOrData() can call ok() without invoking UB.
return ok() ? OkStatus() : this->status_;
}
template <typename T>
const T& StatusOr<T>::ValueOrDie() const & {
this->EnsureOk();
return this->data_;
}
template <typename T>
T& StatusOr<T>::ValueOrDie() & {
this->EnsureOk();
return this->data_;
}
template <typename T>
const T&& StatusOr<T>::ValueOrDie() const && {
this->EnsureOk();
return std::move(this->data_);
}
template <typename T>
T&& StatusOr<T>::ValueOrDie() && {
this->EnsureOk();
return std::move(this->data_);
}
template <typename T>
const T* StatusOr<T>::operator->() const {
this->EnsureOk();
return &this->data_;
}
template <typename T>
T* StatusOr<T>::operator->() {
this->EnsureOk();
return &this->data_;
}
template <typename T>
const T& StatusOr<T>::operator*() const& {
this->EnsureOk();
return this->data_;
}
template <typename T>
T& StatusOr<T>::operator*() & {
this->EnsureOk();
return this->data_;
}
template <typename T>
const T&& StatusOr<T>::operator*() const&& {
this->EnsureOk();
return std::move(this->data_);
}
template <typename T>
T&& StatusOr<T>::operator*() && {
this->EnsureOk();
return std::move(this->data_);
}
template <typename T>
void StatusOr<T>::IgnoreError() const {
// no-op
}
ABSL_NAMESPACE_END
} // namespace absl
#define ASSERT_OK_AND_ASSIGN(lhs, rexpr) \
ABSL_ASSERT_OK_AND_ASSIGN_IMPL( \
ABSL_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, \
rexpr);
#define ABSL_ASSERT_OK_AND_ASSIGN_IMPL(statusor, lhs, rexpr) \
auto statusor = (rexpr); \
ASSERT_TRUE(statusor.status().ok()) << statusor.status(); \
lhs = std::move(statusor.ValueOrDie())
#define ABSL_STATUS_MACROS_CONCAT_NAME(x, y) ABSL_STATUS_MACROS_CONCAT_IMPL(x, y)
#define ABSL_STATUS_MACROS_CONCAT_IMPL(x, y) x##y
#define ASSIGN_OR_RETURN(lhs, rexpr) \
ABSL_ASSIGN_OR_RETURN_IMPL( \
ABSL_STATUS_MACROS_CONCAT_NAME(_status_or_value, __COUNTER__), lhs, rexpr)
#define ABSL_ASSIGN_OR_RETURN_IMPL(statusor, lhs, rexpr) \
auto statusor = (rexpr); \
if (ABSL_PREDICT_FALSE(!statusor.ok())) { \
return statusor.status(); \
} \
lhs = std::move(statusor.ValueOrDie())
#define RETURN_IF_ERROR(status) \
do { \
if (ABSL_PREDICT_FALSE(!status.ok())) { \
return status; \
} \
} while(0)
#endif // ABSL_STATUS_STATUSOR_H_
|