about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/internal/chi_square_test.cc
blob: 5025defac12ce06bb7b97d0a5ba0a3fcf2851ad0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/internal/chi_square.h"

#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <vector>

#include "gtest/gtest.h"
#include "absl/base/macros.h"

using absl::random_internal::ChiSquare;
using absl::random_internal::ChiSquarePValue;
using absl::random_internal::ChiSquareValue;
using absl::random_internal::ChiSquareWithExpected;

namespace {

TEST(ChiSquare, Value) {
  struct {
    int line;
    double chi_square;
    int df;
    double confidence;
  } const specs[] = {
      // Testing lookup at 1% confidence
      {__LINE__, 0, 0, 0.01},
      {__LINE__, 0.00016, 1, 0.01},
      {__LINE__, 1.64650, 8, 0.01},
      {__LINE__, 5.81221, 16, 0.01},
      {__LINE__, 156.4319, 200, 0.01},
      {__LINE__, 1121.3784, 1234, 0.01},
      {__LINE__, 53557.1629, 54321, 0.01},
      {__LINE__, 651662.6647, 654321, 0.01},

      // Testing lookup at 99% confidence
      {__LINE__, 0, 0, 0.99},
      {__LINE__, 6.635, 1, 0.99},
      {__LINE__, 20.090, 8, 0.99},
      {__LINE__, 32.000, 16, 0.99},
      {__LINE__, 249.4456, 200, 0.99},
      {__LINE__, 1131.1573, 1023, 0.99},
      {__LINE__, 1352.5038, 1234, 0.99},
      {__LINE__, 55090.7356, 54321, 0.99},
      {__LINE__, 656985.1514, 654321, 0.99},

      // Testing lookup at 99.9% confidence
      {__LINE__, 16.2659, 3, 0.999},
      {__LINE__, 22.4580, 6, 0.999},
      {__LINE__, 267.5409, 200, 0.999},
      {__LINE__, 1168.5033, 1023, 0.999},
      {__LINE__, 55345.1741, 54321, 0.999},
      {__LINE__, 657861.7284, 654321, 0.999},
      {__LINE__, 51.1772, 24, 0.999},
      {__LINE__, 59.7003, 30, 0.999},
      {__LINE__, 37.6984, 15, 0.999},
      {__LINE__, 29.5898, 10, 0.999},
      {__LINE__, 27.8776, 9, 0.999},

      // Testing lookup at random confidences
      {__LINE__, 0.000157088, 1, 0.01},
      {__LINE__, 5.31852, 2, 0.93},
      {__LINE__, 1.92256, 4, 0.25},
      {__LINE__, 10.7709, 13, 0.37},
      {__LINE__, 26.2514, 17, 0.93},
      {__LINE__, 36.4799, 29, 0.84},
      {__LINE__, 25.818, 31, 0.27},
      {__LINE__, 63.3346, 64, 0.50},
      {__LINE__, 196.211, 128, 0.9999},
      {__LINE__, 215.21, 243, 0.10},
      {__LINE__, 285.393, 256, 0.90},
      {__LINE__, 984.504, 1024, 0.1923},
      {__LINE__, 2043.85, 2048, 0.4783},
      {__LINE__, 48004.6, 48273, 0.194},
  };
  for (const auto& spec : specs) {
    SCOPED_TRACE(spec.line);
    // Verify all values are have at most a 1% relative error.
    const double val = ChiSquareValue(spec.df, spec.confidence);
    const double err = std::max(5e-6, spec.chi_square / 5e3);  // 1 part in 5000
    EXPECT_NEAR(spec.chi_square, val, err) << spec.line;
  }

  // Relaxed test for extreme values, from
  //  http://www.ciphersbyritter.com/JAVASCRP/NORMCHIK.HTM#ChiSquare
  EXPECT_NEAR(49.2680, ChiSquareValue(100, 1e-6), 5);  // 0.000'005 mark
  EXPECT_NEAR(123.499, ChiSquareValue(200, 1e-6), 5);  // 0.000'005 mark

  EXPECT_NEAR(149.449, ChiSquareValue(100, 0.999), 0.01);
  EXPECT_NEAR(161.318, ChiSquareValue(100, 0.9999), 0.01);
  EXPECT_NEAR(172.098, ChiSquareValue(100, 0.99999), 0.01);

  EXPECT_NEAR(381.426, ChiSquareValue(300, 0.999), 0.05);
  EXPECT_NEAR(399.756, ChiSquareValue(300, 0.9999), 0.1);
  EXPECT_NEAR(416.126, ChiSquareValue(300, 0.99999), 0.2);
}

TEST(ChiSquareTest, PValue) {
  struct {
    int line;
    double pval;
    double chi_square;
    int df;
  } static const specs[] = {
      {__LINE__, 1, 0, 0},
      {__LINE__, 0, 0.001, 0},
      {__LINE__, 1.000, 0, 453},
      {__LINE__, 0.134471, 7972.52, 7834},
      {__LINE__, 0.203922, 28.32, 23},
      {__LINE__, 0.737171, 48274, 48472},
      {__LINE__, 0.444146, 583.1234, 579},
      {__LINE__, 0.294814, 138.2, 130},
      {__LINE__, 0.0816532, 12.63, 7},
      {__LINE__, 0, 682.32, 67},
      {__LINE__, 0.49405, 999, 999},
      {__LINE__, 1.000, 0, 9999},
      {__LINE__, 0.997477, 0.00001, 1},
      {__LINE__, 0, 5823.21, 5040},
  };
  for (const auto& spec : specs) {
    SCOPED_TRACE(spec.line);
    const double pval = ChiSquarePValue(spec.chi_square, spec.df);
    EXPECT_NEAR(spec.pval, pval, 1e-3);
  }
}

TEST(ChiSquareTest, CalcChiSquare) {
  struct {
    int line;
    std::vector<int> expected;
    std::vector<int> actual;
  } const specs[] = {
      {__LINE__,
       {56, 234, 76, 1, 546, 1, 87, 345, 1, 234},
       {2, 132, 4, 43, 234, 8, 345, 8, 236, 56}},
      {__LINE__,
       {123, 36, 234, 367, 345, 2, 456, 567, 234, 567},
       {123, 56, 2345, 8, 345, 8, 2345, 23, 48, 267}},
      {__LINE__,
       {123, 234, 345, 456, 567, 678, 789, 890, 98, 76},
       {123, 234, 345, 456, 567, 678, 789, 890, 98, 76}},
      {__LINE__, {3, 675, 23, 86, 2, 8, 2}, {456, 675, 23, 86, 23, 65, 2}},
      {__LINE__, {1}, {23}},
  };
  for (const auto& spec : specs) {
    SCOPED_TRACE(spec.line);
    double chi_square = 0;
    for (int i = 0; i < spec.expected.size(); ++i) {
      const double diff = spec.actual[i] - spec.expected[i];
      chi_square += (diff * diff) / spec.expected[i];
    }
    EXPECT_NEAR(chi_square,
                ChiSquare(std::begin(spec.actual), std::end(spec.actual),
                          std::begin(spec.expected), std::end(spec.expected)),
                1e-5);
  }
}

TEST(ChiSquareTest, CalcChiSquareInt64) {
  const int64_t data[3] = {910293487, 910292491, 910216780};
  // $ python -c "import scipy.stats
  // > print scipy.stats.chisquare([910293487, 910292491, 910216780])[0]"
  // 4.25410123524
  double sum = std::accumulate(std::begin(data), std::end(data), double{0});
  size_t n = std::distance(std::begin(data), std::end(data));
  double a = ChiSquareWithExpected(std::begin(data), std::end(data), sum / n);
  EXPECT_NEAR(4.254101, a, 1e-6);

  // ... Or with known values.
  double b =
      ChiSquareWithExpected(std::begin(data), std::end(data), 910267586.0);
  EXPECT_NEAR(4.254101, b, 1e-6);
}

TEST(ChiSquareTest, TableData) {
  // Test data from
  // http://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm
  //    0.90      0.95     0.975      0.99     0.999
  const double data[100][5] = {
      /* 1*/ {2.706, 3.841, 5.024, 6.635, 10.828},
      /* 2*/ {4.605, 5.991, 7.378, 9.210, 13.816},
      /* 3*/ {6.251, 7.815, 9.348, 11.345, 16.266},
      /* 4*/ {7.779, 9.488, 11.143, 13.277, 18.467},
      /* 5*/ {9.236, 11.070, 12.833, 15.086, 20.515},
      /* 6*/ {10.645, 12.592, 14.449, 16.812, 22.458},
      /* 7*/ {12.017, 14.067, 16.013, 18.475, 24.322},
      /* 8*/ {13.362, 15.507, 17.535, 20.090, 26.125},
      /* 9*/ {14.684, 16.919, 19.023, 21.666, 27.877},
      /*10*/ {15.987, 18.307, 20.483, 23.209, 29.588},
      /*11*/ {17.275, 19.675, 21.920, 24.725, 31.264},
      /*12*/ {18.549, 21.026, 23.337, 26.217, 32.910},
      /*13*/ {19.812, 22.362, 24.736, 27.688, 34.528},
      /*14*/ {21.064, 23.685, 26.119, 29.141, 36.123},
      /*15*/ {22.307, 24.996, 27.488, 30.578, 37.697},
      /*16*/ {23.542, 26.296, 28.845, 32.000, 39.252},
      /*17*/ {24.769, 27.587, 30.191, 33.409, 40.790},
      /*18*/ {25.989, 28.869, 31.526, 34.805, 42.312},
      /*19*/ {27.204, 30.144, 32.852, 36.191, 43.820},
      /*20*/ {28.412, 31.410, 34.170, 37.566, 45.315},
      /*21*/ {29.615, 32.671, 35.479, 38.932, 46.797},
      /*22*/ {30.813, 33.924, 36.781, 40.289, 48.268},
      /*23*/ {32.007, 35.172, 38.076, 41.638, 49.728},
      /*24*/ {33.196, 36.415, 39.364, 42.980, 51.179},
      /*25*/ {34.382, 37.652, 40.646, 44.314, 52.620},
      /*26*/ {35.563, 38.885, 41.923, 45.642, 54.052},
      /*27*/ {36.741, 40.113, 43.195, 46.963, 55.476},
      /*28*/ {37.916, 41.337, 44.461, 48.278, 56.892},
      /*29*/ {39.087, 42.557, 45.722, 49.588, 58.301},
      /*30*/ {40.256, 43.773, 46.979, 50.892, 59.703},
      /*31*/ {41.422, 44.985, 48.232, 52.191, 61.098},
      /*32*/ {42.585, 46.194, 49.480, 53.486, 62.487},
      /*33*/ {43.745, 47.400, 50.725, 54.776, 63.870},
      /*34*/ {44.903, 48.602, 51.966, 56.061, 65.247},
      /*35*/ {46.059, 49.802, 53.203, 57.342, 66.619},
      /*36*/ {47.212, 50.998, 54.437, 58.619, 67.985},
      /*37*/ {48.363, 52.192, 55.668, 59.893, 69.347},
      /*38*/ {49.513, 53.384, 56.896, 61.162, 70.703},
      /*39*/ {50.660, 54.572, 58.120, 62.428, 72.055},
      /*40*/ {51.805, 55.758, 59.342, 63.691, 73.402},
      /*41*/ {52.949, 56.942, 60.561, 64.950, 74.745},
      /*42*/ {54.090, 58.124, 61.777, 66.206, 76.084},
      /*43*/ {55.230, 59.304, 62.990, 67.459, 77.419},
      /*44*/ {56.369, 60.481, 64.201, 68.710, 78.750},
      /*45*/ {57.505, 61.656, 65.410, 69.957, 80.077},
      /*46*/ {58.641, 62.830, 66.617, 71.201, 81.400},
      /*47*/ {59.774, 64.001, 67.821, 72.443, 82.720},
      /*48*/ {60.907, 65.171, 69.023, 73.683, 84.037},
      /*49*/ {62.038, 66.339, 70.222, 74.919, 85.351},
      /*50*/ {63.167, 67.505, 71.420, 76.154, 86.661},
      /*51*/ {64.295, 68.669, 72.616, 77.386, 87.968},
      /*52*/ {65.422, 69.832, 73.810, 78.616, 89.272},
      /*53*/ {66.548, 70.993, 75.002, 79.843, 90.573},
      /*54*/ {67.673, 72.153, 76.192, 81.069, 91.872},
      /*55*/ {68.796, 73.311, 77.380, 82.292, 93.168},
      /*56*/ {69.919, 74.468, 78.567, 83.513, 94.461},
      /*57*/ {71.040, 75.624, 79.752, 84.733, 95.751},
      /*58*/ {72.160, 76.778, 80.936, 85.950, 97.039},
      /*59*/ {73.279, 77.931, 82.117, 87.166, 98.324},
      /*60*/ {74.397, 79.082, 83.298, 88.379, 99.607},
      /*61*/ {75.514, 80.232, 84.476, 89.591, 100.888},
      /*62*/ {76.630, 81.381, 85.654, 90.802, 102.166},
      /*63*/ {77.745, 82.529, 86.830, 92.010, 103.442},
      /*64*/ {78.860, 83.675, 88.004, 93.217, 104.716},
      /*65*/ {79.973, 84.821, 89.177, 94.422, 105.988},
      /*66*/ {81.085, 85.965, 90.349, 95.626, 107.258},
      /*67*/ {82.197, 87.108, 91.519, 96.828, 108.526},
      /*68*/ {83.308, 88.250, 92.689, 98.028, 109.791},
      /*69*/ {84.418, 89.391, 93.856, 99.228, 111.055},
      /*70*/ {85.527, 90.531, 95.023, 100.425, 112.317},
      /*71*/ {86.635, 91.670, 96.189, 101.621, 113.577},
      /*72*/ {87.743, 92.808, 97.353, 102.816, 114.835},
      /*73*/ {88.850, 93.945, 98.516, 104.010, 116.092},
      /*74*/ {89.956, 95.081, 99.678, 105.202, 117.346},
      /*75*/ {91.061, 96.217, 100.839, 106.393, 118.599},
      /*76*/ {92.166, 97.351, 101.999, 107.583, 119.850},
      /*77*/ {93.270, 98.484, 103.158, 108.771, 121.100},
      /*78*/ {94.374, 99.617, 104.316, 109.958, 122.348},
      /*79*/ {95.476, 100.749, 105.473, 111.144, 123.594},
      /*80*/ {96.578, 101.879, 106.629, 112.329, 124.839},
      /*81*/ {97.680, 103.010, 107.783, 113.512, 126.083},
      /*82*/ {98.780, 104.139, 108.937, 114.695, 127.324},
      /*83*/ {99.880, 105.267, 110.090, 115.876, 128.565},
      /*84*/ {100.980, 106.395, 111.242, 117.057, 129.804},
      /*85*/ {102.079, 107.522, 112.393, 118.236, 131.041},
      /*86*/ {103.177, 108.648, 113.544, 119.414, 132.277},
      /*87*/ {104.275, 109.773, 114.693, 120.591, 133.512},
      /*88*/ {105.372, 110.898, 115.841, 121.767, 134.746},
      /*89*/ {106.469, 112.022, 116.989, 122.942, 135.978},
      /*90*/ {107.565, 113.145, 118.136, 124.116, 137.208},
      /*91*/ {108.661, 114.268, 119.282, 125.289, 138.438},
      /*92*/ {109.756, 115.390, 120.427, 126.462, 139.666},
      /*93*/ {110.850, 116.511, 121.571, 127.633, 140.893},
      /*94*/ {111.944, 117.632, 122.715, 128.803, 142.119},
      /*95*/ {113.038, 118.752, 123.858, 129.973, 143.344},
      /*96*/ {114.131, 119.871, 125.000, 131.141, 144.567},
      /*97*/ {115.223, 120.990, 126.141, 132.309, 145.789},
      /*98*/ {116.315, 122.108, 127.282, 133.476, 147.010},
      /*99*/ {117.407, 123.225, 128.422, 134.642, 148.230},
      /*100*/ {118.498, 124.342, 129.561, 135.807, 149.449}
      /**/};

  //    0.90      0.95     0.975      0.99     0.999
  for (int i = 0; i < ABSL_ARRAYSIZE(data); i++) {
    const double E = 0.0001;
    EXPECT_NEAR(ChiSquarePValue(data[i][0], i + 1), 0.10, E)
        << i << " " << data[i][0];
    EXPECT_NEAR(ChiSquarePValue(data[i][1], i + 1), 0.05, E)
        << i << " " << data[i][1];
    EXPECT_NEAR(ChiSquarePValue(data[i][2], i + 1), 0.025, E)
        << i << " " << data[i][2];
    EXPECT_NEAR(ChiSquarePValue(data[i][3], i + 1), 0.01, E)
        << i << " " << data[i][3];
    EXPECT_NEAR(ChiSquarePValue(data[i][4], i + 1), 0.001, E)
        << i << " " << data[i][4];

    const double F = 0.1;
    EXPECT_NEAR(ChiSquareValue(i + 1, 0.90), data[i][0], F) << i;
    EXPECT_NEAR(ChiSquareValue(i + 1, 0.95), data[i][1], F) << i;
    EXPECT_NEAR(ChiSquareValue(i + 1, 0.975), data[i][2], F) << i;
    EXPECT_NEAR(ChiSquareValue(i + 1, 0.99), data[i][3], F) << i;
    EXPECT_NEAR(ChiSquareValue(i + 1, 0.999), data[i][4], F) << i;
  }
}

TEST(ChiSquareTest, ChiSquareTwoIterator) {
  // Test data from http://www.stat.yale.edu/Courses/1997-98/101/chigf.htm
  // Null-hypothesis: This data is normally distributed.
  const int counts[10] = {6, 6, 18, 33, 38, 38, 28, 21, 9, 3};
  const double expected[10] = {4.6,  8.8,  18.4, 30.0, 38.2,
                               38.2, 30.0, 18.4, 8.8,  4.6};
  double chi_square = ChiSquare(std::begin(counts), std::end(counts),
                                std::begin(expected), std::end(expected));
  EXPECT_NEAR(chi_square, 2.69, 0.001);

  // Degrees of freedom: 10 bins. two estimated parameters. = 10 - 2 - 1.
  const int dof = 7;
  // The critical value of 7, 95% => 14.067 (see above test)
  double p_value_05 = ChiSquarePValue(14.067, dof);
  EXPECT_NEAR(p_value_05, 0.05, 0.001);  // 95%-ile p-value

  double p_actual = ChiSquarePValue(chi_square, dof);
  EXPECT_GT(p_actual, 0.05);  // Accept the null hypothesis.
}

TEST(ChiSquareTest, DiceRolls) {
  // Assume we are testing 102 fair dice rolls.
  // Null-hypothesis: This data is fairly distributed.
  //
  // The dof value of 4, @95% = 9.488 (see above test)
  // The dof value of 5, @95% = 11.070
  const int rolls[6] = {22, 11, 17, 14, 20, 18};
  double sum = std::accumulate(std::begin(rolls), std::end(rolls), double{0});
  size_t n = std::distance(std::begin(rolls), std::end(rolls));

  double a = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), sum / n);
  EXPECT_NEAR(a, 4.70588, 1e-5);
  EXPECT_LT(a, ChiSquareValue(4, 0.95));

  double p_a = ChiSquarePValue(a, 4);
  EXPECT_NEAR(p_a, 0.318828, 1e-5);  // Accept the null hypothesis.

  double b = ChiSquareWithExpected(std::begin(rolls), std::end(rolls), 17.0);
  EXPECT_NEAR(b, 4.70588, 1e-5);
  EXPECT_LT(b, ChiSquareValue(5, 0.95));

  double p_b = ChiSquarePValue(b, 5);
  EXPECT_NEAR(p_b, 0.4528180, 1e-5);  // Accept the null hypothesis.
}

}  // namespace