about summary refs log tree commit diff
path: root/third_party/abseil_cpp/absl/random/discrete_distribution_test.cc
blob: 6d007006ef48f40505a6d458b43d9c3f6206e4e3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "absl/random/discrete_distribution.h"

#include <cmath>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <numeric>
#include <random>
#include <sstream>
#include <string>
#include <vector>

#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/strip.h"

namespace {

template <typename IntType>
class DiscreteDistributionTypeTest : public ::testing::Test {};

using IntTypes = ::testing::Types<int8_t, uint8_t, int16_t, uint16_t, int32_t,
                                  uint32_t, int64_t, uint64_t>;
TYPED_TEST_SUITE(DiscreteDistributionTypeTest, IntTypes);

TYPED_TEST(DiscreteDistributionTypeTest, ParamSerializeTest) {
  using param_type =
      typename absl::discrete_distribution<TypeParam>::param_type;

  absl::discrete_distribution<TypeParam> empty;
  EXPECT_THAT(empty.probabilities(), testing::ElementsAre(1.0));

  absl::discrete_distribution<TypeParam> before({1.0, 2.0, 1.0});

  // Validate that the probabilities sum to 1.0. We picked values which
  // can be represented exactly to avoid floating-point roundoff error.
  double s = 0;
  for (const auto& x : before.probabilities()) {
    s += x;
  }
  EXPECT_EQ(s, 1.0);
  EXPECT_THAT(before.probabilities(), testing::ElementsAre(0.25, 0.5, 0.25));

  // Validate the same data via an initializer list.
  {
    std::vector<double> data({1.0, 2.0, 1.0});

    absl::discrete_distribution<TypeParam> via_param{
        param_type(std::begin(data), std::end(data))};

    EXPECT_EQ(via_param, before);
  }

  std::stringstream ss;
  ss << before;
  absl::discrete_distribution<TypeParam> after;

  EXPECT_NE(before, after);

  ss >> after;

  EXPECT_EQ(before, after);
}

TYPED_TEST(DiscreteDistributionTypeTest, Constructor) {
  auto fn = [](double x) { return x; };
  {
    absl::discrete_distribution<int> unary(0, 1.0, 9.0, fn);
    EXPECT_THAT(unary.probabilities(), testing::ElementsAre(1.0));
  }

  {
    absl::discrete_distribution<int> unary(2, 1.0, 9.0, fn);
    // => fn(1.0 + 0 * 4 + 2) => 3
    // => fn(1.0 + 1 * 4 + 2) => 7
    EXPECT_THAT(unary.probabilities(), testing::ElementsAre(0.3, 0.7));
  }
}

TEST(DiscreteDistributionTest, InitDiscreteDistribution) {
  using testing::Pair;

  {
    std::vector<double> p({1.0, 2.0, 3.0});
    std::vector<std::pair<double, size_t>> q =
        absl::random_internal::InitDiscreteDistribution(&p);

    EXPECT_THAT(p, testing::ElementsAre(1 / 6.0, 2 / 6.0, 3 / 6.0));

    // Each bucket is p=1/3, so bucket 0 will send half it's traffic
    // to bucket 2, while the rest will retain all of their traffic.
    EXPECT_THAT(q, testing::ElementsAre(Pair(0.5, 2),  //
                                        Pair(1.0, 1),  //
                                        Pair(1.0, 2)));
  }

  {
    std::vector<double> p({1.0, 2.0, 3.0, 5.0, 2.0});

    std::vector<std::pair<double, size_t>> q =
        absl::random_internal::InitDiscreteDistribution(&p);

    EXPECT_THAT(p, testing::ElementsAre(1 / 13.0, 2 / 13.0, 3 / 13.0, 5 / 13.0,
                                        2 / 13.0));

    // A more complex bucketing solution: Each bucket has p=0.2
    // So buckets 0, 1, 4 will send their alternate traffic elsewhere, which
    // happens to be bucket 3.
    // However, summing up that alternate traffic gives bucket 3 too much
    // traffic, so it will send some traffic to bucket 2.
    constexpr double b0 = 1.0 / 13.0 / 0.2;
    constexpr double b1 = 2.0 / 13.0 / 0.2;
    constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));

    EXPECT_THAT(q, testing::ElementsAre(Pair(b0, 3),   //
                                        Pair(b1, 3),   //
                                        Pair(1.0, 2),  //
                                        Pair(b3, 2),   //
                                        Pair(b1, 3)));
  }
}

TEST(DiscreteDistributionTest, ChiSquaredTest50) {
  using absl::random_internal::kChiSquared;

  constexpr size_t kTrials = 10000;
  constexpr int kBuckets = 50;  // inclusive, so actally +1

  // 1-in-100000 threshold, but remember, there are about 8 tests
  // in this file. And the test could fail for other reasons.
  // Empirically validated with --runs_per_test=10000.
  const int kThreshold =
      absl::random_internal::ChiSquareValue(kBuckets, 0.99999);

  std::vector<double> weights(kBuckets, 0);
  std::iota(std::begin(weights), std::end(weights), 1);
  absl::discrete_distribution<int> dist(std::begin(weights), std::end(weights));

  // We use a fixed bit generator for distribution accuracy tests.  This allows
  // these tests to be deterministic, while still testing the qualify of the
  // implementation.
  absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);

  std::vector<int32_t> counts(kBuckets, 0);
  for (size_t i = 0; i < kTrials; i++) {
    auto x = dist(rng);
    counts[x]++;
  }

  // Scale weights.
  double sum = 0;
  for (double x : weights) {
    sum += x;
  }
  for (double& x : weights) {
    x = kTrials * (x / sum);
  }

  double chi_square =
      absl::random_internal::ChiSquare(std::begin(counts), std::end(counts),
                                       std::begin(weights), std::end(weights));

  if (chi_square > kThreshold) {
    double p_value =
        absl::random_internal::ChiSquarePValue(chi_square, kBuckets);

    // Chi-squared test failed. Output does not appear to be uniform.
    std::string msg;
    for (size_t i = 0; i < counts.size(); i++) {
      absl::StrAppend(&msg, i, ": ", counts[i], " vs ", weights[i], "\n");
    }
    absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n");
    absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ",
                    kThreshold);
    ABSL_RAW_LOG(INFO, "%s", msg.c_str());
    FAIL() << msg;
  }
}

TEST(DiscreteDistributionTest, StabilityTest) {
  // absl::discrete_distribution stabilitiy relies on
  // absl::uniform_int_distribution and absl::bernoulli_distribution.
  absl::random_internal::sequence_urbg urbg(
      {0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
       0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
       0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
       0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});

  std::vector<int> output(6);

  {
    absl::discrete_distribution<int32_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
    EXPECT_EQ(0, dist.min());
    EXPECT_EQ(4, dist.max());
    for (auto& v : output) {
      v = dist(urbg);
    }
    EXPECT_EQ(12, urbg.invocations());
  }

  // With 12 calls to urbg, each call into discrete_distribution consumes
  // precisely 2 values: one for the uniform call, and a second for the
  // bernoulli.
  //
  // Given the alt mapping: 0=>3, 1=>3, 2=>2, 3=>2, 4=>3, we can
  //
  // uniform:      443210143131
  // bernoulli: b0 000011100101
  // bernoulli: b1 001111101101
  // bernoulli: b2 111111111111
  // bernoulli: b3 001111101111
  // bernoulli: b4 001111101101
  // ...
  EXPECT_THAT(output, testing::ElementsAre(3, 3, 1, 3, 3, 3));

  {
    urbg.reset();
    absl::discrete_distribution<int64_t> dist({1.0, 2.0, 3.0, 5.0, 2.0});
    EXPECT_EQ(0, dist.min());
    EXPECT_EQ(4, dist.max());
    for (auto& v : output) {
      v = dist(urbg);
    }
    EXPECT_EQ(12, urbg.invocations());
  }
  EXPECT_THAT(output, testing::ElementsAre(3, 3, 0, 3, 0, 4));
}

}  // namespace