1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
|
-- |
module Xanthous.DataSpec (main, test) where
import Test.Prelude hiding (Right, Left, Down)
import Xanthous.Data
import Data.Group
main :: IO ()
main = defaultMain test
test :: TestTree
test = testGroup "Xanthous.Data"
[ testGroup "Position"
[ testBatch $ monoid @Position mempty
, testProperty "group laws" $ \(pos :: Position) ->
pos <> invert pos == mempty && invert pos <> pos == mempty
, testGroup "stepTowards laws"
[ testProperty "takes only one step" $ \src tgt ->
src /= tgt ==>
isUnit (src `diffPositions` (src `stepTowards` tgt))
-- , testProperty "moves in the right direction" $ \src tgt ->
-- stepTowards src tgt == move (directionOf src tgt) src
]
, testProperty "directionOf laws" $ \pos dir ->
directionOf pos (move dir pos) == dir
, testProperty "diffPositions is add inverse" $ \pos₁ pos₂ ->
diffPositions pos₁ pos₂ == addPositions pos₁ (invert pos₂)
]
, testGroup "Direction"
[ testProperty "opposite is involutive" $ \(dir :: Direction) ->
opposite (opposite dir) == dir
, testProperty "opposite provides inverse" $ \dir ->
invert (asPosition dir) == asPosition (opposite dir)
, testProperty "asPosition isUnit" $ \dir ->
dir /= Here ==> isUnit (asPosition dir)
, testGroup "Move"
[ testCase "Up" $ move Up mempty @?= Position 0 (-1)
, testCase "Down" $ move Down mempty @?= Position 0 1
, testCase "Left" $ move Left mempty @?= Position (-1) 0
, testCase "Right" $ move Right mempty @?= Position 1 0
, testCase "UpLeft" $ move UpLeft mempty @?= Position (-1) (-1)
, testCase "UpRight" $ move UpRight mempty @?= Position 1 (-1)
, testCase "DownLeft" $ move DownLeft mempty @?= Position (-1) 1
, testCase "DownRight" $ move DownRight mempty @?= Position 1 1
]
]
]
|