1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
10460
10461
10462
10463
10464
10465
10466
10467
10468
10469
10470
10471
10472
10473
10474
10475
10476
10477
10478
10479
10480
10481
10482
10483
10484
10485
10486
10487
10488
10489
10490
10491
10492
10493
10494
10495
10496
10497
10498
10499
10500
10501
10502
10503
10504
10505
10506
10507
10508
10509
10510
10511
10512
10513
10514
10515
10516
10517
10518
10519
10520
10521
10522
10523
10524
10525
10526
10527
10528
10529
10530
10531
10532
10533
10534
10535
10536
10537
10538
10539
10540
10541
10542
10543
10544
10545
10546
10547
10548
10549
10550
10551
10552
10553
10554
10555
10556
10557
10558
10559
10560
10561
10562
10563
10564
10565
10566
10567
10568
10569
10570
10571
10572
10573
10574
10575
10576
10577
10578
10579
10580
10581
10582
10583
10584
10585
10586
10587
10588
10589
10590
10591
10592
10593
10594
10595
10596
10597
10598
10599
10600
10601
10602
10603
10604
10605
10606
10607
10608
10609
10610
10611
10612
10613
10614
10615
10616
10617
10618
10619
10620
10621
10622
10623
10624
10625
10626
10627
10628
10629
10630
10631
10632
10633
10634
10635
10636
10637
10638
10639
10640
10641
10642
10643
10644
10645
10646
10647
10648
10649
10650
10651
10652
10653
10654
10655
10656
10657
10658
10659
10660
10661
10662
10663
10664
10665
10666
10667
10668
10669
10670
10671
10672
10673
10674
10675
10676
10677
10678
10679
10680
10681
10682
10683
10684
10685
10686
10687
10688
10689
10690
10691
10692
10693
10694
10695
10696
10697
10698
10699
10700
10701
10702
10703
10704
10705
10706
10707
10708
10709
10710
10711
10712
10713
10714
10715
10716
10717
10718
10719
10720
10721
10722
10723
10724
10725
10726
10727
10728
10729
10730
10731
10732
10733
10734
10735
10736
10737
10738
10739
10740
10741
10742
10743
10744
10745
10746
10747
10748
10749
10750
10751
10752
10753
10754
10755
10756
10757
10758
10759
10760
10761
10762
10763
10764
10765
10766
10767
10768
10769
10770
10771
10772
10773
10774
10775
10776
10777
10778
10779
10780
10781
10782
10783
10784
10785
10786
10787
10788
10789
10790
10791
10792
10793
10794
10795
10796
10797
10798
10799
10800
10801
10802
10803
10804
10805
10806
10807
10808
10809
10810
10811
10812
10813
10814
10815
10816
10817
10818
10819
10820
10821
10822
10823
10824
10825
10826
10827
10828
10829
10830
10831
10832
10833
10834
10835
10836
10837
10838
10839
10840
10841
10842
10843
10844
10845
10846
10847
10848
10849
10850
10851
10852
10853
10854
10855
10856
10857
10858
10859
10860
10861
10862
10863
10864
10865
10866
10867
10868
10869
10870
10871
10872
10873
10874
10875
10876
10877
10878
10879
10880
10881
10882
10883
10884
10885
10886
10887
10888
10889
10890
10891
10892
10893
10894
10895
10896
10897
10898
10899
10900
10901
10902
10903
10904
10905
10906
10907
10908
10909
10910
10911
10912
10913
10914
10915
10916
10917
10918
10919
10920
10921
10922
10923
10924
10925
10926
10927
10928
10929
10930
10931
10932
10933
10934
10935
10936
10937
10938
10939
10940
10941
10942
10943
10944
10945
10946
10947
10948
10949
10950
10951
10952
10953
10954
10955
10956
10957
10958
10959
10960
10961
10962
10963
10964
10965
10966
10967
10968
10969
10970
10971
10972
10973
10974
10975
10976
10977
10978
10979
10980
10981
10982
10983
10984
10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11035
11036
11037
11038
11039
11040
11041
11042
11043
11044
11045
11046
11047
11048
11049
11050
11051
11052
11053
11054
11055
11056
11057
11058
11059
11060
11061
11062
11063
11064
11065
11066
11067
11068
11069
11070
11071
11072
11073
11074
11075
11076
11077
11078
11079
11080
11081
11082
11083
11084
11085
11086
11087
11088
11089
11090
11091
11092
11093
11094
11095
11096
11097
11098
11099
11100
11101
11102
11103
11104
11105
11106
11107
11108
11109
11110
11111
11112
11113
11114
11115
11116
11117
11118
11119
11120
11121
11122
11123
11124
11125
11126
11127
11128
11129
11130
11131
11132
11133
11134
11135
11136
11137
11138
11139
11140
11141
11142
11143
11144
11145
11146
11147
11148
11149
11150
11151
11152
11153
11154
11155
11156
11157
11158
11159
11160
11161
11162
11163
11164
11165
11166
11167
11168
11169
11170
11171
11172
11173
11174
11175
11176
11177
11178
11179
11180
11181
11182
11183
11184
11185
11186
11187
11188
11189
11190
11191
11192
11193
11194
11195
11196
11197
11198
11199
11200
11201
11202
11203
11204
11205
11206
11207
11208
11209
11210
11211
11212
11213
11214
11215
11216
11217
11218
11219
11220
11221
11222
11223
11224
11225
11226
11227
11228
11229
11230
11231
11232
11233
11234
11235
11236
11237
11238
11239
11240
11241
11242
11243
11244
11245
11246
11247
11248
11249
11250
11251
11252
11253
11254
11255
11256
11257
11258
11259
11260
11261
11262
11263
11264
11265
11266
11267
11268
11269
11270
11271
11272
11273
11274
11275
11276
11277
11278
11279
11280
11281
11282
11283
11284
11285
11286
11287
11288
11289
11290
11291
11292
11293
11294
11295
11296
11297
11298
11299
11300
11301
11302
11303
11304
11305
11306
11307
11308
11309
11310
11311
11312
11313
11314
11315
11316
11317
11318
11319
11320
11321
11322
11323
11324
11325
11326
11327
11328
11329
11330
11331
11332
11333
11334
11335
11336
11337
11338
11339
11340
11341
11342
11343
11344
11345
11346
11347
11348
11349
11350
11351
11352
11353
11354
11355
11356
11357
11358
11359
11360
11361
11362
11363
11364
11365
11366
11367
11368
11369
11370
11371
11372
11373
11374
11375
11376
11377
11378
11379
11380
11381
11382
11383
11384
11385
11386
11387
11388
11389
11390
11391
11392
11393
11394
11395
11396
11397
11398
11399
11400
11401
11402
11403
11404
11405
11406
11407
11408
11409
11410
11411
11412
11413
11414
11415
11416
11417
11418
11419
11420
11421
11422
11423
11424
11425
11426
11427
11428
11429
11430
11431
11432
11433
11434
11435
11436
11437
11438
11439
11440
11441
11442
11443
11444
11445
11446
11447
11448
11449
11450
11451
11452
11453
11454
11455
11456
11457
11458
11459
11460
11461
11462
11463
11464
11465
11466
11467
11468
11469
11470
11471
11472
11473
11474
11475
11476
11477
11478
11479
11480
11481
11482
11483
11484
11485
11486
11487
11488
11489
11490
11491
11492
11493
11494
11495
11496
11497
11498
11499
11500
11501
11502
11503
11504
11505
11506
11507
11508
11509
11510
11511
11512
11513
11514
11515
11516
11517
11518
11519
11520
11521
11522
11523
11524
11525
11526
11527
11528
11529
11530
11531
11532
11533
11534
11535
11536
11537
11538
11539
11540
11541
11542
11543
11544
11545
11546
11547
11548
11549
11550
11551
11552
11553
11554
11555
11556
11557
11558
11559
11560
11561
11562
11563
11564
11565
11566
11567
11568
11569
11570
11571
11572
11573
11574
11575
11576
11577
11578
11579
11580
11581
11582
11583
11584
11585
11586
11587
11588
11589
11590
11591
11592
11593
11594
11595
11596
11597
11598
11599
11600
11601
11602
11603
11604
11605
11606
11607
11608
11609
11610
11611
11612
11613
11614
11615
11616
11617
11618
11619
11620
11621
11622
11623
11624
11625
11626
11627
11628
11629
11630
11631
11632
11633
11634
11635
11636
11637
11638
11639
11640
11641
11642
11643
11644
11645
11646
11647
11648
11649
11650
11651
11652
11653
11654
11655
11656
11657
11658
11659
11660
11661
11662
11663
11664
11665
11666
11667
11668
11669
11670
11671
11672
11673
11674
11675
11676
11677
11678
11679
11680
11681
11682
11683
11684
11685
11686
11687
11688
11689
11690
11691
11692
11693
11694
11695
11696
11697
11698
11699
11700
11701
11702
11703
11704
11705
11706
11707
11708
11709
11710
11711
11712
11713
11714
11715
11716
11717
11718
11719
11720
11721
11722
11723
11724
11725
11726
11727
11728
11729
11730
11731
11732
11733
11734
11735
11736
11737
11738
11739
11740
11741
11742
11743
11744
11745
11746
11747
11748
11749
11750
11751
11752
11753
11754
11755
11756
11757
11758
11759
11760
11761
11762
11763
11764
11765
11766
11767
11768
11769
11770
11771
11772
11773
11774
11775
11776
11777
11778
11779
11780
11781
11782
11783
11784
11785
11786
11787
11788
11789
11790
11791
11792
11793
11794
11795
11796
11797
11798
11799
11800
11801
11802
11803
11804
11805
11806
11807
11808
11809
11810
11811
11812
11813
11814
11815
11816
11817
11818
11819
11820
11821
11822
11823
11824
11825
11826
11827
11828
11829
11830
11831
11832
11833
11834
11835
11836
11837
11838
11839
11840
11841
11842
11843
11844
11845
11846
11847
11848
11849
11850
11851
11852
11853
11854
11855
11856
11857
11858
11859
11860
11861
11862
11863
11864
11865
11866
11867
11868
11869
11870
11871
11872
11873
11874
11875
11876
11877
11878
11879
11880
11881
11882
11883
11884
11885
11886
11887
11888
11889
11890
11891
11892
11893
11894
11895
11896
11897
11898
11899
11900
11901
11902
11903
11904
11905
11906
11907
11908
11909
11910
11911
11912
11913
11914
11915
11916
11917
11918
11919
11920
11921
11922
11923
11924
11925
11926
11927
11928
11929
11930
11931
11932
11933
11934
11935
11936
11937
11938
11939
11940
11941
11942
11943
11944
11945
11946
11947
11948
11949
11950
11951
11952
11953
11954
11955
11956
11957
11958
11959
11960
11961
11962
11963
11964
11965
11966
11967
11968
11969
11970
11971
11972
11973
11974
11975
11976
11977
11978
11979
11980
11981
11982
11983
11984
11985
11986
11987
11988
11989
11990
11991
11992
11993
11994
11995
11996
11997
11998
11999
12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011
12012
12013
12014
12015
12016
12017
12018
12019
12020
12021
12022
12023
12024
12025
12026
12027
12028
12029
12030
12031
12032
12033
12034
12035
12036
12037
12038
12039
12040
12041
12042
12043
12044
12045
12046
12047
12048
12049
12050
12051
12052
12053
12054
12055
12056
12057
12058
12059
12060
12061
12062
12063
12064
12065
12066
12067
12068
12069
12070
12071
12072
12073
12074
12075
12076
12077
12078
12079
12080
12081
12082
12083
12084
12085
12086
12087
12088
12089
12090
12091
12092
12093
12094
12095
12096
12097
12098
12099
12100
12101
12102
12103
12104
12105
12106
12107
12108
12109
12110
12111
12112
12113
12114
12115
12116
12117
12118
12119
12120
12121
12122
12123
12124
12125
12126
12127
12128
12129
12130
12131
12132
12133
12134
12135
12136
12137
12138
12139
12140
12141
12142
12143
12144
12145
12146
12147
12148
12149
12150
12151
12152
12153
12154
12155
12156
12157
12158
12159
12160
12161
12162
12163
12164
12165
12166
12167
12168
12169
12170
12171
12172
12173
12174
12175
12176
12177
12178
12179
12180
12181
12182
12183
12184
12185
12186
12187
12188
12189
12190
12191
12192
12193
12194
12195
12196
12197
12198
12199
12200
12201
12202
12203
12204
12205
12206
12207
12208
12209
12210
12211
12212
12213
12214
12215
12216
12217
12218
12219
12220
12221
12222
12223
12224
12225
12226
12227
12228
12229
12230
12231
12232
12233
12234
12235
12236
12237
12238
12239
12240
12241
12242
12243
12244
12245
12246
12247
12248
12249
12250
12251
12252
12253
12254
12255
12256
12257
12258
12259
12260
12261
12262
12263
12264
12265
12266
12267
12268
12269
12270
12271
12272
12273
12274
12275
12276
12277
12278
12279
12280
12281
12282
12283
12284
12285
12286
12287
12288
12289
12290
12291
12292
12293
12294
12295
12296
12297
12298
12299
12300
12301
12302
12303
12304
12305
12306
12307
12308
12309
12310
12311
12312
12313
12314
12315
12316
12317
12318
12319
12320
12321
12322
12323
12324
12325
12326
12327
12328
12329
12330
12331
12332
12333
12334
12335
12336
12337
12338
12339
12340
12341
12342
12343
12344
12345
12346
12347
12348
12349
12350
12351
12352
12353
12354
12355
12356
12357
12358
12359
12360
12361
12362
12363
12364
12365
12366
12367
12368
12369
12370
12371
12372
12373
12374
12375
12376
12377
12378
12379
12380
12381
12382
12383
12384
12385
12386
12387
12388
12389
12390
12391
12392
12393
12394
12395
12396
12397
12398
12399
12400
12401
12402
12403
12404
12405
12406
12407
12408
12409
12410
12411
12412
12413
12414
12415
12416
12417
12418
12419
12420
12421
12422
12423
12424
12425
12426
12427
12428
12429
12430
12431
12432
12433
12434
12435
12436
12437
12438
12439
12440
12441
12442
12443
12444
12445
12446
12447
12448
12449
12450
12451
12452
12453
12454
12455
12456
12457
12458
12459
12460
12461
12462
12463
12464
12465
12466
12467
12468
12469
12470
12471
12472
12473
12474
12475
12476
12477
12478
12479
12480
12481
12482
12483
12484
12485
12486
12487
12488
12489
12490
12491
12492
12493
12494
12495
12496
12497
12498
12499
12500
12501
12502
12503
12504
12505
12506
12507
12508
12509
12510
12511
12512
12513
12514
12515
12516
12517
12518
12519
12520
12521
12522
12523
12524
12525
12526
12527
12528
12529
12530
12531
12532
12533
12534
12535
12536
12537
12538
12539
12540
12541
12542
12543
12544
12545
12546
12547
12548
12549
12550
12551
12552
12553
12554
12555
12556
12557
12558
12559
12560
12561
12562
12563
12564
12565
12566
12567
12568
12569
12570
12571
12572
12573
12574
12575
12576
12577
12578
12579
12580
12581
12582
12583
12584
12585
12586
12587
12588
12589
12590
12591
12592
12593
12594
12595
12596
12597
12598
12599
12600
12601
12602
12603
12604
12605
12606
12607
12608
12609
12610
12611
12612
12613
12614
12615
12616
12617
12618
12619
12620
12621
12622
12623
12624
12625
12626
12627
12628
12629
12630
12631
12632
12633
12634
12635
12636
12637
12638
12639
12640
12641
12642
12643
12644
12645
12646
12647
12648
12649
12650
12651
12652
12653
12654
12655
12656
12657
12658
12659
12660
12661
12662
12663
12664
12665
12666
12667
12668
12669
12670
12671
12672
12673
12674
12675
12676
12677
12678
12679
12680
12681
12682
12683
12684
12685
12686
12687
12688
12689
12690
12691
12692
12693
12694
12695
12696
12697
12698
12699
12700
12701
12702
12703
12704
12705
12706
12707
12708
12709
12710
12711
12712
12713
12714
12715
12716
12717
12718
12719
12720
12721
12722
12723
12724
12725
12726
12727
12728
12729
12730
12731
12732
12733
12734
12735
12736
12737
12738
12739
12740
12741
12742
12743
12744
12745
12746
12747
12748
12749
12750
12751
12752
12753
12754
12755
12756
12757
12758
12759
12760
12761
12762
12763
12764
12765
12766
12767
12768
12769
12770
12771
12772
12773
12774
12775
12776
12777
12778
12779
12780
12781
12782
12783
12784
12785
12786
12787
12788
12789
12790
12791
12792
12793
12794
12795
12796
12797
12798
12799
12800
12801
12802
12803
12804
12805
12806
12807
12808
12809
12810
12811
12812
12813
12814
12815
12816
12817
12818
12819
12820
12821
12822
12823
12824
12825
12826
12827
12828
12829
12830
12831
12832
12833
12834
12835
12836
12837
12838
12839
12840
12841
12842
12843
12844
12845
12846
12847
12848
12849
12850
12851
12852
12853
12854
12855
12856
12857
12858
12859
12860
12861
12862
12863
12864
12865
12866
12867
12868
12869
12870
12871
12872
12873
12874
12875
12876
12877
12878
12879
12880
12881
12882
12883
12884
12885
12886
12887
12888
12889
12890
12891
12892
12893
12894
12895
12896
12897
12898
12899
12900
12901
12902
12903
12904
12905
12906
12907
12908
12909
12910
12911
12912
12913
12914
12915
12916
12917
12918
12919
12920
12921
12922
12923
12924
12925
12926
12927
12928
12929
12930
12931
12932
12933
12934
12935
12936
12937
12938
12939
12940
12941
12942
12943
12944
12945
12946
12947
12948
12949
12950
12951
12952
12953
12954
12955
12956
12957
12958
12959
12960
12961
12962
12963
12964
12965
12966
12967
12968
12969
12970
12971
12972
12973
12974
12975
12976
12977
12978
12979
12980
12981
12982
12983
12984
12985
12986
12987
12988
12989
12990
12991
12992
12993
12994
12995
12996
12997
12998
12999
13000
13001
13002
13003
13004
13005
13006
13007
13008
13009
13010
13011
13012
13013
13014
13015
13016
13017
13018
13019
13020
13021
13022
13023
13024
13025
13026
13027
13028
13029
13030
13031
13032
13033
13034
13035
13036
13037
13038
13039
13040
13041
13042
13043
13044
13045
13046
13047
13048
13049
13050
13051
13052
13053
13054
13055
13056
13057
13058
13059
13060
13061
13062
13063
13064
13065
13066
13067
13068
13069
13070
13071
13072
13073
13074
13075
13076
13077
13078
13079
13080
13081
13082
13083
13084
13085
13086
13087
13088
13089
13090
13091
13092
13093
13094
13095
13096
13097
13098
13099
13100
13101
13102
13103
13104
13105
13106
13107
13108
13109
13110
13111
13112
13113
13114
13115
13116
13117
13118
13119
13120
13121
13122
13123
13124
13125
13126
13127
13128
13129
13130
13131
13132
13133
13134
13135
13136
13137
13138
13139
13140
13141
13142
13143
13144
13145
13146
13147
13148
13149
13150
13151
13152
13153
13154
13155
13156
13157
13158
13159
13160
13161
13162
13163
13164
13165
13166
13167
13168
13169
13170
13171
13172
13173
13174
13175
13176
13177
13178
13179
13180
13181
13182
13183
13184
13185
13186
13187
13188
13189
13190
13191
13192
13193
13194
13195
13196
13197
13198
13199
13200
13201
13202
13203
13204
13205
13206
13207
13208
13209
13210
13211
13212
13213
13214
13215
13216
13217
13218
13219
13220
13221
13222
13223
13224
13225
13226
13227
13228
13229
13230
13231
13232
13233
13234
13235
13236
13237
13238
13239
13240
13241
13242
13243
13244
13245
13246
13247
13248
13249
13250
13251
13252
13253
13254
13255
13256
13257
13258
13259
13260
13261
13262
13263
13264
13265
13266
13267
13268
13269
13270
13271
13272
13273
13274
13275
13276
13277
13278
13279
13280
13281
13282
13283
13284
13285
13286
13287
13288
13289
13290
13291
13292
13293
13294
13295
13296
13297
13298
13299
13300
13301
13302
13303
13304
13305
13306
13307
13308
13309
13310
13311
13312
13313
13314
13315
13316
13317
13318
13319
13320
13321
13322
13323
13324
13325
13326
13327
13328
13329
13330
13331
13332
13333
13334
13335
13336
13337
13338
13339
13340
13341
13342
13343
13344
13345
13346
13347
13348
13349
13350
13351
13352
13353
13354
13355
13356
13357
13358
13359
13360
13361
13362
13363
13364
13365
13366
13367
13368
13369
13370
13371
13372
13373
13374
13375
13376
13377
13378
13379
13380
13381
13382
13383
13384
13385
13386
13387
13388
13389
13390
13391
13392
13393
13394
13395
13396
13397
13398
13399
13400
13401
13402
13403
13404
13405
13406
13407
13408
13409
13410
13411
13412
13413
13414
13415
13416
13417
13418
13419
13420
13421
13422
13423
13424
13425
13426
13427
13428
13429
13430
13431
13432
13433
13434
13435
13436
13437
13438
13439
13440
13441
13442
13443
13444
13445
13446
13447
13448
13449
13450
13451
13452
13453
13454
13455
13456
13457
13458
13459
13460
13461
13462
13463
13464
13465
13466
13467
13468
13469
13470
13471
13472
13473
13474
13475
13476
13477
13478
13479
13480
13481
13482
13483
13484
13485
13486
13487
13488
13489
13490
13491
13492
13493
13494
13495
13496
13497
13498
13499
13500
13501
13502
13503
13504
13505
13506
13507
13508
13509
13510
13511
13512
13513
13514
13515
13516
13517
13518
13519
13520
13521
13522
13523
13524
13525
13526
13527
13528
13529
13530
13531
13532
13533
13534
13535
13536
13537
13538
13539
13540
13541
13542
13543
13544
13545
13546
13547
13548
13549
13550
13551
13552
13553
13554
13555
13556
13557
13558
13559
13560
13561
13562
13563
13564
13565
13566
13567
13568
13569
13570
13571
13572
13573
13574
13575
13576
13577
13578
13579
13580
13581
13582
13583
13584
13585
13586
13587
13588
13589
13590
13591
13592
13593
13594
13595
13596
13597
13598
13599
13600
13601
13602
13603
13604
13605
13606
13607
13608
13609
13610
13611
13612
13613
13614
13615
13616
13617
13618
13619
13620
13621
13622
13623
13624
13625
13626
13627
13628
13629
13630
13631
13632
13633
13634
13635
13636
13637
13638
13639
13640
13641
13642
13643
13644
13645
13646
13647
13648
13649
13650
13651
13652
13653
13654
13655
13656
13657
13658
13659
13660
13661
13662
13663
13664
13665
13666
13667
13668
13669
13670
13671
13672
13673
13674
13675
13676
13677
13678
13679
13680
13681
13682
13683
13684
13685
13686
13687
13688
13689
13690
13691
13692
13693
13694
13695
13696
13697
13698
13699
13700
13701
13702
13703
13704
13705
13706
13707
13708
13709
13710
13711
13712
13713
13714
13715
13716
13717
13718
13719
13720
13721
13722
13723
13724
13725
13726
13727
13728
13729
13730
13731
13732
13733
13734
13735
13736
13737
13738
13739
13740
13741
13742
13743
13744
13745
13746
13747
13748
13749
13750
13751
13752
13753
13754
13755
13756
13757
13758
13759
13760
13761
13762
13763
13764
13765
13766
13767
13768
13769
13770
13771
13772
13773
13774
13775
13776
13777
13778
13779
13780
13781
13782
13783
13784
13785
13786
13787
13788
13789
13790
13791
13792
13793
13794
13795
13796
13797
13798
13799
13800
13801
13802
13803
13804
13805
13806
13807
13808
13809
13810
13811
13812
13813
13814
13815
13816
13817
13818
13819
13820
13821
13822
13823
13824
13825
13826
13827
13828
13829
13830
13831
13832
13833
13834
13835
13836
13837
13838
13839
13840
13841
13842
13843
13844
13845
13846
13847
13848
13849
13850
13851
13852
13853
13854
13855
13856
13857
13858
13859
13860
13861
13862
13863
13864
13865
13866
13867
13868
13869
13870
13871
13872
13873
13874
13875
13876
13877
13878
13879
13880
13881
13882
13883
13884
13885
13886
13887
13888
13889
13890
13891
13892
13893
13894
13895
13896
13897
13898
13899
13900
13901
13902
13903
13904
13905
13906
13907
13908
13909
13910
13911
13912
13913
13914
13915
13916
13917
13918
13919
13920
13921
13922
13923
13924
13925
13926
13927
13928
13929
13930
13931
13932
13933
13934
13935
13936
13937
13938
13939
13940
13941
13942
13943
13944
13945
13946
13947
13948
13949
13950
13951
13952
13953
13954
13955
13956
13957
13958
13959
13960
13961
13962
13963
13964
13965
13966
13967
13968
13969
13970
13971
13972
13973
13974
13975
13976
13977
13978
13979
13980
13981
13982
13983
13984
13985
13986
13987
13988
13989
13990
13991
13992
13993
13994
13995
13996
13997
13998
13999
14000
14001
14002
14003
14004
14005
14006
14007
14008
14009
14010
14011
14012
14013
14014
14015
14016
14017
14018
14019
14020
14021
14022
14023
14024
14025
14026
14027
14028
14029
14030
14031
14032
14033
14034
14035
14036
14037
14038
14039
14040
14041
14042
14043
14044
14045
14046
14047
14048
14049
14050
14051
14052
14053
14054
14055
14056
14057
14058
14059
14060
14061
14062
14063
14064
14065
14066
14067
14068
14069
14070
14071
14072
14073
14074
14075
14076
14077
14078
14079
14080
14081
14082
14083
14084
14085
14086
14087
14088
14089
14090
14091
14092
14093
14094
14095
14096
14097
14098
14099
14100
14101
14102
14103
14104
14105
14106
14107
14108
14109
14110
14111
14112
14113
14114
14115
14116
14117
14118
14119
14120
14121
14122
14123
14124
14125
14126
14127
14128
14129
14130
14131
14132
14133
14134
14135
14136
14137
14138
14139
14140
14141
14142
14143
14144
14145
14146
14147
14148
14149
14150
14151
14152
14153
14154
14155
14156
14157
14158
14159
14160
14161
14162
14163
14164
14165
14166
14167
14168
14169
14170
14171
14172
14173
14174
14175
14176
14177
14178
14179
14180
14181
14182
14183
14184
14185
14186
14187
14188
14189
14190
14191
14192
14193
14194
14195
14196
14197
14198
14199
14200
14201
14202
14203
14204
14205
14206
14207
14208
14209
14210
14211
14212
14213
14214
14215
14216
14217
14218
14219
14220
14221
14222
14223
14224
14225
14226
14227
14228
14229
14230
14231
14232
14233
14234
14235
14236
14237
14238
14239
14240
14241
14242
14243
14244
14245
14246
14247
14248
14249
14250
14251
14252
14253
14254
14255
14256
14257
14258
14259
14260
14261
14262
14263
14264
14265
14266
14267
14268
14269
14270
14271
14272
14273
14274
14275
14276
14277
14278
14279
14280
14281
14282
14283
14284
14285
14286
14287
14288
14289
14290
14291
14292
14293
14294
14295
14296
14297
14298
14299
14300
14301
14302
14303
14304
14305
14306
14307
14308
14309
14310
14311
14312
14313
14314
14315
14316
14317
14318
14319
14320
14321
14322
14323
14324
14325
14326
14327
14328
14329
14330
14331
14332
14333
14334
14335
14336
14337
14338
14339
14340
14341
14342
14343
14344
14345
14346
14347
14348
14349
14350
14351
14352
14353
14354
14355
14356
14357
14358
14359
14360
14361
14362
14363
14364
14365
14366
14367
14368
14369
14370
14371
14372
14373
14374
14375
14376
14377
14378
14379
14380
14381
14382
14383
14384
14385
14386
14387
14388
14389
14390
14391
14392
14393
14394
14395
14396
14397
14398
14399
14400
14401
14402
14403
14404
14405
14406
14407
14408
14409
14410
14411
14412
14413
14414
14415
14416
14417
14418
14419
14420
14421
14422
14423
14424
14425
14426
14427
14428
14429
14430
14431
14432
14433
14434
14435
14436
14437
14438
14439
14440
14441
14442
14443
14444
14445
14446
14447
14448
14449
14450
14451
14452
14453
14454
14455
14456
14457
14458
14459
14460
14461
14462
14463
14464
14465
14466
14467
14468
14469
14470
14471
14472
14473
14474
14475
14476
14477
14478
14479
14480
14481
14482
14483
14484
14485
14486
14487
14488
14489
14490
14491
14492
14493
14494
14495
14496
14497
14498
14499
14500
14501
14502
14503
14504
14505
14506
14507
14508
14509
14510
14511
14512
14513
14514
14515
14516
14517
14518
14519
14520
14521
14522
14523
14524
14525
14526
14527
14528
14529
14530
14531
14532
14533
14534
14535
14536
14537
14538
14539
14540
14541
14542
14543
14544
14545
14546
14547
14548
14549
14550
14551
14552
14553
14554
14555
14556
14557
14558
14559
14560
14561
14562
14563
14564
14565
14566
14567
14568
14569
14570
14571
14572
14573
14574
14575
14576
14577
14578
14579
14580
14581
14582
14583
14584
14585
14586
14587
14588
14589
14590
14591
14592
14593
14594
14595
14596
14597
14598
14599
14600
14601
14602
14603
14604
14605
14606
14607
14608
14609
14610
14611
14612
14613
14614
14615
14616
14617
14618
14619
14620
14621
14622
14623
14624
14625
14626
14627
14628
14629
14630
14631
14632
14633
14634
14635
14636
14637
14638
14639
14640
14641
14642
14643
14644
14645
14646
14647
14648
14649
14650
14651
14652
14653
14654
14655
14656
14657
14658
14659
14660
14661
14662
14663
14664
14665
14666
14667
14668
14669
14670
14671
14672
14673
14674
14675
14676
14677
14678
14679
14680
14681
14682
14683
14684
14685
14686
14687
14688
14689
14690
14691
14692
14693
14694
14695
14696
14697
14698
14699
14700
14701
14702
14703
14704
14705
14706
14707
14708
14709
14710
14711
14712
14713
14714
14715
14716
14717
14718
14719
14720
14721
14722
14723
|
/*
__ _____ _____ _____
__| | __| | | | JSON for Modern C++
| | |__ | | | | | | version 2.1.1
|_____|_____|_____|_|___| https://github.com/nlohmann/json
Licensed under the MIT License <http://opensource.org/licenses/MIT>.
Copyright (c) 2013-2017 Niels Lohmann <http://nlohmann.me>.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#ifndef NLOHMANN_JSON_HPP
#define NLOHMANN_JSON_HPP
#include <algorithm> // all_of, copy, fill, find, for_each, generate_n, none_of, remove, reverse, transform
#include <array> // array
#include <cassert> // assert
#include <ciso646> // and, not, or
#include <clocale> // lconv, localeconv
#include <cmath> // isfinite, labs, ldexp, signbit
#include <cstddef> // nullptr_t, ptrdiff_t, size_t
#include <cstdint> // int64_t, uint64_t
#include <cstdlib> // abort, strtod, strtof, strtold, strtoul, strtoll, strtoull
#include <cstring> // memcpy, strlen
#include <forward_list> // forward_list
#include <functional> // function, hash, less
#include <initializer_list> // initializer_list
#include <iomanip> // hex
#include <iosfwd> // istream, ostream
#include <iterator> // advance, begin, back_inserter, bidirectional_iterator_tag, distance, end, inserter, iterator, iterator_traits, next, random_access_iterator_tag, reverse_iterator
#include <limits> // numeric_limits
#include <locale> // locale
#include <map> // map
#include <memory> // addressof, allocator, allocator_traits, unique_ptr
#include <numeric> // accumulate
#include <sstream> // stringstream
#include <string> // getline, stoi, string, to_string
#include <type_traits> // add_pointer, conditional, decay, enable_if, false_type, integral_constant, is_arithmetic, is_base_of, is_const, is_constructible, is_convertible, is_default_constructible, is_enum, is_floating_point, is_integral, is_nothrow_move_assignable, is_nothrow_move_constructible, is_pointer, is_reference, is_same, is_scalar, is_signed, remove_const, remove_cv, remove_pointer, remove_reference, true_type, underlying_type
#include <utility> // declval, forward, make_pair, move, pair, swap
#include <valarray> // valarray
#include <vector> // vector
// exclude unsupported compilers
#if defined(__clang__)
#if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
#error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
#if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40900
#error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
#endif
#endif
// disable float-equal warnings on GCC/clang
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wfloat-equal"
#endif
// disable documentation warnings on clang
#if defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wdocumentation"
#endif
// allow for portable deprecation warnings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#define JSON_DEPRECATED __attribute__((deprecated))
#elif defined(_MSC_VER)
#define JSON_DEPRECATED __declspec(deprecated)
#else
#define JSON_DEPRECATED
#endif
// allow to disable exceptions
#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && not defined(JSON_NOEXCEPTION)
#define JSON_THROW(exception) throw exception
#define JSON_TRY try
#define JSON_CATCH(exception) catch(exception)
#else
#define JSON_THROW(exception) std::abort()
#define JSON_TRY if(true)
#define JSON_CATCH(exception) if(false)
#endif
// manual branch prediction
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#define JSON_LIKELY(x) __builtin_expect(!!(x), 1)
#define JSON_UNLIKELY(x) __builtin_expect(!!(x), 0)
#else
#define JSON_LIKELY(x) x
#define JSON_UNLIKELY(x) x
#endif
// cpp language standard detection
#if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
#define JSON_HAS_CPP_17
#define JSON_HAS_CPP_14
#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
#define JSON_HAS_CPP_14
#endif
/*!
@brief namespace for Niels Lohmann
@see https://github.com/nlohmann
@since version 1.0.0
*/
namespace nlohmann
{
template<typename = void, typename = void>
struct adl_serializer;
// forward declaration of basic_json (required to split the class)
template<template<typename U, typename V, typename... Args> class ObjectType =
std::map,
template<typename U, typename... Args> class ArrayType = std::vector,
class StringType = std::string, class BooleanType = bool,
class NumberIntegerType = std::int64_t,
class NumberUnsignedType = std::uint64_t,
class NumberFloatType = double,
template<typename U> class AllocatorType = std::allocator,
template<typename T, typename SFINAE = void> class JSONSerializer =
adl_serializer>
class basic_json;
// Ugly macros to avoid uglier copy-paste when specializing basic_json
// This is only temporary and will be removed in 3.0
#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
template<template<typename, typename, typename...> class ObjectType, \
template<typename, typename...> class ArrayType, \
class StringType, class BooleanType, class NumberIntegerType, \
class NumberUnsignedType, class NumberFloatType, \
template<typename> class AllocatorType, \
template<typename, typename = void> class JSONSerializer>
#define NLOHMANN_BASIC_JSON_TPL \
basic_json<ObjectType, ArrayType, StringType, BooleanType, \
NumberIntegerType, NumberUnsignedType, NumberFloatType, \
AllocatorType, JSONSerializer>
/*!
@brief unnamed namespace with internal helper functions
This namespace collects some functions that could not be defined inside the
@ref basic_json class.
@since version 2.1.0
*/
namespace detail
{
////////////////
// exceptions //
////////////////
/*!
@brief general exception of the @ref basic_json class
This class is an extension of `std::exception` objects with a member @a id for
exception ids. It is used as the base class for all exceptions thrown by the
@ref basic_json class. This class can hence be used as "wildcard" to catch
exceptions.
Subclasses:
- @ref parse_error for exceptions indicating a parse error
- @ref invalid_iterator for exceptions indicating errors with iterators
- @ref type_error for exceptions indicating executing a member function with
a wrong type
- @ref out_of_range for exceptions indicating access out of the defined range
- @ref other_error for exceptions indicating other library errors
@internal
@note To have nothrow-copy-constructible exceptions, we internally use
`std::runtime_error` which can cope with arbitrary-length error messages.
Intermediate strings are built with static functions and then passed to
the actual constructor.
@endinternal
@liveexample{The following code shows how arbitrary library exceptions can be
caught.,exception}
@since version 3.0.0
*/
class exception : public std::exception
{
public:
/// returns the explanatory string
const char* what() const noexcept override
{
return m.what();
}
/// the id of the exception
const int id;
protected:
exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
static std::string name(const std::string& ename, int id_)
{
return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
}
private:
/// an exception object as storage for error messages
std::runtime_error m;
};
/*!
@brief exception indicating a parse error
This excpetion is thrown by the library when a parse error occurs. Parse errors
can occur during the deserialization of JSON text, CBOR, MessagePack, as well
as when using JSON Patch.
Member @a byte holds the byte index of the last read character in the input
file.
Exceptions have ids 1xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number wihtout a leading `0`.
json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xf8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
@note For an input with n bytes, 1 is the index of the first character and n+1
is the index of the terminating null byte or the end of file. This also
holds true when reading a byte vector (CBOR or MessagePack).
@liveexample{The following code shows how a `parse_error` exception can be
caught.,parse_error}
@sa @ref exception for the base class of the library exceptions
@sa @ref invalid_iterator for exceptions indicating errors with iterators
@sa @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa @ref out_of_range for exceptions indicating access out of the defined range
@sa @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class parse_error : public exception
{
public:
/*!
@brief create a parse error exception
@param[in] id_ the id of the exception
@param[in] byte_ the byte index where the error occurred (or 0 if the
position cannot be determined)
@param[in] what_arg the explanatory string
@return parse_error object
*/
static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
{
std::string w = exception::name("parse_error", id_) + "parse error" +
(byte_ != 0 ? (" at " + std::to_string(byte_)) : "") +
": " + what_arg;
return parse_error(id_, byte_, w.c_str());
}
/*!
@brief byte index of the parse error
The byte index of the last read character in the input file.
@note For an input with n bytes, 1 is the index of the first character and
n+1 is the index of the terminating null byte or the end of file.
This also holds true when reading a byte vector (CBOR or MessagePack).
*/
const std::size_t byte;
private:
parse_error(int id_, std::size_t byte_, const char* what_arg)
: exception(id_, what_arg), byte(byte_) {}
};
/*!
@brief exception indicating errors with iterators
This exception is thrown if iterators passed to a library function do not match
the expected semantics.
Exceptions have ids 2xx.
name / id | example message | description
----------------------------------- | --------------- | -------------------------
json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
@liveexample{The following code shows how an `invalid_iterator` exception can be
caught.,invalid_iterator}
@sa @ref exception for the base class of the library exceptions
@sa @ref parse_error for exceptions indicating a parse error
@sa @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa @ref out_of_range for exceptions indicating access out of the defined range
@sa @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class invalid_iterator : public exception
{
public:
static invalid_iterator create(int id_, const std::string& what_arg)
{
std::string w = exception::name("invalid_iterator", id_) + what_arg;
return invalid_iterator(id_, w.c_str());
}
private:
invalid_iterator(int id_, const char* what_arg)
: exception(id_, what_arg) {}
};
/*!
@brief exception indicating executing a member function with a wrong type
This exception is thrown in case of a type error; that is, a library function is
executed on a JSON value whose type does not match the expected semantics.
Exceptions have ids 3xx.
name / id | example message | description
----------------------------- | --------------- | -------------------------
json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t&.
json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
@liveexample{The following code shows how a `type_error` exception can be
caught.,type_error}
@sa @ref exception for the base class of the library exceptions
@sa @ref parse_error for exceptions indicating a parse error
@sa @ref invalid_iterator for exceptions indicating errors with iterators
@sa @ref out_of_range for exceptions indicating access out of the defined range
@sa @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class type_error : public exception
{
public:
static type_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("type_error", id_) + what_arg;
return type_error(id_, w.c_str());
}
private:
type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating access out of the defined range
This exception is thrown in case a library function is called on an input
parameter that exceeds the expected range, for instance in case of array
indices or nonexisting object keys.
Exceptions have ids 4xx.
name / id | example message | description
------------------------------- | --------------- | -------------------------
json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
@liveexample{The following code shows how an `out_of_range` exception can be
caught.,out_of_range}
@sa @ref exception for the base class of the library exceptions
@sa @ref parse_error for exceptions indicating a parse error
@sa @ref invalid_iterator for exceptions indicating errors with iterators
@sa @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa @ref other_error for exceptions indicating other library errors
@since version 3.0.0
*/
class out_of_range : public exception
{
public:
static out_of_range create(int id_, const std::string& what_arg)
{
std::string w = exception::name("out_of_range", id_) + what_arg;
return out_of_range(id_, w.c_str());
}
private:
out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
/*!
@brief exception indicating other library errors
This exception is thrown in case of errors that cannot be classified with the
other exception types.
Exceptions have ids 5xx.
name / id | example message | description
------------------------------ | --------------- | -------------------------
json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
json.exception.other_error.502 | invalid object size for conversion | Some conversions to user-defined types impose constraints on the object size (e.g. std::pair)
@sa @ref exception for the base class of the library exceptions
@sa @ref parse_error for exceptions indicating a parse error
@sa @ref invalid_iterator for exceptions indicating errors with iterators
@sa @ref type_error for exceptions indicating executing a member function with
a wrong type
@sa @ref out_of_range for exceptions indicating access out of the defined range
@liveexample{The following code shows how an `other_error` exception can be
caught.,other_error}
@since version 3.0.0
*/
class other_error : public exception
{
public:
static other_error create(int id_, const std::string& what_arg)
{
std::string w = exception::name("other_error", id_) + what_arg;
return other_error(id_, w.c_str());
}
private:
other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
};
///////////////////////////
// JSON type enumeration //
///////////////////////////
/*!
@brief the JSON type enumeration
This enumeration collects the different JSON types. It is internally used to
distinguish the stored values, and the functions @ref basic_json::is_null(),
@ref basic_json::is_object(), @ref basic_json::is_array(),
@ref basic_json::is_string(), @ref basic_json::is_boolean(),
@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
@ref basic_json::is_structured() rely on it.
@note There are three enumeration entries (number_integer, number_unsigned, and
number_float), because the library distinguishes these three types for numbers:
@ref basic_json::number_unsigned_t is used for unsigned integers,
@ref basic_json::number_integer_t is used for signed integers, and
@ref basic_json::number_float_t is used for floating-point numbers or to
approximate integers which do not fit in the limits of their respective type.
@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
value with the default value for a given type
@since version 1.0.0
*/
enum class value_t : uint8_t
{
null, ///< null value
object, ///< object (unordered set of name/value pairs)
array, ///< array (ordered collection of values)
string, ///< string value
boolean, ///< boolean value
number_integer, ///< number value (signed integer)
number_unsigned, ///< number value (unsigned integer)
number_float, ///< number value (floating-point)
discarded ///< discarded by the the parser callback function
};
/*!
@brief comparison operator for JSON types
Returns an ordering that is similar to Python:
- order: null < boolean < number < object < array < string
- furthermore, each type is not smaller than itself
- discarded values are not comparable
@since version 1.0.0
*/
inline bool operator<(const value_t lhs, const value_t rhs) noexcept
{
static constexpr std::array<uint8_t, 8> order = {{
0, // null
3, // object
4, // array
5, // string
1, // boolean
2, // integer
2, // unsigned
2, // float
}
};
const auto l_index = static_cast<std::size_t>(lhs);
const auto r_index = static_cast<std::size_t>(rhs);
return (l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index]);
}
/////////////
// helpers //
/////////////
template<typename> struct is_basic_json : std::false_type {};
NLOHMANN_BASIC_JSON_TPL_DECLARATION
struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
// alias templates to reduce boilerplate
template<bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template<typename T>
using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
// implementation of C++14 index_sequence and affiliates
// source: https://stackoverflow.com/a/32223343
template<std::size_t... Ints>
struct index_sequence
{
using type = index_sequence;
using value_type = std::size_t;
static constexpr std::size_t size() noexcept
{
return sizeof...(Ints);
}
};
template<class Sequence1, class Sequence2>
struct merge_and_renumber;
template<std::size_t... I1, std::size_t... I2>
struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
: index_sequence < I1..., (sizeof...(I1) + I2)... >
{};
template<std::size_t N>
struct make_index_sequence
: merge_and_renumber < typename make_index_sequence < N / 2 >::type,
typename make_index_sequence < N - N / 2 >::type >
{};
template<> struct make_index_sequence<0> : index_sequence<> { };
template<> struct make_index_sequence<1> : index_sequence<0> { };
template<typename... Ts>
using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
/*
Implementation of two C++17 constructs: conjunction, negation. This is needed
to avoid evaluating all the traits in a condition
For example: not std::is_same<void, T>::value and has_value_type<T>::value
will not compile when T = void (on MSVC at least). Whereas
conjunction<negation<std::is_same<void, T>>, has_value_type<T>>::value will
stop evaluating if negation<...>::value == false
Please note that those constructs must be used with caution, since symbols can
become very long quickly (which can slow down compilation and cause MSVC
internal compiler errors). Only use it when you have to (see example ahead).
*/
template<class...> struct conjunction : std::true_type {};
template<class B1> struct conjunction<B1> : B1 {};
template<class B1, class... Bn>
struct conjunction<B1, Bn...> : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
template<class B> struct negation : std::integral_constant < bool, !B::value > {};
// dispatch utility (taken from ranges-v3)
template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
template<> struct priority_tag<0> {};
//////////////////
// constructors //
//////////////////
template<value_t> struct external_constructor;
template<>
struct external_constructor<value_t::boolean>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
{
j.m_type = value_t::boolean;
j.m_value = b;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::string>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
{
j.m_type = value_t::string;
j.m_value = s;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
j.m_type = value_t::string;
j.m_value = std::move(s);
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_float>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
{
j.m_type = value_t::number_float;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_unsigned>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
{
j.m_type = value_t::number_unsigned;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::number_integer>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
{
j.m_type = value_t::number_integer;
j.m_value = val;
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::array>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
{
j.m_type = value_t::array;
j.m_value = arr;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
j.m_type = value_t::array;
j.m_value = std::move(arr);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<not std::is_same<CompatibleArrayType,
typename BasicJsonType::array_t>::value,
int> = 0>
static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
{
using std::begin;
using std::end;
j.m_type = value_t::array;
j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const std::vector<bool>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->reserve(arr.size());
for (bool x : arr)
{
j.m_value.array->push_back(x);
}
j.assert_invariant();
}
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
static void construct(BasicJsonType& j, const std::valarray<T>& arr)
{
j.m_type = value_t::array;
j.m_value = value_t::array;
j.m_value.array->resize(arr.size());
std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
j.assert_invariant();
}
};
template<>
struct external_constructor<value_t::object>
{
template<typename BasicJsonType>
static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
{
j.m_type = value_t::object;
j.m_value = obj;
j.assert_invariant();
}
template<typename BasicJsonType>
static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
j.m_type = value_t::object;
j.m_value = std::move(obj);
j.assert_invariant();
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<not std::is_same<CompatibleObjectType,
typename BasicJsonType::object_t>::value, int> = 0>
static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
{
using std::begin;
using std::end;
j.m_type = value_t::object;
j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
j.assert_invariant();
}
};
////////////////////////
// has_/is_ functions //
////////////////////////
/*!
@brief Helper to determine whether there's a key_type for T.
This helper is used to tell associative containers apart from other containers
such as sequence containers. For instance, `std::map` passes the test as it
contains a `mapped_type`, whereas `std::vector` fails the test.
@sa http://stackoverflow.com/a/7728728/266378
@since version 1.0.0, overworked in version 2.0.6
*/
#define NLOHMANN_JSON_HAS_HELPER(type) \
template<typename T> struct has_##type { \
private: \
template<typename U, typename = typename U::type> \
static int detect(U &&); \
static void detect(...); \
public: \
static constexpr bool value = \
std::is_integral<decltype(detect(std::declval<T>()))>::value; \
}
NLOHMANN_JSON_HAS_HELPER(mapped_type);
NLOHMANN_JSON_HAS_HELPER(key_type);
NLOHMANN_JSON_HAS_HELPER(value_type);
NLOHMANN_JSON_HAS_HELPER(iterator);
#undef NLOHMANN_JSON_HAS_HELPER
template<bool B, class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl : std::false_type {};
template<class RealType, class CompatibleObjectType>
struct is_compatible_object_type_impl<true, RealType, CompatibleObjectType>
{
static constexpr auto value =
std::is_constructible<typename RealType::key_type, typename CompatibleObjectType::key_type>::value and
std::is_constructible<typename RealType::mapped_type, typename CompatibleObjectType::mapped_type>::value;
};
template<class BasicJsonType, class CompatibleObjectType>
struct is_compatible_object_type
{
static auto constexpr value = is_compatible_object_type_impl <
conjunction<negation<std::is_same<void, CompatibleObjectType>>,
has_mapped_type<CompatibleObjectType>,
has_key_type<CompatibleObjectType>>::value,
typename BasicJsonType::object_t, CompatibleObjectType >::value;
};
template<typename BasicJsonType, typename T>
struct is_basic_json_nested_type
{
static auto constexpr value = std::is_same<T, typename BasicJsonType::iterator>::value or
std::is_same<T, typename BasicJsonType::const_iterator>::value or
std::is_same<T, typename BasicJsonType::reverse_iterator>::value or
std::is_same<T, typename BasicJsonType::const_reverse_iterator>::value;
};
template<class BasicJsonType, class CompatibleArrayType>
struct is_compatible_array_type
{
static auto constexpr value =
conjunction<negation<std::is_same<void, CompatibleArrayType>>,
negation<is_compatible_object_type<
BasicJsonType, CompatibleArrayType>>,
negation<std::is_constructible<typename BasicJsonType::string_t,
CompatibleArrayType>>,
negation<is_basic_json_nested_type<BasicJsonType, CompatibleArrayType>>,
has_value_type<CompatibleArrayType>,
has_iterator<CompatibleArrayType>>::value;
};
template<bool, typename, typename>
struct is_compatible_integer_type_impl : std::false_type {};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type_impl<true, RealIntegerType, CompatibleNumberIntegerType>
{
// is there an assert somewhere on overflows?
using RealLimits = std::numeric_limits<RealIntegerType>;
using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
static constexpr auto value =
std::is_constructible<RealIntegerType, CompatibleNumberIntegerType>::value and
CompatibleLimits::is_integer and
RealLimits::is_signed == CompatibleLimits::is_signed;
};
template<typename RealIntegerType, typename CompatibleNumberIntegerType>
struct is_compatible_integer_type
{
static constexpr auto value =
is_compatible_integer_type_impl <
std::is_integral<CompatibleNumberIntegerType>::value and
not std::is_same<bool, CompatibleNumberIntegerType>::value,
RealIntegerType, CompatibleNumberIntegerType > ::value;
};
// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
template<typename BasicJsonType, typename T>
struct has_from_json
{
private:
// also check the return type of from_json
template<typename U, typename = enable_if_t<std::is_same<void, decltype(uncvref_t<U>::from_json(
std::declval<BasicJsonType>(), std::declval<T&>()))>::value>>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(
detect(std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if JSONSerializer<T>::from_json(json const&) exists
// this overload is used for non-default-constructible user-defined-types
template<typename BasicJsonType, typename T>
struct has_non_default_from_json
{
private:
template <
typename U,
typename = enable_if_t<std::is_same<
T, decltype(uncvref_t<U>::from_json(std::declval<BasicJsonType>()))>::value >>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
template<typename BasicJsonType, typename T>
struct has_to_json
{
private:
template<typename U, typename = decltype(uncvref_t<U>::to_json(
std::declval<BasicJsonType&>(), std::declval<T>()))>
static int detect(U&&);
static void detect(...);
public:
static constexpr bool value = std::is_integral<decltype(detect(
std::declval<typename BasicJsonType::template json_serializer<T, void>>()))>::value;
};
/////////////
// to_json //
/////////////
template<typename BasicJsonType, typename T, enable_if_t<
std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
void to_json(BasicJsonType& j, T b) noexcept
{
external_constructor<value_t::boolean>::construct(j, b);
}
template<typename BasicJsonType, typename CompatibleString,
enable_if_t<std::is_constructible<typename BasicJsonType::string_t,
CompatibleString>::value, int> = 0>
void to_json(BasicJsonType& j, const CompatibleString& s)
{
external_constructor<value_t::string>::construct(j, s);
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
{
external_constructor<value_t::string>::construct(j, std::move(s));
}
template<typename BasicJsonType, typename FloatType,
enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
void to_json(BasicJsonType& j, FloatType val) noexcept
{
external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberUnsignedType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t,
CompatibleNumberUnsignedType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
{
external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
}
template <
typename BasicJsonType, typename CompatibleNumberIntegerType,
enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t,
CompatibleNumberIntegerType>::value, int> = 0 >
void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
{
external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void to_json(BasicJsonType& j, EnumType e) noexcept
{
using underlying_type = typename std::underlying_type<EnumType>::type;
external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
}
template<typename BasicJsonType>
void to_json(BasicJsonType& j, const std::vector<bool>& e)
{
external_constructor<value_t::array>::construct(j, e);
}
template <
typename BasicJsonType, typename CompatibleArrayType,
enable_if_t <
is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value or
std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value,
int > = 0 >
void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
{
external_constructor<value_t::array>::construct(j, arr);
}
template <typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
void to_json(BasicJsonType& j, std::valarray<T> arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
{
external_constructor<value_t::array>::construct(j, std::move(arr));
}
template <
typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value,
int> = 0 >
void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
{
external_constructor<value_t::object>::construct(j, obj);
}
template <typename BasicJsonType>
void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
{
external_constructor<value_t::object>::construct(j, std::move(obj));
}
template<typename BasicJsonType, typename T, std::size_t N,
enable_if_t<not std::is_constructible<
typename BasicJsonType::string_t, T (&)[N]>::value,
int> = 0>
void to_json(BasicJsonType& j, T (&arr)[N])
{
external_constructor<value_t::array>::construct(j, arr);
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::pair<Args...>& p)
{
j = {p.first, p.second};
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...>)
{
j = {std::get<Idx>(t)...};
}
template<typename BasicJsonType, typename... Args>
void to_json(BasicJsonType& j, const std::tuple<Args...>& t)
{
to_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
///////////////
// from_json //
///////////////
// overloads for basic_json template parameters
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t<std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType,
typename BasicJsonType::boolean_t>::value,
int> = 0>
void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
{
if (JSON_UNLIKELY(not j.is_boolean()))
{
JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
}
b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
{
if (JSON_UNLIKELY(not j.is_string()))
{
JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
}
s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
{
get_arithmetic_value(j, val);
}
template<typename BasicJsonType, typename EnumType,
enable_if_t<std::is_enum<EnumType>::value, int> = 0>
void from_json(const BasicJsonType& j, EnumType& e)
{
typename std::underlying_type<EnumType>::type val;
get_arithmetic_value(j, val);
e = static_cast<EnumType>(val);
}
template<typename BasicJsonType>
void from_json(const BasicJsonType& j, typename BasicJsonType::array_t& arr)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
}
// forward_list doesn't have an insert method
template<typename BasicJsonType, typename T, typename Allocator,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
std::transform(j.rbegin(), j.rend(),
std::front_inserter(l), [](const BasicJsonType & i)
{
return i.template get<T>();
});
}
// valarray doesn't have an insert method
template<typename BasicJsonType, typename T,
enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
void from_json(const BasicJsonType& j, std::valarray<T>& l)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
l.resize(j.size());
std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l));
}
template<typename BasicJsonType, typename CompatibleArrayType>
void from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<0> /*unused*/)
{
using std::end;
std::transform(j.begin(), j.end(),
std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename CompatibleArrayType>
auto from_json_array_impl(const BasicJsonType& j, CompatibleArrayType& arr, priority_tag<1> /*unused*/)
-> decltype(
arr.reserve(std::declval<typename CompatibleArrayType::size_type>()),
void())
{
using std::end;
arr.reserve(j.size());
std::transform(j.begin(), j.end(),
std::inserter(arr, end(arr)), [](const BasicJsonType & i)
{
// get<BasicJsonType>() returns *this, this won't call a from_json
// method when value_type is BasicJsonType
return i.template get<typename CompatibleArrayType::value_type>();
});
}
template<typename BasicJsonType, typename T, std::size_t N>
void from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr, priority_tag<2> /*unused*/)
{
for (std::size_t i = 0; i < N; ++i)
{
arr[i] = j.at(i).template get<T>();
}
}
template<typename BasicJsonType, typename CompatibleArrayType,
enable_if_t<is_compatible_array_type<BasicJsonType, CompatibleArrayType>::value and
std::is_convertible<BasicJsonType, typename CompatibleArrayType::value_type>::value and
not std::is_same<typename BasicJsonType::array_t, CompatibleArrayType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleArrayType& arr)
{
if (JSON_UNLIKELY(not j.is_array()))
{
JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
}
from_json_array_impl(j, arr, priority_tag<2> {});
}
template<typename BasicJsonType, typename CompatibleObjectType,
enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value, int> = 0>
void from_json(const BasicJsonType& j, CompatibleObjectType& obj)
{
if (JSON_UNLIKELY(not j.is_object()))
{
JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
}
auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
using value_type = typename CompatibleObjectType::value_type;
std::transform(
inner_object->begin(), inner_object->end(),
std::inserter(obj, obj.begin()),
[](typename BasicJsonType::object_t::value_type const & p)
{
return value_type(p.first, p.second.template get<typename CompatibleObjectType::mapped_type>());
});
}
// overload for arithmetic types, not chosen for basic_json template arguments
// (BooleanType, etc..); note: Is it really necessary to provide explicit
// overloads for boolean_t etc. in case of a custom BooleanType which is not
// an arithmetic type?
template<typename BasicJsonType, typename ArithmeticType,
enable_if_t <
std::is_arithmetic<ArithmeticType>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
int> = 0>
void from_json(const BasicJsonType& j, ArithmeticType& val)
{
switch (static_cast<value_t>(j))
{
case value_t::number_unsigned:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
break;
}
case value_t::number_integer:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
break;
}
case value_t::number_float:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
break;
}
case value_t::boolean:
{
val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
break;
}
default:
JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
}
}
template<typename BasicJsonType, typename A1, typename A2>
void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
{
p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
}
template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...>)
{
t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
}
template<typename BasicJsonType, typename... Args>
void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
{
from_json_tuple_impl(j, t, index_sequence_for<Args...> {});
}
struct to_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(BasicJsonType& j, T&& val, priority_tag<1> /*unused*/) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
-> decltype(to_json(j, std::forward<T>(val)), void())
{
return to_json(j, std::forward<T>(val));
}
template<typename BasicJsonType, typename T>
void call(BasicJsonType& /*unused*/, T&& /*unused*/, priority_tag<0> /*unused*/) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find to_json() method in T's namespace");
}
public:
template<typename BasicJsonType, typename T>
void operator()(BasicJsonType& j, T&& val) const
noexcept(noexcept(std::declval<to_json_fn>().call(j, std::forward<T>(val), priority_tag<1> {})))
{
return call(j, std::forward<T>(val), priority_tag<1> {});
}
};
struct from_json_fn
{
private:
template<typename BasicJsonType, typename T>
auto call(const BasicJsonType& j, T& val, priority_tag<1> /*unused*/) const
noexcept(noexcept(from_json(j, val)))
-> decltype(from_json(j, val), void())
{
return from_json(j, val);
}
template<typename BasicJsonType, typename T>
void call(const BasicJsonType& /*unused*/, T& /*unused*/, priority_tag<0> /*unused*/) const noexcept
{
static_assert(sizeof(BasicJsonType) == 0,
"could not find from_json() method in T's namespace");
}
public:
template<typename BasicJsonType, typename T>
void operator()(const BasicJsonType& j, T& val) const
noexcept(noexcept(std::declval<from_json_fn>().call(j, val, priority_tag<1> {})))
{
return call(j, val, priority_tag<1> {});
}
};
// taken from ranges-v3
template<typename T>
struct static_const
{
static constexpr T value{};
};
template<typename T>
constexpr T static_const<T>::value;
////////////////////
// input adapters //
////////////////////
/*!
@brief abstract input adapter interface
Produces a stream of std::char_traits<char>::int_type characters from a
std::istream, a buffer, or some other input type. Accepts the return of exactly
one non-EOF character for future input. The int_type characters returned
consist of all valid char values as positive values (typically unsigned char),
plus an EOF value outside that range, specified by the value of the function
std::char_traits<char>::eof(). This value is typically -1, but could be any
arbitrary value which is not a valid char value.
*/
struct input_adapter_protocol
{
/// get a character [0,255] or std::char_traits<char>::eof().
virtual std::char_traits<char>::int_type get_character() = 0;
/// restore the last non-eof() character to input
virtual void unget_character() = 0;
virtual ~input_adapter_protocol() = default;
};
/// a type to simplify interfaces
using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
/*!
Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
beginning of input. Does not support changing the underlying std::streambuf
in mid-input. Maintains underlying std::istream and std::streambuf to support
subsequent use of standard std::istream operations to process any input
characters following those used in parsing the JSON input. Clears the
std::istream flags; any input errors (e.g., EOF) will be detected by the first
subsequent call for input from the std::istream.
*/
class input_stream_adapter : public input_adapter_protocol
{
public:
~input_stream_adapter() override
{
// clear stream flags; we use underlying streambuf I/O, do not
// maintain ifstream flags
is.clear();
}
explicit input_stream_adapter(std::istream& i)
: is(i), sb(*i.rdbuf())
{
// ignore Byte Order Mark at start of input
std::char_traits<char>::int_type c;
if ((c = get_character()) == 0xEF)
{
if ((c = get_character()) == 0xBB)
{
if ((c = get_character()) == 0xBF)
{
return; // Ignore BOM
}
else if (c != std::char_traits<char>::eof())
{
is.unget();
}
is.putback('\xBB');
}
else if (c != std::char_traits<char>::eof())
{
is.unget();
}
is.putback('\xEF');
}
else if (c != std::char_traits<char>::eof())
{
is.unget(); // Not BOM. Process as usual.
}
}
// delete because of pointer members
input_stream_adapter(const input_stream_adapter&) = delete;
input_stream_adapter& operator=(input_stream_adapter&) = delete;
// std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
// ensure that std::char_traits<char>::eof() and the character 0xff do not
// end up as the same value, eg. 0xffffffff.
std::char_traits<char>::int_type get_character() override
{
return sb.sbumpc();
}
void unget_character() override
{
sb.sungetc(); // is.unget() avoided for performance
}
private:
/// the associated input stream
std::istream& is;
std::streambuf& sb;
};
/// input adapter for buffer input
class input_buffer_adapter : public input_adapter_protocol
{
public:
input_buffer_adapter(const char* b, const std::size_t l)
: cursor(b), limit(b + l), start(b)
{
// skip byte order mark
if (l >= 3 and b[0] == '\xEF' and b[1] == '\xBB' and b[2] == '\xBF')
{
cursor += 3;
}
}
// delete because of pointer members
input_buffer_adapter(const input_buffer_adapter&) = delete;
input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
std::char_traits<char>::int_type get_character() noexcept override
{
if (JSON_LIKELY(cursor < limit))
{
return std::char_traits<char>::to_int_type(*(cursor++));
}
return std::char_traits<char>::eof();
}
void unget_character() noexcept override
{
if (JSON_LIKELY(cursor > start))
{
--cursor;
}
}
private:
/// pointer to the current character
const char* cursor;
/// pointer past the last character
const char* limit;
/// pointer to the first character
const char* start;
};
class input_adapter
{
public:
// native support
/// input adapter for input stream
input_adapter(std::istream& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
/// input adapter for input stream
input_adapter(std::istream&& i)
: ia(std::make_shared<input_stream_adapter>(i)) {}
/// input adapter for buffer
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<
typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b, std::size_t l)
: ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
// derived support
/// input adapter for string literal
template<typename CharT,
typename std::enable_if<
std::is_pointer<CharT>::value and
std::is_integral<
typename std::remove_pointer<CharT>::type>::value and
sizeof(typename std::remove_pointer<CharT>::type) == 1,
int>::type = 0>
input_adapter(CharT b)
: input_adapter(reinterpret_cast<const char*>(b),
std::strlen(reinterpret_cast<const char*>(b))) {}
/// input adapter for iterator range with contiguous storage
template<class IteratorType,
typename std::enable_if<
std::is_same<typename std::iterator_traits<IteratorType>::iterator_category,
std::random_access_iterator_tag>::value,
int>::type = 0>
input_adapter(IteratorType first, IteratorType last)
{
// assertion to check that the iterator range is indeed contiguous,
// see http://stackoverflow.com/a/35008842/266378 for more discussion
assert(std::accumulate(
first, last, std::pair<bool, int>(true, 0),
[&first](std::pair<bool, int> res, decltype(*first) val)
{
res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
return res;
}).first);
// assertion to check that each element is 1 byte long
static_assert(
sizeof(typename std::iterator_traits<IteratorType>::value_type) == 1,
"each element in the iterator range must have the size of 1 byte");
const auto len = static_cast<size_t>(std::distance(first, last));
if (JSON_LIKELY(len > 0))
{
// there is at least one element: use the address of first
ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
}
else
{
// the address of first cannot be used: use nullptr
ia = std::make_shared<input_buffer_adapter>(nullptr, len);
}
}
/// input adapter for array
template<class T, std::size_t N>
input_adapter(T (&array)[N])
: input_adapter(std::begin(array), std::end(array)) {}
/// input adapter for contiguous container
template <
class ContiguousContainer,
typename std::enable_if <
not std::is_pointer<ContiguousContainer>::value and
std::is_base_of<std::random_access_iterator_tag,
typename std::iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
int >::type = 0 >
input_adapter(const ContiguousContainer& c)
: input_adapter(std::begin(c), std::end(c)) {}
operator input_adapter_t()
{
return ia;
}
private:
/// the actual adapter
input_adapter_t ia = nullptr;
};
//////////////////////
// lexer and parser //
//////////////////////
/*!
@brief lexical analysis
This class organizes the lexical analysis during JSON deserialization.
*/
template<typename BasicJsonType>
class lexer
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
public:
/// token types for the parser
enum class token_type
{
uninitialized, ///< indicating the scanner is uninitialized
literal_true, ///< the `true` literal
literal_false, ///< the `false` literal
literal_null, ///< the `null` literal
value_string, ///< a string -- use get_string() for actual value
value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
value_integer, ///< a signed integer -- use get_number_integer() for actual value
value_float, ///< an floating point number -- use get_number_float() for actual value
begin_array, ///< the character for array begin `[`
begin_object, ///< the character for object begin `{`
end_array, ///< the character for array end `]`
end_object, ///< the character for object end `}`
name_separator, ///< the name separator `:`
value_separator, ///< the value separator `,`
parse_error, ///< indicating a parse error
end_of_input, ///< indicating the end of the input buffer
literal_or_value ///< a literal or the begin of a value (only for diagnostics)
};
/// return name of values of type token_type (only used for errors)
static const char* token_type_name(const token_type t) noexcept
{
switch (t)
{
case token_type::uninitialized:
return "<uninitialized>";
case token_type::literal_true:
return "true literal";
case token_type::literal_false:
return "false literal";
case token_type::literal_null:
return "null literal";
case token_type::value_string:
return "string literal";
case lexer::token_type::value_unsigned:
case lexer::token_type::value_integer:
case lexer::token_type::value_float:
return "number literal";
case token_type::begin_array:
return "'['";
case token_type::begin_object:
return "'{'";
case token_type::end_array:
return "']'";
case token_type::end_object:
return "'}'";
case token_type::name_separator:
return "':'";
case token_type::value_separator:
return "','";
case token_type::parse_error:
return "<parse error>";
case token_type::end_of_input:
return "end of input";
case token_type::literal_or_value:
return "'[', '{', or a literal";
default: // catch non-enum values
return "unknown token"; // LCOV_EXCL_LINE
}
}
explicit lexer(detail::input_adapter_t adapter)
: ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
// delete because of pointer members
lexer(const lexer&) = delete;
lexer& operator=(lexer&) = delete;
private:
/////////////////////
// locales
/////////////////////
/// return the locale-dependent decimal point
static char get_decimal_point() noexcept
{
const auto loc = localeconv();
assert(loc != nullptr);
return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
}
/////////////////////
// scan functions
/////////////////////
/*!
@brief get codepoint from 4 hex characters following `\u`
For input "\u c1 c2 c3 c4" the codepoint is:
(c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
= (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
between the ASCII value of the character and the desired integer value.
@return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
non-hex character)
*/
int get_codepoint()
{
// this function only makes sense after reading `\u`
assert(current == 'u');
int codepoint = 0;
const auto factors = { 12, 8, 4, 0 };
for (const auto factor : factors)
{
get();
if (current >= '0' and current <= '9')
{
codepoint += ((current - 0x30) << factor);
}
else if (current >= 'A' and current <= 'F')
{
codepoint += ((current - 0x37) << factor);
}
else if (current >= 'a' and current <= 'f')
{
codepoint += ((current - 0x57) << factor);
}
else
{
return -1;
}
}
assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
return codepoint;
}
/*!
@brief check if the next byte(s) are inside a given range
Adds the current byte and, for each passed range, reads a new byte and
checks if it is inside the range. If a violation was detected, set up an
error message and return false. Otherwise, return true.
@return true if and only if no range violation was detected
*/
bool next_byte_in_range(std::initializer_list<int> ranges)
{
assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
add(current);
for (auto range = ranges.begin(); range != ranges.end(); ++range)
{
get();
if (JSON_LIKELY(*range <= current and current <= *(++range)))
{
add(current);
}
else
{
error_message = "invalid string: ill-formed UTF-8 byte";
return false;
}
}
return true;
}
/*!
@brief scan a string literal
This function scans a string according to Sect. 7 of RFC 7159. While
scanning, bytes are escaped and copied into buffer yytext. Then the function
returns successfully, yytext is *not* null-terminated (as it may contain \0
bytes), and yytext.size() is the number of bytes in the string.
@return token_type::value_string if string could be successfully scanned,
token_type::parse_error otherwise
@note In case of errors, variable error_message contains a textual
description.
*/
token_type scan_string()
{
// reset yytext (ignore opening quote)
reset();
// we entered the function by reading an open quote
assert(current == '\"');
while (true)
{
// get next character
switch (get())
{
// end of file while parsing string
case std::char_traits<char>::eof():
{
error_message = "invalid string: missing closing quote";
return token_type::parse_error;
}
// closing quote
case '\"':
{
return token_type::value_string;
}
// escapes
case '\\':
{
switch (get())
{
// quotation mark
case '\"':
add('\"');
break;
// reverse solidus
case '\\':
add('\\');
break;
// solidus
case '/':
add('/');
break;
// backspace
case 'b':
add('\b');
break;
// form feed
case 'f':
add('\f');
break;
// line feed
case 'n':
add('\n');
break;
// carriage return
case 'r':
add('\r');
break;
// tab
case 't':
add('\t');
break;
// unicode escapes
case 'u':
{
const int codepoint1 = get_codepoint();
int codepoint = codepoint1; // start with codepoint1
if (JSON_UNLIKELY(codepoint1 == -1))
{
error_message = "invalid string: '\\u' must be followed by 4 hex digits";
return token_type::parse_error;
}
// check if code point is a high surrogate
if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
{
// expect next \uxxxx entry
if (JSON_LIKELY(get() == '\\' and get() == 'u'))
{
const int codepoint2 = get_codepoint();
if (JSON_UNLIKELY(codepoint2 == -1))
{
error_message = "invalid string: '\\u' must be followed by 4 hex digits";
return token_type::parse_error;
}
// check if codepoint2 is a low surrogate
if (JSON_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
{
// overwrite codepoint
codepoint =
// high surrogate occupies the most significant 22 bits
(codepoint1 << 10)
// low surrogate occupies the least significant 15 bits
+ codepoint2
// there is still the 0xD800, 0xDC00 and 0x10000 noise
// in the result so we have to subtract with:
// (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
- 0x35FDC00;
}
else
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
return token_type::parse_error;
}
}
else
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
return token_type::parse_error;
}
}
else
{
if (JSON_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
{
error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
return token_type::parse_error;
}
}
// result of the above calculation yields a proper codepoint
assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
// translate code point to bytes
if (codepoint < 0x80)
{
// 1-byte characters: 0xxxxxxx (ASCII)
add(codepoint);
}
else if (codepoint <= 0x7ff)
{
// 2-byte characters: 110xxxxx 10xxxxxx
add(0xC0 | (codepoint >> 6));
add(0x80 | (codepoint & 0x3F));
}
else if (codepoint <= 0xffff)
{
// 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
add(0xE0 | (codepoint >> 12));
add(0x80 | ((codepoint >> 6) & 0x3F));
add(0x80 | (codepoint & 0x3F));
}
else
{
// 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
add(0xF0 | (codepoint >> 18));
add(0x80 | ((codepoint >> 12) & 0x3F));
add(0x80 | ((codepoint >> 6) & 0x3F));
add(0x80 | (codepoint & 0x3F));
}
break;
}
// other characters after escape
default:
error_message = "invalid string: forbidden character after backslash";
return token_type::parse_error;
}
break;
}
// invalid control characters
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
{
error_message = "invalid string: control character must be escaped";
return token_type::parse_error;
}
// U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
case 0x20:
case 0x21:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5d:
case 0x5e:
case 0x5f:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
{
add(current);
break;
}
// U+0080..U+07FF: bytes C2..DF 80..BF
case 0xc2:
case 0xc3:
case 0xc4:
case 0xc5:
case 0xc6:
case 0xc7:
case 0xc8:
case 0xc9:
case 0xca:
case 0xcb:
case 0xcc:
case 0xcd:
case 0xce:
case 0xcf:
case 0xd0:
case 0xd1:
case 0xd2:
case 0xd3:
case 0xd4:
case 0xd5:
case 0xd6:
case 0xd7:
case 0xd8:
case 0xd9:
case 0xda:
case 0xdb:
case 0xdc:
case 0xdd:
case 0xde:
case 0xdf:
{
if (JSON_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
{
return token_type::parse_error;
}
break;
}
// U+0800..U+0FFF: bytes E0 A0..BF 80..BF
case 0xe0:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
// U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xee:
case 0xef:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+D000..U+D7FF: bytes ED 80..9F 80..BF
case 0xed:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
case 0xf0:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
case 0xf1:
case 0xf2:
case 0xf3:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
case 0xf4:
{
if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
{
return token_type::parse_error;
}
break;
}
// remaining bytes (80..C1 and F5..FF) are ill-formed
default:
{
error_message = "invalid string: ill-formed UTF-8 byte";
return token_type::parse_error;
}
}
}
}
static void strtof(float& f, const char* str, char** endptr) noexcept
{
f = std::strtof(str, endptr);
}
static void strtof(double& f, const char* str, char** endptr) noexcept
{
f = std::strtod(str, endptr);
}
static void strtof(long double& f, const char* str, char** endptr) noexcept
{
f = std::strtold(str, endptr);
}
/*!
@brief scan a number literal
This function scans a string according to Sect. 6 of RFC 7159.
The function is realized with a deterministic finite state machine derived
from the grammar described in RFC 7159. Starting in state "init", the
input is read and used to determined the next state. Only state "done"
accepts the number. State "error" is a trap state to model errors. In the
table below, "anything" means any character but the ones listed before.
state | 0 | 1-9 | e E | + | - | . | anything
---------|----------|----------|----------|---------|---------|----------|-----------
init | zero | any1 | [error] | [error] | minus | [error] | [error]
minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
zero | done | done | exponent | done | done | decimal1 | done
any1 | any1 | any1 | exponent | done | done | decimal1 | done
decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error]
decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
any2 | any2 | any2 | done | done | done | done | done
The state machine is realized with one label per state (prefixed with
"scan_number_") and `goto` statements between them. The state machine
contains cycles, but any cycle can be left when EOF is read. Therefore,
the function is guaranteed to terminate.
During scanning, the read bytes are stored in yytext. This string is
then converted to a signed integer, an unsigned integer, or a
floating-point number.
@return token_type::value_unsigned, token_type::value_integer, or
token_type::value_float if number could be successfully scanned,
token_type::parse_error otherwise
@note The scanner is independent of the current locale. Internally, the
locale's decimal point is used instead of `.` to work with the
locale-dependent converters.
*/
token_type scan_number()
{
// reset yytext to store the number's bytes
reset();
// the type of the parsed number; initially set to unsigned; will be
// changed if minus sign, decimal point or exponent is read
token_type number_type = token_type::value_unsigned;
// state (init): we just found out we need to scan a number
switch (current)
{
case '-':
{
add(current);
goto scan_number_minus;
}
case '0':
{
add(current);
goto scan_number_zero;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
default:
{
// all other characters are rejected outside scan_number()
assert(false); // LCOV_EXCL_LINE
}
}
scan_number_minus:
// state: we just parsed a leading minus sign
number_type = token_type::value_integer;
switch (get())
{
case '0':
{
add(current);
goto scan_number_zero;
}
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
default:
{
error_message = "invalid number; expected digit after '-'";
return token_type::parse_error;
}
}
scan_number_zero:
// state: we just parse a zero (maybe with a leading minus sign)
switch (get())
{
case '.':
{
add(decimal_point_char);
goto scan_number_decimal1;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_any1:
// state: we just parsed a number 0-9 (maybe with a leading minus sign)
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any1;
}
case '.':
{
add(decimal_point_char);
goto scan_number_decimal1;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_decimal1:
// state: we just parsed a decimal point
number_type = token_type::value_float;
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_decimal2;
}
default:
{
error_message = "invalid number; expected digit after '.'";
return token_type::parse_error;
}
}
scan_number_decimal2:
// we just parsed at least one number after a decimal point
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_decimal2;
}
case 'e':
case 'E':
{
add(current);
goto scan_number_exponent;
}
default:
goto scan_number_done;
}
scan_number_exponent:
// we just parsed an exponent
number_type = token_type::value_float;
switch (get())
{
case '+':
case '-':
{
add(current);
goto scan_number_sign;
}
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
{
error_message =
"invalid number; expected '+', '-', or digit after exponent";
return token_type::parse_error;
}
}
scan_number_sign:
// we just parsed an exponent sign
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
{
error_message = "invalid number; expected digit after exponent sign";
return token_type::parse_error;
}
}
scan_number_any2:
// we just parsed a number after the exponent or exponent sign
switch (get())
{
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
{
add(current);
goto scan_number_any2;
}
default:
goto scan_number_done;
}
scan_number_done:
// unget the character after the number (we only read it to know that
// we are done scanning a number)
unget();
char* endptr = nullptr;
errno = 0;
// try to parse integers first and fall back to floats
if (number_type == token_type::value_unsigned)
{
const auto x = std::strtoull(yytext.data(), &endptr, 10);
// we checked the number format before
assert(endptr == yytext.data() + yytext.size());
if (errno == 0)
{
value_unsigned = static_cast<number_unsigned_t>(x);
if (value_unsigned == x)
{
return token_type::value_unsigned;
}
}
}
else if (number_type == token_type::value_integer)
{
const auto x = std::strtoll(yytext.data(), &endptr, 10);
// we checked the number format before
assert(endptr == yytext.data() + yytext.size());
if (errno == 0)
{
value_integer = static_cast<number_integer_t>(x);
if (value_integer == x)
{
return token_type::value_integer;
}
}
}
// this code is reached if we parse a floating-point number or if an
// integer conversion above failed
strtof(value_float, yytext.data(), &endptr);
// we checked the number format before
assert(endptr == yytext.data() + yytext.size());
return token_type::value_float;
}
/*!
@param[in] literal_text the literal text to expect
@param[in] length the length of the passed literal text
@param[in] return_type the token type to return on success
*/
token_type scan_literal(const char* literal_text, const std::size_t length,
token_type return_type)
{
assert(current == literal_text[0]);
for (std::size_t i = 1; i < length; ++i)
{
if (JSON_UNLIKELY(get() != literal_text[i]))
{
error_message = "invalid literal";
return token_type::parse_error;
}
}
return return_type;
}
/////////////////////
// input management
/////////////////////
/// reset yytext; current character is beginning of token
void reset() noexcept
{
yytext.clear();
token_string.clear();
token_string.push_back(std::char_traits<char>::to_char_type(current));
}
/*
@brief get next character from the input
This function provides the interface to the used input adapter. It does
not throw in case the input reached EOF, but returns a
`std::char_traits<char>::eof()` in that case. Stores the scanned characters
for use in error messages.
@return character read from the input
*/
std::char_traits<char>::int_type get()
{
++chars_read;
current = ia->get_character();
if (JSON_LIKELY(current != std::char_traits<char>::eof()))
{
token_string.push_back(std::char_traits<char>::to_char_type(current));
}
return current;
}
/// unget current character (return it again on next get)
void unget()
{
--chars_read;
if (JSON_LIKELY(current != std::char_traits<char>::eof()))
{
ia->unget_character();
assert(token_string.size() != 0);
token_string.pop_back();
}
}
/// add a character to yytext
void add(int c)
{
yytext.push_back(std::char_traits<char>::to_char_type(c));
}
public:
/////////////////////
// value getters
/////////////////////
/// return integer value
constexpr number_integer_t get_number_integer() const noexcept
{
return value_integer;
}
/// return unsigned integer value
constexpr number_unsigned_t get_number_unsigned() const noexcept
{
return value_unsigned;
}
/// return floating-point value
constexpr number_float_t get_number_float() const noexcept
{
return value_float;
}
/// return current string value (implicitly resets the token; useful only once)
std::string move_string()
{
return std::move(yytext);
}
/////////////////////
// diagnostics
/////////////////////
/// return position of last read token
constexpr std::size_t get_position() const noexcept
{
return chars_read;
}
/// return the last read token (for errors only). Will never contain EOF
/// (an arbitrary value that is not a valid char value, often -1), because
/// 255 may legitimately occur. May contain NUL, which should be escaped.
std::string get_token_string() const
{
// escape control characters
std::string result;
for (auto c : token_string)
{
if ('\x00' <= c and c <= '\x1f')
{
// escape control characters
std::stringstream ss;
ss << "<U+" << std::setw(4) << std::uppercase << std::setfill('0')
<< std::hex << static_cast<int>(c) << ">";
result += ss.str();
}
else
{
// add character as is
result.push_back(c);
}
}
return result;
}
/// return syntax error message
constexpr const char* get_error_message() const noexcept
{
return error_message;
}
/////////////////////
// actual scanner
/////////////////////
token_type scan()
{
// read next character and ignore whitespace
do
{
get();
}
while (current == ' ' or current == '\t' or current == '\n' or current == '\r');
switch (current)
{
// structural characters
case '[':
return token_type::begin_array;
case ']':
return token_type::end_array;
case '{':
return token_type::begin_object;
case '}':
return token_type::end_object;
case ':':
return token_type::name_separator;
case ',':
return token_type::value_separator;
// literals
case 't':
return scan_literal("true", 4, token_type::literal_true);
case 'f':
return scan_literal("false", 5, token_type::literal_false);
case 'n':
return scan_literal("null", 4, token_type::literal_null);
// string
case '\"':
return scan_string();
// number
case '-':
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
return scan_number();
// end of input (the null byte is needed when parsing from
// string literals)
case '\0':
case std::char_traits<char>::eof():
return token_type::end_of_input;
// error
default:
error_message = "invalid literal";
return token_type::parse_error;
}
}
private:
/// input adapter
detail::input_adapter_t ia = nullptr;
/// the current character
std::char_traits<char>::int_type current = std::char_traits<char>::eof();
/// the number of characters read
std::size_t chars_read = 0;
/// raw input token string (for error messages)
std::vector<char> token_string { };
/// buffer for variable-length tokens (numbers, strings)
std::string yytext { };
/// a description of occurred lexer errors
const char* error_message = "";
// number values
number_integer_t value_integer = 0;
number_unsigned_t value_unsigned = 0;
number_float_t value_float = 0;
/// the decimal point
const char decimal_point_char = '.';
};
/*!
@brief syntax analysis
This class implements a recursive decent parser.
*/
template<typename BasicJsonType>
class parser
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
using number_float_t = typename BasicJsonType::number_float_t;
using lexer_t = lexer<BasicJsonType>;
using token_type = typename lexer_t::token_type;
public:
enum class parse_event_t : uint8_t
{
/// the parser read `{` and started to process a JSON object
object_start,
/// the parser read `}` and finished processing a JSON object
object_end,
/// the parser read `[` and started to process a JSON array
array_start,
/// the parser read `]` and finished processing a JSON array
array_end,
/// the parser read a key of a value in an object
key,
/// the parser finished reading a JSON value
value
};
using parser_callback_t =
std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>;
/// a parser reading from an input adapter
explicit parser(detail::input_adapter_t adapter,
const parser_callback_t cb = nullptr,
const bool allow_exceptions_ = true)
: callback(cb), m_lexer(adapter), allow_exceptions(allow_exceptions_)
{}
/*!
@brief public parser interface
@param[in] strict whether to expect the last token to be EOF
@param[in,out] result parsed JSON value
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
*/
void parse(const bool strict, BasicJsonType& result)
{
// read first token
get_token();
parse_internal(true, result);
result.assert_invariant();
// in strict mode, input must be completely read
if (strict)
{
get_token();
expect(token_type::end_of_input);
}
// in case of an error, return discarded value
if (errored)
{
result = value_t::discarded;
return;
}
// set top-level value to null if it was discarded by the callback
// function
if (result.is_discarded())
{
result = nullptr;
}
}
/*!
@brief public accept interface
@param[in] strict whether to expect the last token to be EOF
@return whether the input is a proper JSON text
*/
bool accept(const bool strict = true)
{
// read first token
get_token();
if (not accept_internal())
{
return false;
}
// strict => last token must be EOF
return not strict or (get_token() == token_type::end_of_input);
}
private:
/*!
@brief the actual parser
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
*/
void parse_internal(bool keep, BasicJsonType& result)
{
// never parse after a parse error was detected
assert(not errored);
// start with a discarded value
if (not result.is_discarded())
{
result.m_value.destroy(result.m_type);
result.m_type = value_t::discarded;
}
switch (last_token)
{
case token_type::begin_object:
{
if (keep)
{
if (callback)
{
keep = callback(depth++, parse_event_t::object_start, result);
}
if (not callback or keep)
{
// explicitly set result to object to cope with {}
result.m_type = value_t::object;
result.m_value = value_t::object;
}
}
// read next token
get_token();
// closing } -> we are done
if (last_token == token_type::end_object)
{
if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
{
result.m_value.destroy(result.m_type);
result.m_type = value_t::discarded;
}
break;
}
// parse values
std::string key;
BasicJsonType value;
while (true)
{
// store key
if (not expect(token_type::value_string))
{
return;
}
key = m_lexer.move_string();
bool keep_tag = false;
if (keep)
{
if (callback)
{
BasicJsonType k(key);
keep_tag = callback(depth, parse_event_t::key, k);
}
else
{
keep_tag = true;
}
}
// parse separator (:)
get_token();
if (not expect(token_type::name_separator))
{
return;
}
// parse and add value
get_token();
value.m_value.destroy(value.m_type);
value.m_type = value_t::discarded;
parse_internal(keep, value);
if (JSON_UNLIKELY(errored))
{
return;
}
if (keep and keep_tag and not value.is_discarded())
{
result.m_value.object->emplace(std::move(key), std::move(value));
}
// comma -> next value
get_token();
if (last_token == token_type::value_separator)
{
get_token();
continue;
}
// closing }
if (not expect(token_type::end_object))
{
return;
}
break;
}
if (keep and callback and not callback(--depth, parse_event_t::object_end, result))
{
result.m_value.destroy(result.m_type);
result.m_type = value_t::discarded;
}
break;
}
case token_type::begin_array:
{
if (keep)
{
if (callback)
{
keep = callback(depth++, parse_event_t::array_start, result);
}
if (not callback or keep)
{
// explicitly set result to array to cope with []
result.m_type = value_t::array;
result.m_value = value_t::array;
}
}
// read next token
get_token();
// closing ] -> we are done
if (last_token == token_type::end_array)
{
if (callback and not callback(--depth, parse_event_t::array_end, result))
{
result.m_value.destroy(result.m_type);
result.m_type = value_t::discarded;
}
break;
}
// parse values
BasicJsonType value;
while (true)
{
// parse value
value.m_value.destroy(value.m_type);
value.m_type = value_t::discarded;
parse_internal(keep, value);
if (JSON_UNLIKELY(errored))
{
return;
}
if (keep and not value.is_discarded())
{
result.m_value.array->push_back(std::move(value));
}
// comma -> next value
get_token();
if (last_token == token_type::value_separator)
{
get_token();
continue;
}
// closing ]
if (not expect(token_type::end_array))
{
return;
}
break;
}
if (keep and callback and not callback(--depth, parse_event_t::array_end, result))
{
result.m_value.destroy(result.m_type);
result.m_type = value_t::discarded;
}
break;
}
case token_type::literal_null:
{
result.m_type = value_t::null;
break;
}
case token_type::value_string:
{
result.m_type = value_t::string;
result.m_value = m_lexer.move_string();
break;
}
case token_type::literal_true:
{
result.m_type = value_t::boolean;
result.m_value = true;
break;
}
case token_type::literal_false:
{
result.m_type = value_t::boolean;
result.m_value = false;
break;
}
case token_type::value_unsigned:
{
result.m_type = value_t::number_unsigned;
result.m_value = m_lexer.get_number_unsigned();
break;
}
case token_type::value_integer:
{
result.m_type = value_t::number_integer;
result.m_value = m_lexer.get_number_integer();
break;
}
case token_type::value_float:
{
result.m_type = value_t::number_float;
result.m_value = m_lexer.get_number_float();
// throw in case of infinity or NAN
if (JSON_UNLIKELY(not std::isfinite(result.m_value.number_float)))
{
if (allow_exceptions)
{
JSON_THROW(out_of_range::create(406, "number overflow parsing '" +
m_lexer.get_token_string() + "'"));
}
expect(token_type::uninitialized);
}
break;
}
case token_type::parse_error:
{
// using "uninitialized" to avoid "expected" message
if (not expect(token_type::uninitialized))
{
return;
}
break; // LCOV_EXCL_LINE
}
default:
{
// the last token was unexpected; we expected a value
if (not expect(token_type::literal_or_value))
{
return;
}
break; // LCOV_EXCL_LINE
}
}
if (keep and callback and not callback(depth, parse_event_t::value, result))
{
result.m_type = value_t::discarded;
}
}
/*!
@brief the acutal acceptor
@invariant 1. The last token is not yet processed. Therefore, the caller
of this function must make sure a token has been read.
2. When this function returns, the last token is processed.
That is, the last read character was already considered.
This invariant makes sure that no token needs to be "unput".
*/
bool accept_internal()
{
switch (last_token)
{
case token_type::begin_object:
{
// read next token
get_token();
// closing } -> we are done
if (last_token == token_type::end_object)
{
return true;
}
// parse values
while (true)
{
// parse key
if (last_token != token_type::value_string)
{
return false;
}
// parse separator (:)
get_token();
if (last_token != token_type::name_separator)
{
return false;
}
// parse value
get_token();
if (not accept_internal())
{
return false;
}
// comma -> next value
get_token();
if (last_token == token_type::value_separator)
{
get_token();
continue;
}
// closing }
return (last_token == token_type::end_object);
}
}
case token_type::begin_array:
{
// read next token
get_token();
// closing ] -> we are done
if (last_token == token_type::end_array)
{
return true;
}
// parse values
while (true)
{
// parse value
if (not accept_internal())
{
return false;
}
// comma -> next value
get_token();
if (last_token == token_type::value_separator)
{
get_token();
continue;
}
// closing ]
return (last_token == token_type::end_array);
}
}
case token_type::value_float:
{
// reject infinity or NAN
return std::isfinite(m_lexer.get_number_float());
}
case token_type::literal_false:
case token_type::literal_null:
case token_type::literal_true:
case token_type::value_integer:
case token_type::value_string:
case token_type::value_unsigned:
return true;
default: // the last token was unexpected
return false;
}
}
/// get next token from lexer
token_type get_token()
{
return (last_token = m_lexer.scan());
}
/*!
@throw parse_error.101 if expected token did not occur
*/
bool expect(token_type t)
{
if (JSON_UNLIKELY(t != last_token))
{
errored = true;
expected = t;
if (allow_exceptions)
{
throw_exception();
}
else
{
return false;
}
}
return true;
}
[[noreturn]] void throw_exception() const
{
std::string error_msg = "syntax error - ";
if (last_token == token_type::parse_error)
{
error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" +
m_lexer.get_token_string() + "'";
}
else
{
error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token));
}
if (expected != token_type::uninitialized)
{
error_msg += "; expected " + std::string(lexer_t::token_type_name(expected));
}
JSON_THROW(parse_error::create(101, m_lexer.get_position(), error_msg));
}
private:
/// current level of recursion
int depth = 0;
/// callback function
const parser_callback_t callback = nullptr;
/// the type of the last read token
token_type last_token = token_type::uninitialized;
/// the lexer
lexer_t m_lexer;
/// whether a syntax error occurred
bool errored = false;
/// possible reason for the syntax error
token_type expected = token_type::uninitialized;
/// whether to throw exceptions in case of errors
const bool allow_exceptions = true;
};
///////////////
// iterators //
///////////////
/*!
@brief an iterator for primitive JSON types
This class models an iterator for primitive JSON types (boolean, number,
string). It's only purpose is to allow the iterator/const_iterator classes
to "iterate" over primitive values. Internally, the iterator is modeled by
a `difference_type` variable. Value begin_value (`0`) models the begin,
end_value (`1`) models past the end.
*/
class primitive_iterator_t
{
public:
using difference_type = std::ptrdiff_t;
constexpr difference_type get_value() const noexcept
{
return m_it;
}
/// set iterator to a defined beginning
void set_begin() noexcept
{
m_it = begin_value;
}
/// set iterator to a defined past the end
void set_end() noexcept
{
m_it = end_value;
}
/// return whether the iterator can be dereferenced
constexpr bool is_begin() const noexcept
{
return m_it == begin_value;
}
/// return whether the iterator is at end
constexpr bool is_end() const noexcept
{
return m_it == end_value;
}
friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it == rhs.m_it;
}
friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it < rhs.m_it;
}
primitive_iterator_t operator+(difference_type i)
{
auto result = *this;
result += i;
return result;
}
friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
{
return lhs.m_it - rhs.m_it;
}
friend std::ostream& operator<<(std::ostream& os, primitive_iterator_t it)
{
return os << it.m_it;
}
primitive_iterator_t& operator++()
{
++m_it;
return *this;
}
primitive_iterator_t operator++(int)
{
auto result = *this;
m_it++;
return result;
}
primitive_iterator_t& operator--()
{
--m_it;
return *this;
}
primitive_iterator_t operator--(int)
{
auto result = *this;
m_it--;
return result;
}
primitive_iterator_t& operator+=(difference_type n)
{
m_it += n;
return *this;
}
primitive_iterator_t& operator-=(difference_type n)
{
m_it -= n;
return *this;
}
private:
static constexpr difference_type begin_value = 0;
static constexpr difference_type end_value = begin_value + 1;
/// iterator as signed integer type
difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
};
/*!
@brief an iterator value
@note This structure could easily be a union, but MSVC currently does not allow
unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
*/
template<typename BasicJsonType> struct internal_iterator
{
/// iterator for JSON objects
typename BasicJsonType::object_t::iterator object_iterator {};
/// iterator for JSON arrays
typename BasicJsonType::array_t::iterator array_iterator {};
/// generic iterator for all other types
primitive_iterator_t primitive_iterator {};
};
template<typename IteratorType> class iteration_proxy;
/*!
@brief a template for a bidirectional iterator for the @ref basic_json class
This class implements a both iterators (iterator and const_iterator) for the
@ref basic_json class.
@note An iterator is called *initialized* when a pointer to a JSON value has
been set (e.g., by a constructor or a copy assignment). If the iterator is
default-constructed, it is *uninitialized* and most methods are undefined.
**The library uses assertions to detect calls on uninitialized iterators.**
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](http://en.cppreference.com/w/cpp/concept/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
*/
template<typename BasicJsonType>
class iter_impl : public std::iterator<std::bidirectional_iterator_tag, BasicJsonType>
{
/// allow basic_json to access private members
friend iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
friend BasicJsonType;
friend iteration_proxy<iter_impl>;
using object_t = typename BasicJsonType::object_t;
using array_t = typename BasicJsonType::array_t;
// make sure BasicJsonType is basic_json or const basic_json
static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
"iter_impl only accepts (const) basic_json");
public:
/// the type of the values when the iterator is dereferenced
using value_type = typename BasicJsonType::value_type;
/// a type to represent differences between iterators
using difference_type = typename BasicJsonType::difference_type;
/// defines a pointer to the type iterated over (value_type)
using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_pointer,
typename BasicJsonType::pointer>::type;
/// defines a reference to the type iterated over (value_type)
using reference =
typename std::conditional<std::is_const<BasicJsonType>::value,
typename BasicJsonType::const_reference,
typename BasicJsonType::reference>::type;
/// default constructor
iter_impl() = default;
/*!
@brief constructor for a given JSON instance
@param[in] object pointer to a JSON object for this iterator
@pre object != nullptr
@post The iterator is initialized; i.e. `m_object != nullptr`.
*/
explicit iter_impl(pointer object) noexcept : m_object(object)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = typename object_t::iterator();
break;
}
case value_t::array:
{
m_it.array_iterator = typename array_t::iterator();
break;
}
default:
{
m_it.primitive_iterator = primitive_iterator_t();
break;
}
}
}
/*!
@note The conventional copy constructor and copy assignment are implicitly
defined. Combined with the following converting constructor and
assignment, they support: (1) copy from iterator to iterator, (2)
copy from const iterator to const iterator, and (3) conversion from
iterator to const iterator. However conversion from const iterator
to iterator is not defined.
*/
/*!
@brief converting constructor
@param[in] other non-const iterator to copy from
@note It is not checked whether @a other is initialized.
*/
iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
: m_object(other.m_object), m_it(other.m_it) {}
/*!
@brief converting assignment
@param[in,out] other non-const iterator to copy from
@return const/non-const iterator
@note It is not checked whether @a other is initialized.
*/
iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
{
m_object = other.m_object;
m_it = other.m_it;
return *this;
}
private:
/*!
@brief set the iterator to the first value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_begin() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_value.object->begin();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_value.array->begin();
break;
}
case value_t::null:
{
// set to end so begin()==end() is true: null is empty
m_it.primitive_iterator.set_end();
break;
}
default:
{
m_it.primitive_iterator.set_begin();
break;
}
}
}
/*!
@brief set the iterator past the last value
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
void set_end() noexcept
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
m_it.object_iterator = m_object->m_value.object->end();
break;
}
case value_t::array:
{
m_it.array_iterator = m_object->m_value.array->end();
break;
}
default:
{
m_it.primitive_iterator.set_end();
break;
}
}
}
public:
/*!
@brief return a reference to the value pointed to by the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator*() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return m_it.object_iterator->second;
}
case value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return *m_it.array_iterator;
}
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
default:
{
if (JSON_LIKELY(m_it.primitive_iterator.is_begin()))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief dereference the iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
pointer operator->() const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
assert(m_it.object_iterator != m_object->m_value.object->end());
return &(m_it.object_iterator->second);
}
case value_t::array:
{
assert(m_it.array_iterator != m_object->m_value.array->end());
return &*m_it.array_iterator;
}
default:
{
if (JSON_LIKELY(m_it.primitive_iterator.is_begin()))
{
return m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief post-increment (it++)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator++(int)
{
auto result = *this;
++(*this);
return result;
}
/*!
@brief pre-increment (++it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator++()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, 1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, 1);
break;
}
default:
{
++m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief post-decrement (it--)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator--(int)
{
auto result = *this;
--(*this);
return result;
}
/*!
@brief pre-decrement (--it)
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator--()
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
{
std::advance(m_it.object_iterator, -1);
break;
}
case value_t::array:
{
std::advance(m_it.array_iterator, -1);
break;
}
default:
{
--m_it.primitive_iterator;
break;
}
}
return *this;
}
/*!
@brief comparison: equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator==(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
return (m_it.object_iterator == other.m_it.object_iterator);
case value_t::array:
return (m_it.array_iterator == other.m_it.array_iterator);
default:
return (m_it.primitive_iterator == other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: not equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator!=(const iter_impl& other) const
{
return not operator==(other);
}
/*!
@brief comparison: smaller
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<(const iter_impl& other) const
{
// if objects are not the same, the comparison is undefined
if (JSON_UNLIKELY(m_object != other.m_object))
{
JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
}
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators"));
case value_t::array:
return (m_it.array_iterator < other.m_it.array_iterator);
default:
return (m_it.primitive_iterator < other.m_it.primitive_iterator);
}
}
/*!
@brief comparison: less than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator<=(const iter_impl& other) const
{
return not other.operator < (*this);
}
/*!
@brief comparison: greater than
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>(const iter_impl& other) const
{
return not operator<=(other);
}
/*!
@brief comparison: greater than or equal
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
bool operator>=(const iter_impl& other) const
{
return not operator<(other);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator+=(difference_type i)
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
case value_t::array:
{
std::advance(m_it.array_iterator, i);
break;
}
default:
{
m_it.primitive_iterator += i;
break;
}
}
return *this;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl& operator-=(difference_type i)
{
return operator+=(-i);
}
/*!
@brief add to iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator+(difference_type i) const
{
auto result = *this;
result += i;
return result;
}
/*!
@brief addition of distance and iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
friend iter_impl operator+(difference_type i, const iter_impl& it)
{
auto result = it;
result += i;
return result;
}
/*!
@brief subtract from iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
iter_impl operator-(difference_type i) const
{
auto result = *this;
result -= i;
return result;
}
/*!
@brief return difference
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
difference_type operator-(const iter_impl& other) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
case value_t::array:
return m_it.array_iterator - other.m_it.array_iterator;
default:
return m_it.primitive_iterator - other.m_it.primitive_iterator;
}
}
/*!
@brief access to successor
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference operator[](difference_type n) const
{
assert(m_object != nullptr);
switch (m_object->m_type)
{
case value_t::object:
JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators"));
case value_t::array:
return *std::next(m_it.array_iterator, n);
case value_t::null:
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
default:
{
if (JSON_LIKELY(m_it.primitive_iterator.get_value() == -n))
{
return *m_object;
}
JSON_THROW(invalid_iterator::create(214, "cannot get value"));
}
}
}
/*!
@brief return the key of an object iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
typename object_t::key_type key() const
{
assert(m_object != nullptr);
if (JSON_LIKELY(m_object->is_object()))
{
return m_it.object_iterator->first;
}
JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators"));
}
/*!
@brief return the value of an iterator
@pre The iterator is initialized; i.e. `m_object != nullptr`.
*/
reference value() const
{
return operator*();
}
private:
/// associated JSON instance
pointer m_object = nullptr;
/// the actual iterator of the associated instance
internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it = {};
};
/// proxy class for the iterator_wrapper functions
template<typename IteratorType> class iteration_proxy
{
private:
/// helper class for iteration
class iteration_proxy_internal
{
private:
/// the iterator
IteratorType anchor;
/// an index for arrays (used to create key names)
std::size_t array_index = 0;
public:
explicit iteration_proxy_internal(IteratorType it) noexcept : anchor(it) {}
/// dereference operator (needed for range-based for)
iteration_proxy_internal& operator*()
{
return *this;
}
/// increment operator (needed for range-based for)
iteration_proxy_internal& operator++()
{
++anchor;
++array_index;
return *this;
}
/// inequality operator (needed for range-based for)
bool operator!=(const iteration_proxy_internal& o) const noexcept
{
return anchor != o.anchor;
}
/// return key of the iterator
std::string key() const
{
assert(anchor.m_object != nullptr);
switch (anchor.m_object->type())
{
// use integer array index as key
case value_t::array:
return std::to_string(array_index);
// use key from the object
case value_t::object:
return anchor.key();
// use an empty key for all primitive types
default:
return "";
}
}
/// return value of the iterator
typename IteratorType::reference value() const
{
return anchor.value();
}
};
/// the container to iterate
typename IteratorType::reference container;
public:
/// construct iteration proxy from a container
explicit iteration_proxy(typename IteratorType::reference cont)
: container(cont) {}
/// return iterator begin (needed for range-based for)
iteration_proxy_internal begin() noexcept
{
return iteration_proxy_internal(container.begin());
}
/// return iterator end (needed for range-based for)
iteration_proxy_internal end() noexcept
{
return iteration_proxy_internal(container.end());
}
};
/*!
@brief a template for a reverse iterator class
@tparam Base the base iterator type to reverse. Valid types are @ref
iterator (to create @ref reverse_iterator) and @ref const_iterator (to
create @ref const_reverse_iterator).
@requirement The class satisfies the following concept requirements:
-
[BidirectionalIterator](http://en.cppreference.com/w/cpp/concept/BidirectionalIterator):
The iterator that can be moved can be moved in both directions (i.e.
incremented and decremented).
- [OutputIterator](http://en.cppreference.com/w/cpp/concept/OutputIterator):
It is possible to write to the pointed-to element (only if @a Base is
@ref iterator).
@since version 1.0.0
*/
template<typename Base>
class json_reverse_iterator : public std::reverse_iterator<Base>
{
public:
using difference_type = std::ptrdiff_t;
/// shortcut to the reverse iterator adaptor
using base_iterator = std::reverse_iterator<Base>;
/// the reference type for the pointed-to element
using reference = typename Base::reference;
/// create reverse iterator from iterator
json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
: base_iterator(it) {}
/// create reverse iterator from base class
json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
/// post-increment (it++)
json_reverse_iterator operator++(int)
{
return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
}
/// pre-increment (++it)
json_reverse_iterator& operator++()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator++());
}
/// post-decrement (it--)
json_reverse_iterator operator--(int)
{
return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
}
/// pre-decrement (--it)
json_reverse_iterator& operator--()
{
return static_cast<json_reverse_iterator&>(base_iterator::operator--());
}
/// add to iterator
json_reverse_iterator& operator+=(difference_type i)
{
return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
}
/// add to iterator
json_reverse_iterator operator+(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
}
/// subtract from iterator
json_reverse_iterator operator-(difference_type i) const
{
return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
}
/// return difference
difference_type operator-(const json_reverse_iterator& other) const
{
return base_iterator(*this) - base_iterator(other);
}
/// access to successor
reference operator[](difference_type n) const
{
return *(this->operator+(n));
}
/// return the key of an object iterator
auto key() const -> decltype(std::declval<Base>().key())
{
auto it = --this->base();
return it.key();
}
/// return the value of an iterator
reference value() const
{
auto it = --this->base();
return it.operator * ();
}
};
/////////////////////
// output adapters //
/////////////////////
/// abstract output adapter interface
template<typename CharType> struct output_adapter_protocol
{
virtual void write_character(CharType c) = 0;
virtual void write_characters(const CharType* s, std::size_t length) = 0;
virtual ~output_adapter_protocol() = default;
};
/// a type to simplify interfaces
template<typename CharType>
using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
/// output adapter for byte vectors
template<typename CharType>
class output_vector_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_vector_adapter(std::vector<CharType>& vec) : v(vec) {}
void write_character(CharType c) override
{
v.push_back(c);
}
void write_characters(const CharType* s, std::size_t length) override
{
std::copy(s, s + length, std::back_inserter(v));
}
private:
std::vector<CharType>& v;
};
/// output adapter for output streams
template<typename CharType>
class output_stream_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_stream_adapter(std::basic_ostream<CharType>& s) : stream(s) {}
void write_character(CharType c) override
{
stream.put(c);
}
void write_characters(const CharType* s, std::size_t length) override
{
stream.write(s, static_cast<std::streamsize>(length));
}
private:
std::basic_ostream<CharType>& stream;
};
/// output adapter for basic_string
template<typename CharType>
class output_string_adapter : public output_adapter_protocol<CharType>
{
public:
explicit output_string_adapter(std::basic_string<CharType>& s) : str(s) {}
void write_character(CharType c) override
{
str.push_back(c);
}
void write_characters(const CharType* s, std::size_t length) override
{
str.append(s, length);
}
private:
std::basic_string<CharType>& str;
};
template<typename CharType>
class output_adapter
{
public:
output_adapter(std::vector<CharType>& vec)
: oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {}
output_adapter(std::basic_ostream<CharType>& s)
: oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
output_adapter(std::basic_string<CharType>& s)
: oa(std::make_shared<output_string_adapter<CharType>>(s)) {}
operator output_adapter_t<CharType>()
{
return oa;
}
private:
output_adapter_t<CharType> oa = nullptr;
};
//////////////////////////////
// binary reader and writer //
//////////////////////////////
/*!
@brief deserialization of CBOR and MessagePack values
*/
template<typename BasicJsonType>
class binary_reader
{
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
public:
/*!
@brief create a binary reader
@param[in] adapter input adapter to read from
*/
explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter))
{
assert(ia);
}
/*!
@brief create a JSON value from CBOR input
@param[in] strict whether to expect the input to be consumed completed
@return JSON value created from CBOR input
@throw parse_error.110 if input ended unexpectedly or the end of file was
not reached when @a strict was set to true
@throw parse_error.112 if unsupported byte was read
*/
BasicJsonType parse_cbor(const bool strict)
{
const auto res = parse_cbor_internal();
if (strict)
{
get();
check_eof(true);
}
return res;
}
/*!
@brief create a JSON value from MessagePack input
@param[in] strict whether to expect the input to be consumed completed
@return JSON value created from MessagePack input
@throw parse_error.110 if input ended unexpectedly or the end of file was
not reached when @a strict was set to true
@throw parse_error.112 if unsupported byte was read
*/
BasicJsonType parse_msgpack(const bool strict)
{
const auto res = parse_msgpack_internal();
if (strict)
{
get();
check_eof(true);
}
return res;
}
/*!
@brief determine system byte order
@return true if and only if system's byte order is little endian
@note from http://stackoverflow.com/a/1001328/266378
*/
static constexpr bool little_endianess(int num = 1) noexcept
{
return (*reinterpret_cast<char*>(&num) == 1);
}
private:
/*!
@param[in] get_char whether a new character should be retrieved from the
input (true, default) or whether the last read
character should be considered instead
*/
BasicJsonType parse_cbor_internal(const bool get_char = true)
{
switch (get_char ? get() : current)
{
// EOF
case std::char_traits<char>::eof():
JSON_THROW(parse_error::create(110, chars_read, "unexpected end of input"));
// Integer 0x00..0x17 (0..23)
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
return static_cast<number_unsigned_t>(current);
case 0x18: // Unsigned integer (one-byte uint8_t follows)
return get_number<uint8_t>();
case 0x19: // Unsigned integer (two-byte uint16_t follows)
return get_number<uint16_t>();
case 0x1a: // Unsigned integer (four-byte uint32_t follows)
return get_number<uint32_t>();
case 0x1b: // Unsigned integer (eight-byte uint64_t follows)
return get_number<uint64_t>();
// Negative integer -1-0x00..-1-0x17 (-1..-24)
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
return static_cast<int8_t>(0x20 - 1 - current);
case 0x38: // Negative integer (one-byte uint8_t follows)
{
// must be uint8_t !
return static_cast<number_integer_t>(-1) - get_number<uint8_t>();
}
case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
{
return static_cast<number_integer_t>(-1) - get_number<uint16_t>();
}
case 0x3a: // Negative integer -1-n (four-byte uint32_t follows)
{
return static_cast<number_integer_t>(-1) - get_number<uint32_t>();
}
case 0x3b: // Negative integer -1-n (eight-byte uint64_t follows)
{
return static_cast<number_integer_t>(-1) -
static_cast<number_integer_t>(get_number<uint64_t>());
}
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
case 0x7a: // UTF-8 string (four-byte uint32_t for n follow)
case 0x7b: // UTF-8 string (eight-byte uint64_t for n follow)
case 0x7f: // UTF-8 string (indefinite length)
{
return get_cbor_string();
}
// array (0x00..0x17 data items follow)
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8a:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x8f:
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
{
return get_cbor_array(current & 0x1f);
}
case 0x98: // array (one-byte uint8_t for n follows)
{
return get_cbor_array(get_number<uint8_t>());
}
case 0x99: // array (two-byte uint16_t for n follow)
{
return get_cbor_array(get_number<uint16_t>());
}
case 0x9a: // array (four-byte uint32_t for n follow)
{
return get_cbor_array(get_number<uint32_t>());
}
case 0x9b: // array (eight-byte uint64_t for n follow)
{
return get_cbor_array(get_number<uint64_t>());
}
case 0x9f: // array (indefinite length)
{
BasicJsonType result = value_t::array;
while (get() != 0xff)
{
result.push_back(parse_cbor_internal(false));
}
return result;
}
// map (0x00..0x17 pairs of data items follow)
case 0xa0:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa5:
case 0xa6:
case 0xa7:
case 0xa8:
case 0xa9:
case 0xaa:
case 0xab:
case 0xac:
case 0xad:
case 0xae:
case 0xaf:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
{
return get_cbor_object(current & 0x1f);
}
case 0xb8: // map (one-byte uint8_t for n follows)
{
return get_cbor_object(get_number<uint8_t>());
}
case 0xb9: // map (two-byte uint16_t for n follow)
{
return get_cbor_object(get_number<uint16_t>());
}
case 0xba: // map (four-byte uint32_t for n follow)
{
return get_cbor_object(get_number<uint32_t>());
}
case 0xbb: // map (eight-byte uint64_t for n follow)
{
return get_cbor_object(get_number<uint64_t>());
}
case 0xbf: // map (indefinite length)
{
BasicJsonType result = value_t::object;
while (get() != 0xff)
{
auto key = get_cbor_string();
result[key] = parse_cbor_internal();
}
return result;
}
case 0xf4: // false
{
return false;
}
case 0xf5: // true
{
return true;
}
case 0xf6: // null
{
return value_t::null;
}
case 0xf9: // Half-Precision Float (two-byte IEEE 754)
{
const int byte1 = get();
check_eof();
const int byte2 = get();
check_eof();
// code from RFC 7049, Appendix D, Figure 3:
// As half-precision floating-point numbers were only added
// to IEEE 754 in 2008, today's programming platforms often
// still only have limited support for them. It is very
// easy to include at least decoding support for them even
// without such support. An example of a small decoder for
// half-precision floating-point numbers in the C language
// is shown in Fig. 3.
const int half = (byte1 << 8) + byte2;
const int exp = (half >> 10) & 0x1f;
const int mant = half & 0x3ff;
double val;
if (exp == 0)
{
val = std::ldexp(mant, -24);
}
else if (exp != 31)
{
val = std::ldexp(mant + 1024, exp - 25);
}
else
{
val = (mant == 0) ? std::numeric_limits<double>::infinity()
: std::numeric_limits<double>::quiet_NaN();
}
return (half & 0x8000) != 0 ? -val : val;
}
case 0xfa: // Single-Precision Float (four-byte IEEE 754)
{
return get_number<float>();
}
case 0xfb: // Double-Precision Float (eight-byte IEEE 754)
{
return get_number<double>();
}
default: // anything else (0xFF is handled inside the other types)
{
std::stringstream ss;
ss << std::setw(2) << std::setfill('0') << std::hex << current;
JSON_THROW(parse_error::create(112, chars_read, "error reading CBOR; last byte: 0x" + ss.str()));
}
}
}
BasicJsonType parse_msgpack_internal()
{
switch (get())
{
// EOF
case std::char_traits<char>::eof():
JSON_THROW(parse_error::create(110, chars_read, "unexpected end of input"));
// positive fixint
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x08:
case 0x09:
case 0x0a:
case 0x0b:
case 0x0c:
case 0x0d:
case 0x0e:
case 0x0f:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x24:
case 0x25:
case 0x26:
case 0x27:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
case 0x2c:
case 0x2d:
case 0x2e:
case 0x2f:
case 0x30:
case 0x31:
case 0x32:
case 0x33:
case 0x34:
case 0x35:
case 0x36:
case 0x37:
case 0x38:
case 0x39:
case 0x3a:
case 0x3b:
case 0x3c:
case 0x3d:
case 0x3e:
case 0x3f:
case 0x40:
case 0x41:
case 0x42:
case 0x43:
case 0x44:
case 0x45:
case 0x46:
case 0x47:
case 0x48:
case 0x49:
case 0x4a:
case 0x4b:
case 0x4c:
case 0x4d:
case 0x4e:
case 0x4f:
case 0x50:
case 0x51:
case 0x52:
case 0x53:
case 0x54:
case 0x55:
case 0x56:
case 0x57:
case 0x58:
case 0x59:
case 0x5a:
case 0x5b:
case 0x5c:
case 0x5d:
case 0x5e:
case 0x5f:
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
case 0x78:
case 0x79:
case 0x7a:
case 0x7b:
case 0x7c:
case 0x7d:
case 0x7e:
case 0x7f:
return static_cast<number_unsigned_t>(current);
// fixmap
case 0x80:
case 0x81:
case 0x82:
case 0x83:
case 0x84:
case 0x85:
case 0x86:
case 0x87:
case 0x88:
case 0x89:
case 0x8a:
case 0x8b:
case 0x8c:
case 0x8d:
case 0x8e:
case 0x8f:
{
return get_msgpack_object(current & 0x0f);
}
// fixarray
case 0x90:
case 0x91:
case 0x92:
case 0x93:
case 0x94:
case 0x95:
case 0x96:
case 0x97:
case 0x98:
case 0x99:
case 0x9a:
case 0x9b:
case 0x9c:
case 0x9d:
case 0x9e:
case 0x9f:
{
return get_msgpack_array(current & 0x0f);
}
// fixstr
case 0xa0:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa5:
case 0xa6:
case 0xa7:
case 0xa8:
case 0xa9:
case 0xaa:
case 0xab:
case 0xac:
case 0xad:
case 0xae:
case 0xaf:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf:
return get_msgpack_string();
case 0xc0: // nil
return value_t::null;
case 0xc2: // false
return false;
case 0xc3: // true
return true;
case 0xca: // float 32
return get_number<float>();
case 0xcb: // float 64
return get_number<double>();
case 0xcc: // uint 8
return get_number<uint8_t>();
case 0xcd: // uint 16
return get_number<uint16_t>();
case 0xce: // uint 32
return get_number<uint32_t>();
case 0xcf: // uint 64
return get_number<uint64_t>();
case 0xd0: // int 8
return get_number<int8_t>();
case 0xd1: // int 16
return get_number<int16_t>();
case 0xd2: // int 32
return get_number<int32_t>();
case 0xd3: // int 64
return get_number<int64_t>();
case 0xd9: // str 8
case 0xda: // str 16
case 0xdb: // str 32
return get_msgpack_string();
case 0xdc: // array 16
{
return get_msgpack_array(get_number<uint16_t>());
}
case 0xdd: // array 32
{
return get_msgpack_array(get_number<uint32_t>());
}
case 0xde: // map 16
{
return get_msgpack_object(get_number<uint16_t>());
}
case 0xdf: // map 32
{
return get_msgpack_object(get_number<uint32_t>());
}
// positive fixint
case 0xe0:
case 0xe1:
case 0xe2:
case 0xe3:
case 0xe4:
case 0xe5:
case 0xe6:
case 0xe7:
case 0xe8:
case 0xe9:
case 0xea:
case 0xeb:
case 0xec:
case 0xed:
case 0xee:
case 0xef:
case 0xf0:
case 0xf1:
case 0xf2:
case 0xf3:
case 0xf4:
case 0xf5:
case 0xf6:
case 0xf7:
case 0xf8:
case 0xf9:
case 0xfa:
case 0xfb:
case 0xfc:
case 0xfd:
case 0xfe:
case 0xff:
return static_cast<int8_t>(current);
default: // anything else
{
std::stringstream ss;
ss << std::setw(2) << std::setfill('0') << std::hex << current;
JSON_THROW(parse_error::create(112, chars_read,
"error reading MessagePack; last byte: 0x" + ss.str()));
}
}
}
/*!
@brief get next character from the input
This function provides the interface to the used input adapter. It does
not throw in case the input reached EOF, but returns a -'ve valued
`std::char_traits<char>::eof()` in that case.
@return character read from the input
*/
int get()
{
++chars_read;
return (current = ia->get_character());
}
/*
@brief read a number from the input
@tparam NumberType the type of the number
@return number of type @a NumberType
@note This function needs to respect the system's endianess, because
bytes in CBOR and MessagePack are stored in network order (big
endian) and therefore need reordering on little endian systems.
@throw parse_error.110 if input has less than `sizeof(NumberType)` bytes
*/
template<typename NumberType> NumberType get_number()
{
// step 1: read input into array with system's byte order
std::array<uint8_t, sizeof(NumberType)> vec;
for (std::size_t i = 0; i < sizeof(NumberType); ++i)
{
get();
check_eof();
// reverse byte order prior to conversion if necessary
if (is_little_endian)
{
vec[sizeof(NumberType) - i - 1] = static_cast<uint8_t>(current);
}
else
{
vec[i] = static_cast<uint8_t>(current); // LCOV_EXCL_LINE
}
}
// step 2: convert array into number of type T and return
NumberType result;
std::memcpy(&result, vec.data(), sizeof(NumberType));
return result;
}
/*!
@brief create a string by reading characters from the input
@param[in] len number of bytes to read
@note We can not reserve @a len bytes for the result, because @a len
may be too large. Usually, @ref check_eof() detects the end of
the input before we run out of string memory.
@return string created by reading @a len bytes
@throw parse_error.110 if input has less than @a len bytes
*/
template<typename NumberType>
std::string get_string(const NumberType len)
{
std::string result;
std::generate_n(std::back_inserter(result), len, [this]()
{
get();
check_eof();
return static_cast<char>(current);
});
return result;
}
/*!
@brief reads a CBOR string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string.
Additionally, CBOR's strings with indefinite lengths are supported.
@return string
@throw parse_error.110 if input ended
@throw parse_error.113 if an unexpected byte is read
*/
std::string get_cbor_string()
{
check_eof();
switch (current)
{
// UTF-8 string (0x00..0x17 bytes follow)
case 0x60:
case 0x61:
case 0x62:
case 0x63:
case 0x64:
case 0x65:
case 0x66:
case 0x67:
case 0x68:
case 0x69:
case 0x6a:
case 0x6b:
case 0x6c:
case 0x6d:
case 0x6e:
case 0x6f:
case 0x70:
case 0x71:
case 0x72:
case 0x73:
case 0x74:
case 0x75:
case 0x76:
case 0x77:
{
return get_string(current & 0x1f);
}
case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
{
return get_string(get_number<uint8_t>());
}
case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
{
return get_string(get_number<uint16_t>());
}
case 0x7a: // UTF-8 string (four-byte uint32_t for n follow)
{
return get_string(get_number<uint32_t>());
}
case 0x7b: // UTF-8 string (eight-byte uint64_t for n follow)
{
return get_string(get_number<uint64_t>());
}
case 0x7f: // UTF-8 string (indefinite length)
{
std::string result;
while (get() != 0xff)
{
check_eof();
result.push_back(static_cast<char>(current));
}
return result;
}
default:
{
std::stringstream ss;
ss << std::setw(2) << std::setfill('0') << std::hex << current;
JSON_THROW(parse_error::create(113, chars_read, "expected a CBOR string; last byte: 0x" + ss.str()));
}
}
}
template<typename NumberType>
BasicJsonType get_cbor_array(const NumberType len)
{
BasicJsonType result = value_t::array;
std::generate_n(std::back_inserter(*result.m_value.array), len, [this]()
{
return parse_cbor_internal();
});
return result;
}
template<typename NumberType>
BasicJsonType get_cbor_object(const NumberType len)
{
BasicJsonType result = value_t::object;
std::generate_n(std::inserter(*result.m_value.object,
result.m_value.object->end()),
len, [this]()
{
get();
auto key = get_cbor_string();
auto val = parse_cbor_internal();
return std::make_pair(std::move(key), std::move(val));
});
return result;
}
/*!
@brief reads a MessagePack string
This function first reads starting bytes to determine the expected
string length and then copies this number of bytes into a string.
@return string
@throw parse_error.110 if input ended
@throw parse_error.113 if an unexpected byte is read
*/
std::string get_msgpack_string()
{
check_eof();
switch (current)
{
// fixstr
case 0xa0:
case 0xa1:
case 0xa2:
case 0xa3:
case 0xa4:
case 0xa5:
case 0xa6:
case 0xa7:
case 0xa8:
case 0xa9:
case 0xaa:
case 0xab:
case 0xac:
case 0xad:
case 0xae:
case 0xaf:
case 0xb0:
case 0xb1:
case 0xb2:
case 0xb3:
case 0xb4:
case 0xb5:
case 0xb6:
case 0xb7:
case 0xb8:
case 0xb9:
case 0xba:
case 0xbb:
case 0xbc:
case 0xbd:
case 0xbe:
case 0xbf:
{
return get_string(current & 0x1f);
}
case 0xd9: // str 8
{
return get_string(get_number<uint8_t>());
}
case 0xda: // str 16
{
return get_string(get_number<uint16_t>());
}
case 0xdb: // str 32
{
return get_string(get_number<uint32_t>());
}
default:
{
std::stringstream ss;
ss << std::setw(2) << std::setfill('0') << std::hex << current;
JSON_THROW(parse_error::create(113, chars_read,
"expected a MessagePack string; last byte: 0x" + ss.str()));
}
}
}
template<typename NumberType>
BasicJsonType get_msgpack_array(const NumberType len)
{
BasicJsonType result = value_t::array;
std::generate_n(std::back_inserter(*result.m_value.array), len, [this]()
{
return parse_msgpack_internal();
});
return result;
}
template<typename NumberType>
BasicJsonType get_msgpack_object(const NumberType len)
{
BasicJsonType result = value_t::object;
std::generate_n(std::inserter(*result.m_value.object,
result.m_value.object->end()),
len, [this]()
{
get();
auto key = get_msgpack_string();
auto val = parse_msgpack_internal();
return std::make_pair(std::move(key), std::move(val));
});
return result;
}
/*!
@brief check if input ended
@throw parse_error.110 if input ended
*/
void check_eof(const bool expect_eof = false) const
{
if (expect_eof)
{
if (JSON_UNLIKELY(current != std::char_traits<char>::eof()))
{
JSON_THROW(parse_error::create(110, chars_read, "expected end of input"));
}
}
else
{
if (JSON_UNLIKELY(current == std::char_traits<char>::eof()))
{
JSON_THROW(parse_error::create(110, chars_read, "unexpected end of input"));
}
}
}
private:
/// input adapter
input_adapter_t ia = nullptr;
/// the current character
int current = std::char_traits<char>::eof();
/// the number of characters read
std::size_t chars_read = 0;
/// whether we can assume little endianess
const bool is_little_endian = little_endianess();
};
/*!
@brief serialization to CBOR and MessagePack values
*/
template<typename BasicJsonType, typename CharType>
class binary_writer
{
public:
/*!
@brief create a binary writer
@param[in] adapter output adapter to write to
*/
explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter)
{
assert(oa);
}
/*!
@brief[in] j JSON value to serialize
*/
void write_cbor(const BasicJsonType& j)
{
switch (j.type())
{
case value_t::null:
{
oa->write_character(static_cast<CharType>(0xf6));
break;
}
case value_t::boolean:
{
oa->write_character(j.m_value.boolean
? static_cast<CharType>(0xf5)
: static_cast<CharType>(0xf4));
break;
}
case value_t::number_integer:
{
if (j.m_value.number_integer >= 0)
{
// CBOR does not differentiate between positive signed
// integers and unsigned integers. Therefore, we used the
// code from the value_t::number_unsigned case here.
if (j.m_value.number_integer <= 0x17)
{
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<uint8_t>::max)())
{
oa->write_character(static_cast<CharType>(0x18));
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<uint16_t>::max)())
{
oa->write_character(static_cast<CharType>(0x19));
write_number(static_cast<uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer <= (std::numeric_limits<uint32_t>::max)())
{
oa->write_character(static_cast<CharType>(0x1a));
write_number(static_cast<uint32_t>(j.m_value.number_integer));
}
else
{
oa->write_character(static_cast<CharType>(0x1b));
write_number(static_cast<uint64_t>(j.m_value.number_integer));
}
}
else
{
// The conversions below encode the sign in the first
// byte, and the value is converted to a positive number.
const auto positive_number = -1 - j.m_value.number_integer;
if (j.m_value.number_integer >= -24)
{
write_number(static_cast<uint8_t>(0x20 + positive_number));
}
else if (positive_number <= (std::numeric_limits<uint8_t>::max)())
{
oa->write_character(static_cast<CharType>(0x38));
write_number(static_cast<uint8_t>(positive_number));
}
else if (positive_number <= (std::numeric_limits<uint16_t>::max)())
{
oa->write_character(static_cast<CharType>(0x39));
write_number(static_cast<uint16_t>(positive_number));
}
else if (positive_number <= (std::numeric_limits<uint32_t>::max)())
{
oa->write_character(static_cast<CharType>(0x3a));
write_number(static_cast<uint32_t>(positive_number));
}
else
{
oa->write_character(static_cast<CharType>(0x3b));
write_number(static_cast<uint64_t>(positive_number));
}
}
break;
}
case value_t::number_unsigned:
{
if (j.m_value.number_unsigned <= 0x17)
{
write_number(static_cast<uint8_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
{
oa->write_character(static_cast<CharType>(0x18));
write_number(static_cast<uint8_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
{
oa->write_character(static_cast<CharType>(0x19));
write_number(static_cast<uint16_t>(j.m_value.number_unsigned));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
{
oa->write_character(static_cast<CharType>(0x1a));
write_number(static_cast<uint32_t>(j.m_value.number_unsigned));
}
else
{
oa->write_character(static_cast<CharType>(0x1b));
write_number(static_cast<uint64_t>(j.m_value.number_unsigned));
}
break;
}
case value_t::number_float: // Double-Precision Float
{
oa->write_character(static_cast<CharType>(0xfb));
write_number(j.m_value.number_float);
break;
}
case value_t::string:
{
// step 1: write control byte and the string length
const auto N = j.m_value.string->size();
if (N <= 0x17)
{
write_number(static_cast<uint8_t>(0x60 + N));
}
else if (N <= 0xff)
{
oa->write_character(static_cast<CharType>(0x78));
write_number(static_cast<uint8_t>(N));
}
else if (N <= 0xffff)
{
oa->write_character(static_cast<CharType>(0x79));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 0xffffffff)
{
oa->write_character(static_cast<CharType>(0x7a));
write_number(static_cast<uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= 0xffffffffffffffff)
{
oa->write_character(static_cast<CharType>(0x7b));
write_number(static_cast<uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write the string
oa->write_characters(
reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
j.m_value.string->size());
break;
}
case value_t::array:
{
// step 1: write control byte and the array size
const auto N = j.m_value.array->size();
if (N <= 0x17)
{
write_number(static_cast<uint8_t>(0x80 + N));
}
else if (N <= 0xff)
{
oa->write_character(static_cast<CharType>(0x98));
write_number(static_cast<uint8_t>(N));
}
else if (N <= 0xffff)
{
oa->write_character(static_cast<CharType>(0x99));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 0xffffffff)
{
oa->write_character(static_cast<CharType>(0x9a));
write_number(static_cast<uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= 0xffffffffffffffff)
{
oa->write_character(static_cast<CharType>(0x9b));
write_number(static_cast<uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write each element
for (const auto& el : *j.m_value.array)
{
write_cbor(el);
}
break;
}
case value_t::object:
{
// step 1: write control byte and the object size
const auto N = j.m_value.object->size();
if (N <= 0x17)
{
write_number(static_cast<uint8_t>(0xa0 + N));
}
else if (N <= 0xff)
{
oa->write_character(static_cast<CharType>(0xb8));
write_number(static_cast<uint8_t>(N));
}
else if (N <= 0xffff)
{
oa->write_character(static_cast<CharType>(0xb9));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 0xffffffff)
{
oa->write_character(static_cast<CharType>(0xba));
write_number(static_cast<uint32_t>(N));
}
// LCOV_EXCL_START
else if (N <= 0xffffffffffffffff)
{
oa->write_character(static_cast<CharType>(0xbb));
write_number(static_cast<uint64_t>(N));
}
// LCOV_EXCL_STOP
// step 2: write each element
for (const auto& el : *j.m_value.object)
{
write_cbor(el.first);
write_cbor(el.second);
}
break;
}
default:
break;
}
}
/*!
@brief[in] j JSON value to serialize
*/
void write_msgpack(const BasicJsonType& j)
{
switch (j.type())
{
case value_t::null: // nil
{
oa->write_character(static_cast<CharType>(0xc0));
break;
}
case value_t::boolean: // true and false
{
oa->write_character(j.m_value.boolean
? static_cast<CharType>(0xc3)
: static_cast<CharType>(0xc2));
break;
}
case value_t::number_integer:
{
if (j.m_value.number_integer >= 0)
{
// MessagePack does not differentiate between positive
// signed integers and unsigned integers. Therefore, we used
// the code from the value_t::number_unsigned case here.
if (j.m_value.number_unsigned < 128)
{
// positive fixnum
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
{
// uint 8
oa->write_character(static_cast<CharType>(0xcc));
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
{
// uint 16
oa->write_character(static_cast<CharType>(0xcd));
write_number(static_cast<uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
{
// uint 32
oa->write_character(static_cast<CharType>(0xce));
write_number(static_cast<uint32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint64_t>::max)())
{
// uint 64
oa->write_character(static_cast<CharType>(0xcf));
write_number(static_cast<uint64_t>(j.m_value.number_integer));
}
}
else
{
if (j.m_value.number_integer >= -32)
{
// negative fixnum
write_number(static_cast<int8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<int8_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<int8_t>::max)())
{
// int 8
oa->write_character(static_cast<CharType>(0xd0));
write_number(static_cast<int8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<int16_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<int16_t>::max)())
{
// int 16
oa->write_character(static_cast<CharType>(0xd1));
write_number(static_cast<int16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<int32_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<int32_t>::max)())
{
// int 32
oa->write_character(static_cast<CharType>(0xd2));
write_number(static_cast<int32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_integer >= (std::numeric_limits<int64_t>::min)() and
j.m_value.number_integer <= (std::numeric_limits<int64_t>::max)())
{
// int 64
oa->write_character(static_cast<CharType>(0xd3));
write_number(static_cast<int64_t>(j.m_value.number_integer));
}
}
break;
}
case value_t::number_unsigned:
{
if (j.m_value.number_unsigned < 128)
{
// positive fixnum
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
{
// uint 8
oa->write_character(static_cast<CharType>(0xcc));
write_number(static_cast<uint8_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
{
// uint 16
oa->write_character(static_cast<CharType>(0xcd));
write_number(static_cast<uint16_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
{
// uint 32
oa->write_character(static_cast<CharType>(0xce));
write_number(static_cast<uint32_t>(j.m_value.number_integer));
}
else if (j.m_value.number_unsigned <= (std::numeric_limits<uint64_t>::max)())
{
// uint 64
oa->write_character(static_cast<CharType>(0xcf));
write_number(static_cast<uint64_t>(j.m_value.number_integer));
}
break;
}
case value_t::number_float: // float 64
{
oa->write_character(static_cast<CharType>(0xcb));
write_number(j.m_value.number_float);
break;
}
case value_t::string:
{
// step 1: write control byte and the string length
const auto N = j.m_value.string->size();
if (N <= 31)
{
// fixstr
write_number(static_cast<uint8_t>(0xa0 | N));
}
else if (N <= 255)
{
// str 8
oa->write_character(static_cast<CharType>(0xd9));
write_number(static_cast<uint8_t>(N));
}
else if (N <= 65535)
{
// str 16
oa->write_character(static_cast<CharType>(0xda));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 4294967295)
{
// str 32
oa->write_character(static_cast<CharType>(0xdb));
write_number(static_cast<uint32_t>(N));
}
// step 2: write the string
oa->write_characters(
reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
j.m_value.string->size());
break;
}
case value_t::array:
{
// step 1: write control byte and the array size
const auto N = j.m_value.array->size();
if (N <= 15)
{
// fixarray
write_number(static_cast<uint8_t>(0x90 | N));
}
else if (N <= 0xffff)
{
// array 16
oa->write_character(static_cast<CharType>(0xdc));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 0xffffffff)
{
// array 32
oa->write_character(static_cast<CharType>(0xdd));
write_number(static_cast<uint32_t>(N));
}
// step 2: write each element
for (const auto& el : *j.m_value.array)
{
write_msgpack(el);
}
break;
}
case value_t::object:
{
// step 1: write control byte and the object size
const auto N = j.m_value.object->size();
if (N <= 15)
{
// fixmap
write_number(static_cast<uint8_t>(0x80 | (N & 0xf)));
}
else if (N <= 65535)
{
// map 16
oa->write_character(static_cast<CharType>(0xde));
write_number(static_cast<uint16_t>(N));
}
else if (N <= 4294967295)
{
// map 32
oa->write_character(static_cast<CharType>(0xdf));
write_number(static_cast<uint32_t>(N));
}
// step 2: write each element
for (const auto& el : *j.m_value.object)
{
write_msgpack(el.first);
write_msgpack(el.second);
}
break;
}
default:
break;
}
}
private:
/*
@brief write a number to output input
@param[in] n number of type @a NumberType
@tparam NumberType the type of the number
@note This function needs to respect the system's endianess, because bytes
in CBOR and MessagePack are stored in network order (big endian) and
therefore need reordering on little endian systems.
*/
template<typename NumberType> void write_number(NumberType n)
{
// step 1: write number to array of length NumberType
std::array<CharType, sizeof(NumberType)> vec;
std::memcpy(vec.data(), &n, sizeof(NumberType));
// step 2: write array to output (with possible reordering)
if (is_little_endian)
{
// reverse byte order prior to conversion if necessary
std::reverse(vec.begin(), vec.end());
}
oa->write_characters(vec.data(), sizeof(NumberType));
}
private:
/// whether we can assume little endianess
const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess();
/// the output
output_adapter_t<CharType> oa = nullptr;
};
///////////////////
// serialization //
///////////////////
template<typename BasicJsonType>
class serializer
{
using string_t = typename BasicJsonType::string_t;
using number_float_t = typename BasicJsonType::number_float_t;
using number_integer_t = typename BasicJsonType::number_integer_t;
using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
public:
/*!
@param[in] s output stream to serialize to
@param[in] ichar indentation character to use
*/
serializer(output_adapter_t<char> s, const char ichar)
: o(std::move(s)), loc(std::localeconv()),
thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep)),
decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point)),
indent_char(ichar), indent_string(512, indent_char) {}
// delete because of pointer members
serializer(const serializer&) = delete;
serializer& operator=(const serializer&) = delete;
/*!
@brief internal implementation of the serialization function
This function is called by the public member function dump and organizes
the serialization internally. The indentation level is propagated as
additional parameter. In case of arrays and objects, the function is
called recursively.
- strings and object keys are escaped using `escape_string()`
- integer numbers are converted implicitly via `operator<<`
- floating-point numbers are converted to a string using `"%g"` format
@param[in] val value to serialize
@param[in] pretty_print whether the output shall be pretty-printed
@param[in] indent_step the indent level
@param[in] current_indent the current indent level (only used internally)
*/
void dump(const BasicJsonType& val, const bool pretty_print,
const bool ensure_ascii,
const unsigned int indent_step,
const unsigned int current_indent = 0)
{
switch (val.m_type)
{
case value_t::object:
{
if (val.m_value.object->empty())
{
o->write_characters("{}", 2);
return;
}
if (pretty_print)
{
o->write_characters("{\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_characters(indent_string.c_str(), new_indent);
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\": ", 3);
dump(i->second, true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character('}');
}
else
{
o->write_character('{');
// first n-1 elements
auto i = val.m_value.object->cbegin();
for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
{
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(i != val.m_value.object->cend());
assert(std::next(i) == val.m_value.object->cend());
o->write_character('\"');
dump_escaped(i->first, ensure_ascii);
o->write_characters("\":", 2);
dump(i->second, false, ensure_ascii, indent_step, current_indent);
o->write_character('}');
}
return;
}
case value_t::array:
{
if (val.m_value.array->empty())
{
o->write_characters("[]", 2);
return;
}
if (pretty_print)
{
o->write_characters("[\n", 2);
// variable to hold indentation for recursive calls
const auto new_indent = current_indent + indent_step;
if (JSON_UNLIKELY(indent_string.size() < new_indent))
{
indent_string.resize(indent_string.size() * 2, ' ');
}
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
o->write_characters(indent_string.c_str(), new_indent);
dump(*i, true, ensure_ascii, indent_step, new_indent);
o->write_characters(",\n", 2);
}
// last element
assert(not val.m_value.array->empty());
o->write_characters(indent_string.c_str(), new_indent);
dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
o->write_character('\n');
o->write_characters(indent_string.c_str(), current_indent);
o->write_character(']');
}
else
{
o->write_character('[');
// first n-1 elements
for (auto i = val.m_value.array->cbegin();
i != val.m_value.array->cend() - 1; ++i)
{
dump(*i, false, ensure_ascii, indent_step, current_indent);
o->write_character(',');
}
// last element
assert(not val.m_value.array->empty());
dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
o->write_character(']');
}
return;
}
case value_t::string:
{
o->write_character('\"');
dump_escaped(*val.m_value.string, ensure_ascii);
o->write_character('\"');
return;
}
case value_t::boolean:
{
if (val.m_value.boolean)
{
o->write_characters("true", 4);
}
else
{
o->write_characters("false", 5);
}
return;
}
case value_t::number_integer:
{
dump_integer(val.m_value.number_integer);
return;
}
case value_t::number_unsigned:
{
dump_integer(val.m_value.number_unsigned);
return;
}
case value_t::number_float:
{
dump_float(val.m_value.number_float);
return;
}
case value_t::discarded:
{
o->write_characters("<discarded>", 11);
return;
}
case value_t::null:
{
o->write_characters("null", 4);
return;
}
}
}
private:
/*!
@brief returns the number of expected bytes following in UTF-8 string
@param[in] u the first byte of a UTF-8 string
@return the number of expected bytes following
*/
static constexpr std::size_t bytes_following(const uint8_t u)
{
return ((u <= 127) ? 0
: ((192 <= u and u <= 223) ? 1
: ((224 <= u and u <= 239) ? 2
: ((240 <= u and u <= 247) ? 3 : std::string::npos))));
}
/*!
@brief calculates the extra space to escape a JSON string
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@return the number of characters required to escape string @a s
@complexity Linear in the length of string @a s.
*/
static std::size_t extra_space(const string_t& s,
const bool ensure_ascii) noexcept
{
std::size_t res = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
// control characters that can be escaped with a backslash
case '"':
case '\\':
case '\b':
case '\f':
case '\n':
case '\r':
case '\t':
{
// from c (1 byte) to \x (2 bytes)
res += 1;
break;
}
// control characters that need \uxxxx escaping
case 0x00:
case 0x01:
case 0x02:
case 0x03:
case 0x04:
case 0x05:
case 0x06:
case 0x07:
case 0x0b:
case 0x0e:
case 0x0f:
case 0x10:
case 0x11:
case 0x12:
case 0x13:
case 0x14:
case 0x15:
case 0x16:
case 0x17:
case 0x18:
case 0x19:
case 0x1a:
case 0x1b:
case 0x1c:
case 0x1d:
case 0x1e:
case 0x1f:
{
// from c (1 byte) to \uxxxx (6 bytes)
res += 5;
break;
}
default:
{
if (ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
if (bytes == std::string::npos)
{
// invalid characters are treated as is, so no
// additional space will be used
break;
}
if (bytes == 3)
{
// codepoints that need 4 bytes (i.e., 3 additional
// bytes) in UTF-8 need a surrogate pair when \u
// escaping is used: from 4 bytes to \uxxxx\uxxxx
// (12 bytes)
res += (12 - bytes - 1);
}
else
{
// from x bytes to \uxxxx (6 bytes)
res += (6 - bytes - 1);
}
// skip the additional bytes
i += bytes;
}
break;
}
}
}
return res;
}
static void escape_codepoint(int codepoint, string_t& result, std::size_t& pos)
{
// expecting a proper codepoint
assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
// the last written character was the backslash before the 'u'
assert(result[pos] == '\\');
// write the 'u'
result[++pos] = 'u';
// convert a number 0..15 to its hex representation (0..f)
static const std::array<char, 16> hexify =
{
{
'0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
}
};
if (codepoint < 0x10000)
{
// codepoints U+0000..U+FFFF can be represented as \uxxxx.
result[++pos] = hexify[(codepoint >> 12) & 0x0F];
result[++pos] = hexify[(codepoint >> 8) & 0x0F];
result[++pos] = hexify[(codepoint >> 4) & 0x0F];
result[++pos] = hexify[codepoint & 0x0F];
}
else
{
// codepoints U+10000..U+10FFFF need a surrogate pair to be
// represented as \uxxxx\uxxxx.
// http://www.unicode.org/faq/utf_bom.html#utf16-4
codepoint -= 0x10000;
const int high_surrogate = 0xD800 | ((codepoint >> 10) & 0x3FF);
const int low_surrogate = 0xDC00 | (codepoint & 0x3FF);
result[++pos] = hexify[(high_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(high_surrogate >> 4) & 0x0F];
result[++pos] = hexify[high_surrogate & 0x0F];
++pos; // backslash is already in output
result[++pos] = 'u';
result[++pos] = hexify[(low_surrogate >> 12) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 8) & 0x0F];
result[++pos] = hexify[(low_surrogate >> 4) & 0x0F];
result[++pos] = hexify[low_surrogate & 0x0F];
}
++pos;
}
/*!
@brief dump escaped string
Escape a string by replacing certain special characters by a sequence of an
escape character (backslash) and another character and other control
characters by a sequence of "\u" followed by a four-digit hex
representation. The escaped string is written to output stream @a o.
@param[in] s the string to escape
@param[in] ensure_ascii whether to escape non-ASCII characters with
\uXXXX sequences
@complexity Linear in the length of string @a s.
*/
void dump_escaped(const string_t& s, const bool ensure_ascii) const
{
const auto space = extra_space(s, ensure_ascii);
if (space == 0)
{
o->write_characters(s.c_str(), s.size());
return;
}
// create a result string of necessary size
string_t result(s.size() + space, '\\');
std::size_t pos = 0;
for (std::size_t i = 0; i < s.size(); ++i)
{
switch (s[i])
{
case '"': // quotation mark (0x22)
{
result[pos + 1] = '"';
pos += 2;
break;
}
case '\\': // reverse solidus (0x5c)
{
// nothing to change
pos += 2;
break;
}
case '\b': // backspace (0x08)
{
result[pos + 1] = 'b';
pos += 2;
break;
}
case '\f': // formfeed (0x0c)
{
result[pos + 1] = 'f';
pos += 2;
break;
}
case '\n': // newline (0x0a)
{
result[pos + 1] = 'n';
pos += 2;
break;
}
case '\r': // carriage return (0x0d)
{
result[pos + 1] = 'r';
pos += 2;
break;
}
case '\t': // horizontal tab (0x09)
{
result[pos + 1] = 't';
pos += 2;
break;
}
default:
{
// escape control characters (0x00..0x1F) or, if
// ensure_ascii parameter is used, non-ASCII characters
if ((0x00 <= s[i] and s[i] <= 0x1F) or
(ensure_ascii and (s[i] & 0x80 or s[i] == 0x7F)))
{
const auto bytes = bytes_following(static_cast<uint8_t>(s[i]));
if (bytes == std::string::npos)
{
// copy invalid character as is
result[pos++] = s[i];
break;
}
// check that the additional bytes are present
assert(i + bytes < s.size());
// to use \uxxxx escaping, we first need to caluclate
// the codepoint from the UTF-8 bytes
int codepoint = 0;
assert(0 <= bytes and bytes <= 3);
switch (bytes)
{
case 0:
{
codepoint = s[i] & 0xFF;
break;
}
case 1:
{
codepoint = ((s[i] & 0x3F) << 6)
+ (s[i + 1] & 0x7F);
break;
}
case 2:
{
codepoint = ((s[i] & 0x1F) << 12)
+ ((s[i + 1] & 0x7F) << 6)
+ (s[i + 2] & 0x7F);
break;
}
case 3:
{
codepoint = ((s[i] & 0xF) << 18)
+ ((s[i + 1] & 0x7F) << 12)
+ ((s[i + 2] & 0x7F) << 6)
+ (s[i + 3] & 0x7F);
break;
}
default:
break; // LCOV_EXCL_LINE
}
escape_codepoint(codepoint, result, pos);
i += bytes;
}
else
{
// all other characters are added as-is
result[pos++] = s[i];
}
break;
}
}
}
assert(pos == result.size());
o->write_characters(result.c_str(), result.size());
}
/*!
@brief dump an integer
Dump a given integer to output stream @a o. Works internally with
@a number_buffer.
@param[in] x integer number (signed or unsigned) to dump
@tparam NumberType either @a number_integer_t or @a number_unsigned_t
*/
template <
typename NumberType,
detail::enable_if_t<std::is_same<NumberType, number_unsigned_t>::value or
std::is_same<NumberType, number_integer_t>::value,
int> = 0 >
void dump_integer(NumberType x)
{
// special case for "0"
if (x == 0)
{
o->write_character('0');
return;
}
const bool is_negative = (x <= 0) and (x != 0); // see issue #755
std::size_t i = 0;
while (x != 0)
{
// spare 1 byte for '\0'
assert(i < number_buffer.size() - 1);
const auto digit = std::labs(static_cast<long>(x % 10));
number_buffer[i++] = static_cast<char>('0' + digit);
x /= 10;
}
if (is_negative)
{
// make sure there is capacity for the '-'
assert(i < number_buffer.size() - 2);
number_buffer[i++] = '-';
}
std::reverse(number_buffer.begin(), number_buffer.begin() + i);
o->write_characters(number_buffer.data(), i);
}
/*!
@brief dump a floating-point number
Dump a given floating-point number to output stream @a o. Works internally
with @a number_buffer.
@param[in] x floating-point number to dump
*/
void dump_float(number_float_t x)
{
// NaN / inf
if (not std::isfinite(x) or std::isnan(x))
{
o->write_characters("null", 4);
return;
}
// get number of digits for a text -> float -> text round-trip
static constexpr auto d = std::numeric_limits<number_float_t>::digits10;
// the actual conversion
std::ptrdiff_t len = snprintf(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
// negative value indicates an error
assert(len > 0);
// check if buffer was large enough
assert(static_cast<std::size_t>(len) < number_buffer.size());
// erase thousands separator
if (thousands_sep != '\0')
{
const auto end = std::remove(number_buffer.begin(),
number_buffer.begin() + len, thousands_sep);
std::fill(end, number_buffer.end(), '\0');
assert((end - number_buffer.begin()) <= len);
len = (end - number_buffer.begin());
}
// convert decimal point to '.'
if (decimal_point != '\0' and decimal_point != '.')
{
const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
if (dec_pos != number_buffer.end())
{
*dec_pos = '.';
}
}
o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
// determine if need to append ".0"
const bool value_is_int_like =
std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
[](char c)
{
return (c == '.' or c == 'e');
});
if (value_is_int_like)
{
o->write_characters(".0", 2);
}
}
private:
/// the output of the serializer
output_adapter_t<char> o = nullptr;
/// a (hopefully) large enough character buffer
std::array<char, 64> number_buffer{{}};
/// the locale
const std::lconv* loc = nullptr;
/// the locale's thousand separator character
const char thousands_sep = '\0';
/// the locale's decimal point character
const char decimal_point = '\0';
/// the indentation character
const char indent_char;
/// the indentation string
string_t indent_string;
};
template<typename BasicJsonType>
class json_ref
{
public:
using value_type = BasicJsonType;
json_ref(value_type&& value)
: owned_value(std::move(value)),
value_ref(&owned_value),
is_rvalue(true)
{}
json_ref(const value_type& value)
: value_ref(const_cast<value_type*>(&value)),
is_rvalue(false)
{}
json_ref(std::initializer_list<json_ref> init)
: owned_value(init),
value_ref(&owned_value),
is_rvalue(true)
{}
template <class... Args>
json_ref(Args&& ... args)
: owned_value(std::forward<Args>(args)...),
value_ref(&owned_value),
is_rvalue(true)
{}
// class should be movable only
json_ref(json_ref&&) = default;
json_ref(const json_ref&) = delete;
json_ref& operator=(const json_ref&) = delete;
value_type moved_or_copied() const
{
if (is_rvalue)
{
return std::move(*value_ref);
}
return *value_ref;
}
value_type const& operator*() const
{
return *static_cast<value_type const*>(value_ref);
}
value_type const* operator->() const
{
return static_cast<value_type const*>(value_ref);
}
private:
mutable value_type owned_value = nullptr;
value_type* value_ref = nullptr;
const bool is_rvalue;
};
} // namespace detail
/// namespace to hold default `to_json` / `from_json` functions
namespace
{
constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
}
/*!
@brief default JSONSerializer template argument
This serializer ignores the template arguments and uses ADL
([argument-dependent lookup](http://en.cppreference.com/w/cpp/language/adl))
for serialization.
*/
template<typename, typename>
struct adl_serializer
{
/*!
@brief convert a JSON value to any value type
This function is usually called by the `get()` function of the
@ref basic_json class (either explicit or via conversion operators).
@param[in] j JSON value to read from
@param[in,out] val value to write to
*/
template<typename BasicJsonType, typename ValueType>
static void from_json(BasicJsonType&& j, ValueType& val) noexcept(
noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
{
::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
}
/*!
@brief convert any value type to a JSON value
This function is usually called by the constructors of the @ref basic_json
class.
@param[in,out] j JSON value to write to
@param[in] val value to read from
*/
template<typename BasicJsonType, typename ValueType>
static void to_json(BasicJsonType& j, ValueType&& val) noexcept(
noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
{
::nlohmann::to_json(j, std::forward<ValueType>(val));
}
};
/*!
@brief JSON Pointer
A JSON pointer defines a string syntax for identifying a specific value
within a JSON document. It can be used with functions `at` and
`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
class json_pointer
{
/// allow basic_json to access private members
NLOHMANN_BASIC_JSON_TPL_DECLARATION
friend class basic_json;
public:
/*!
@brief create JSON pointer
Create a JSON pointer according to the syntax described in
[Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
@param[in] s string representing the JSON pointer; if omitted, the empty
string is assumed which references the whole JSON value
@throw parse_error.107 if the given JSON pointer @a s is nonempty and
does not begin with a slash (`/`); see example below
@throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s
is not followed by `0` (representing `~`) or `1` (representing `/`);
see example below
@liveexample{The example shows the construction several valid JSON
pointers as well as the exceptional behavior.,json_pointer}
@since version 2.0.0
*/
explicit json_pointer(const std::string& s = "") : reference_tokens(split(s)) {}
/*!
@brief return a string representation of the JSON pointer
@invariant For each JSON pointer `ptr`, it holds:
@code {.cpp}
ptr == json_pointer(ptr.to_string());
@endcode
@return a string representation of the JSON pointer
@liveexample{The example shows the result of `to_string`.,
json_pointer__to_string}
@since version 2.0.0
*/
std::string to_string() const noexcept
{
return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
std::string{},
[](const std::string & a, const std::string & b)
{
return a + "/" + escape(b);
});
}
/// @copydoc to_string()
operator std::string() const
{
return to_string();
}
private:
/*!
@brief remove and return last reference pointer
@throw out_of_range.405 if JSON pointer has no parent
*/
std::string pop_back()
{
if (JSON_UNLIKELY(is_root()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
}
auto last = reference_tokens.back();
reference_tokens.pop_back();
return last;
}
/// return whether pointer points to the root document
bool is_root() const
{
return reference_tokens.empty();
}
json_pointer top() const
{
if (JSON_UNLIKELY(is_root()))
{
JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
}
json_pointer result = *this;
result.reference_tokens = {reference_tokens[0]};
return result;
}
/*!
@brief create and return a reference to the pointed to value
@complexity Linear in the number of reference tokens.
@throw parse_error.109 if array index is not a number
@throw type_error.313 if value cannot be unflattened
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL& get_and_create(NLOHMANN_BASIC_JSON_TPL& j) const;
/*!
@brief return a reference to the pointed to value
@note This version does not throw if a value is not present, but tries to
create nested values instead. For instance, calling this function
with pointer `"/this/that"` on a null value is equivalent to calling
`operator[]("this").operator[]("that")` on that value, effectively
changing the null value to an object.
@param[in] ptr a JSON value
@return reference to the JSON value pointed to by the JSON pointer
@complexity Linear in the length of the JSON pointer.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL& get_unchecked(NLOHMANN_BASIC_JSON_TPL* ptr) const;
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL& get_checked(NLOHMANN_BASIC_JSON_TPL* ptr) const;
/*!
@brief return a const reference to the pointed to value
@param[in] ptr a JSON value
@return const reference to the JSON value pointed to by the JSON
pointer
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
const NLOHMANN_BASIC_JSON_TPL& get_unchecked(const NLOHMANN_BASIC_JSON_TPL* ptr) const;
/*!
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
const NLOHMANN_BASIC_JSON_TPL& get_checked(const NLOHMANN_BASIC_JSON_TPL* ptr) const;
/*!
@brief split the string input to reference tokens
@note This function is only called by the json_pointer constructor.
All exceptions below are documented there.
@throw parse_error.107 if the pointer is not empty or begins with '/'
@throw parse_error.108 if character '~' is not followed by '0' or '1'
*/
static std::vector<std::string> split(const std::string& reference_string)
{
std::vector<std::string> result;
// special case: empty reference string -> no reference tokens
if (reference_string.empty())
{
return result;
}
// check if nonempty reference string begins with slash
if (JSON_UNLIKELY(reference_string[0] != '/'))
{
JSON_THROW(detail::parse_error::create(107, 1,
"JSON pointer must be empty or begin with '/' - was: '" +
reference_string + "'"));
}
// extract the reference tokens:
// - slash: position of the last read slash (or end of string)
// - start: position after the previous slash
for (
// search for the first slash after the first character
std::size_t slash = reference_string.find_first_of('/', 1),
// set the beginning of the first reference token
start = 1;
// we can stop if start == string::npos+1 = 0
start != 0;
// set the beginning of the next reference token
// (will eventually be 0 if slash == std::string::npos)
start = slash + 1,
// find next slash
slash = reference_string.find_first_of('/', start))
{
// use the text between the beginning of the reference token
// (start) and the last slash (slash).
auto reference_token = reference_string.substr(start, slash - start);
// check reference tokens are properly escaped
for (std::size_t pos = reference_token.find_first_of('~');
pos != std::string::npos;
pos = reference_token.find_first_of('~', pos + 1))
{
assert(reference_token[pos] == '~');
// ~ must be followed by 0 or 1
if (JSON_UNLIKELY(pos == reference_token.size() - 1 or
(reference_token[pos + 1] != '0' and
reference_token[pos + 1] != '1')))
{
JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'"));
}
}
// finally, store the reference token
unescape(reference_token);
result.push_back(reference_token);
}
return result;
}
/*!
@brief replace all occurrences of a substring by another string
@param[in,out] s the string to manipulate; changed so that all
occurrences of @a f are replaced with @a t
@param[in] f the substring to replace with @a t
@param[in] t the string to replace @a f
@pre The search string @a f must not be empty. **This precondition is
enforced with an assertion.**
@since version 2.0.0
*/
static void replace_substring(std::string& s, const std::string& f,
const std::string& t)
{
assert(not f.empty());
for (auto pos = s.find(f); // find first occurrence of f
pos != std::string::npos; // make sure f was found
s.replace(pos, f.size(), t), // replace with t, and
pos = s.find(f, pos + t.size())) // find next occurrence of f
{}
}
/// escape "~"" to "~0" and "/" to "~1"
static std::string escape(std::string s)
{
replace_substring(s, "~", "~0");
replace_substring(s, "/", "~1");
return s;
}
/// unescape "~1" to tilde and "~0" to slash (order is important!)
static void unescape(std::string& s)
{
replace_substring(s, "~1", "/");
replace_substring(s, "~0", "~");
}
/*!
@param[in] reference_string the reference string to the current value
@param[in] value the value to consider
@param[in,out] result the result object to insert values to
@note Empty objects or arrays are flattened to `null`.
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
static void flatten(const std::string& reference_string,
const NLOHMANN_BASIC_JSON_TPL& value,
NLOHMANN_BASIC_JSON_TPL& result);
/*!
@param[in] value flattened JSON
@return unflattened JSON
@throw parse_error.109 if array index is not a number
@throw type_error.314 if value is not an object
@throw type_error.315 if object values are not primitive
@throw type_error.313 if value cannot be unflattened
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
static NLOHMANN_BASIC_JSON_TPL
unflatten(const NLOHMANN_BASIC_JSON_TPL& value);
friend bool operator==(json_pointer const& lhs,
json_pointer const& rhs) noexcept;
friend bool operator!=(json_pointer const& lhs,
json_pointer const& rhs) noexcept;
/// the reference tokens
std::vector<std::string> reference_tokens;
};
/*!
@brief a class to store JSON values
@tparam ObjectType type for JSON objects (`std::map` by default; will be used
in @ref object_t)
@tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
in @ref array_t)
@tparam StringType type for JSON strings and object keys (`std::string` by
default; will be used in @ref string_t)
@tparam BooleanType type for JSON booleans (`bool` by default; will be used
in @ref boolean_t)
@tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
default; will be used in @ref number_integer_t)
@tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
`uint64_t` by default; will be used in @ref number_unsigned_t)
@tparam NumberFloatType type for JSON floating-point numbers (`double` by
default; will be used in @ref number_float_t)
@tparam AllocatorType type of the allocator to use (`std::allocator` by
default)
@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
and `from_json()` (@ref adl_serializer by default)
@requirement The class satisfies the following concept requirements:
- Basic
- [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible):
JSON values can be default constructed. The result will be a JSON null
value.
- [MoveConstructible](http://en.cppreference.com/w/cpp/concept/MoveConstructible):
A JSON value can be constructed from an rvalue argument.
- [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible):
A JSON value can be copy-constructed from an lvalue expression.
- [MoveAssignable](http://en.cppreference.com/w/cpp/concept/MoveAssignable):
A JSON value van be assigned from an rvalue argument.
- [CopyAssignable](http://en.cppreference.com/w/cpp/concept/CopyAssignable):
A JSON value can be copy-assigned from an lvalue expression.
- [Destructible](http://en.cppreference.com/w/cpp/concept/Destructible):
JSON values can be destructed.
- Layout
- [StandardLayoutType](http://en.cppreference.com/w/cpp/concept/StandardLayoutType):
JSON values have
[standard layout](http://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
All non-static data members are private and standard layout types, the
class has no virtual functions or (virtual) base classes.
- Library-wide
- [EqualityComparable](http://en.cppreference.com/w/cpp/concept/EqualityComparable):
JSON values can be compared with `==`, see @ref
operator==(const_reference,const_reference).
- [LessThanComparable](http://en.cppreference.com/w/cpp/concept/LessThanComparable):
JSON values can be compared with `<`, see @ref
operator<(const_reference,const_reference).
- [Swappable](http://en.cppreference.com/w/cpp/concept/Swappable):
Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
other compatible types, using unqualified function call @ref swap().
- [NullablePointer](http://en.cppreference.com/w/cpp/concept/NullablePointer):
JSON values can be compared against `std::nullptr_t` objects which are used
to model the `null` value.
- Container
- [Container](http://en.cppreference.com/w/cpp/concept/Container):
JSON values can be used like STL containers and provide iterator access.
- [ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer);
JSON values can be used like STL containers and provide reverse iterator
access.
@invariant The member variables @a m_value and @a m_type have the following
relationship:
- If `m_type == value_t::object`, then `m_value.object != nullptr`.
- If `m_type == value_t::array`, then `m_value.array != nullptr`.
- If `m_type == value_t::string`, then `m_value.string != nullptr`.
The invariants are checked by member function assert_invariant().
@internal
@note ObjectType trick from http://stackoverflow.com/a/9860911
@endinternal
@see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
Format](http://rfc7159.net/rfc7159)
@since version 1.0.0
@nosubgrouping
*/
NLOHMANN_BASIC_JSON_TPL_DECLARATION
class basic_json
{
private:
template<detail::value_t> friend struct detail::external_constructor;
friend ::nlohmann::json_pointer;
friend ::nlohmann::detail::parser<basic_json>;
friend ::nlohmann::detail::serializer<basic_json>;
template<typename BasicJsonType>
friend class ::nlohmann::detail::iter_impl;
template<typename BasicJsonType, typename CharType>
friend class ::nlohmann::detail::binary_writer;
template<typename BasicJsonType>
friend class ::nlohmann::detail::binary_reader;
/// workaround type for MSVC
using basic_json_t = NLOHMANN_BASIC_JSON_TPL;
// convenience aliases for types residing in namespace detail;
using lexer = ::nlohmann::detail::lexer<basic_json>;
using parser = ::nlohmann::detail::parser<basic_json>;
using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t;
template<typename BasicJsonType>
using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>;
template<typename BasicJsonType>
using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>;
template<typename Iterator>
using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>;
template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>;
template<typename CharType>
using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>;
using binary_reader = ::nlohmann::detail::binary_reader<basic_json>;
template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>;
using serializer = ::nlohmann::detail::serializer<basic_json>;
public:
using value_t = detail::value_t;
// forward declarations
using json_pointer = ::nlohmann::json_pointer;
template<typename T, typename SFINAE>
using json_serializer = JSONSerializer<T, SFINAE>;
using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
////////////////
// exceptions //
////////////////
/// @name exceptions
/// Classes to implement user-defined exceptions.
/// @{
/// @copydoc detail::exception
using exception = detail::exception;
/// @copydoc detail::parse_error
using parse_error = detail::parse_error;
/// @copydoc detail::invalid_iterator
using invalid_iterator = detail::invalid_iterator;
/// @copydoc detail::type_error
using type_error = detail::type_error;
/// @copydoc detail::out_of_range
using out_of_range = detail::out_of_range;
/// @copydoc detail::other_error
using other_error = detail::other_error;
/// @}
/////////////////////
// container types //
/////////////////////
/// @name container types
/// The canonic container types to use @ref basic_json like any other STL
/// container.
/// @{
/// the type of elements in a basic_json container
using value_type = basic_json;
/// the type of an element reference
using reference = value_type&;
/// the type of an element const reference
using const_reference = const value_type&;
/// a type to represent differences between iterators
using difference_type = std::ptrdiff_t;
/// a type to represent container sizes
using size_type = std::size_t;
/// the allocator type
using allocator_type = AllocatorType<basic_json>;
/// the type of an element pointer
using pointer = typename std::allocator_traits<allocator_type>::pointer;
/// the type of an element const pointer
using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
/// an iterator for a basic_json container
using iterator = iter_impl<basic_json>;
/// a const iterator for a basic_json container
using const_iterator = iter_impl<const basic_json>;
/// a reverse iterator for a basic_json container
using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
/// a const reverse iterator for a basic_json container
using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
/// @}
/*!
@brief returns the allocator associated with the container
*/
static allocator_type get_allocator()
{
return allocator_type();
}
/*!
@brief returns version information on the library
This function returns a JSON object with information about the library,
including the version number and information on the platform and compiler.
@return JSON object holding version information
key | description
----------- | ---------------
`compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version).
`copyright` | The copyright line for the library as string.
`name` | The name of the library as string.
`platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`.
`url` | The URL of the project as string.
`version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string).
@liveexample{The following code shows an example output of the `meta()`
function.,meta}
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@complexity Constant.
@since 2.1.0
*/
static basic_json meta()
{
basic_json result;
result["copyright"] = "(C) 2013-2017 Niels Lohmann";
result["name"] = "JSON for Modern C++";
result["url"] = "https://github.com/nlohmann/json";
result["version"] =
{
{"string", "2.1.1"}, {"major", 2}, {"minor", 1}, {"patch", 1}
};
#ifdef _WIN32
result["platform"] = "win32";
#elif defined __linux__
result["platform"] = "linux";
#elif defined __APPLE__
result["platform"] = "apple";
#elif defined __unix__
result["platform"] = "unix";
#else
result["platform"] = "unknown";
#endif
#if defined(__ICC) || defined(__INTEL_COMPILER)
result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
#elif defined(__clang__)
result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
#elif defined(__GNUC__) || defined(__GNUG__)
result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
#elif defined(__HP_cc) || defined(__HP_aCC)
result["compiler"] = "hp"
#elif defined(__IBMCPP__)
result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
#elif defined(_MSC_VER)
result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
#elif defined(__PGI)
result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
#elif defined(__SUNPRO_CC)
result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
#else
result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
#endif
#ifdef __cplusplus
result["compiler"]["c++"] = std::to_string(__cplusplus);
#else
result["compiler"]["c++"] = "unknown";
#endif
return result;
}
///////////////////////////
// JSON value data types //
///////////////////////////
/// @name JSON value data types
/// The data types to store a JSON value. These types are derived from
/// the template arguments passed to class @ref basic_json.
/// @{
/*!
@brief a type for an object
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
> An object is an unordered collection of zero or more name/value pairs,
> where a name is a string and a value is a string, number, boolean, null,
> object, or array.
To store objects in C++, a type is defined by the template parameters
described below.
@tparam ObjectType the container to store objects (e.g., `std::map` or
`std::unordered_map`)
@tparam StringType the type of the keys or names (e.g., `std::string`).
The comparison function `std::less<StringType>` is used to order elements
inside the container.
@tparam AllocatorType the allocator to use for objects (e.g.,
`std::allocator`)
#### Default type
With the default values for @a ObjectType (`std::map`), @a StringType
(`std::string`), and @a AllocatorType (`std::allocator`), the default
value for @a object_t is:
@code {.cpp}
std::map<
std::string, // key_type
basic_json, // value_type
std::less<std::string>, // key_compare
std::allocator<std::pair<const std::string, basic_json>> // allocator_type
>
@endcode
#### Behavior
The choice of @a object_t influences the behavior of the JSON class. With
the default type, objects have the following behavior:
- When all names are unique, objects will be interoperable in the sense
that all software implementations receiving that object will agree on
the name-value mappings.
- When the names within an object are not unique, later stored name/value
pairs overwrite previously stored name/value pairs, leaving the used
names unique. For instance, `{"key": 1}` and `{"key": 2, "key": 1}` will
be treated as equal and both stored as `{"key": 1}`.
- Internally, name/value pairs are stored in lexicographical order of the
names. Objects will also be serialized (see @ref dump) in this order.
For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
and serialized as `{"a": 2, "b": 1}`.
- When comparing objects, the order of the name/value pairs is irrelevant.
This makes objects interoperable in the sense that they will not be
affected by these differences. For instance, `{"b": 1, "a": 2}` and
`{"a": 2, "b": 1}` will be treated as equal.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the object's limit of nesting is not explicitly constrained.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON object.
#### Storage
Objects are stored as pointers in a @ref basic_json type. That is, for any
access to object values, a pointer of type `object_t*` must be
dereferenced.
@sa @ref array_t -- type for an array value
@since version 1.0.0
@note The order name/value pairs are added to the object is *not*
preserved by the library. Therefore, iterating an object may return
name/value pairs in a different order than they were originally stored. In
fact, keys will be traversed in alphabetical order as `std::map` with
`std::less` is used by default. Please note this behavior conforms to [RFC
7159](http://rfc7159.net/rfc7159), because any order implements the
specified "unordered" nature of JSON objects.
*/
#if defined(JSON_HAS_CPP_14)
// Use transparent comparator if possible, combined with perfect forwarding
// on find() and count() calls prevents unnecessary string construction.
using object_comparator_t = std::less<>;
#else
using object_comparator_t = std::less<StringType>;
#endif
using object_t = ObjectType<StringType,
basic_json,
object_comparator_t,
AllocatorType<std::pair<const StringType,
basic_json>>>;
/*!
@brief a type for an array
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
> An array is an ordered sequence of zero or more values.
To store objects in C++, a type is defined by the template parameters
explained below.
@tparam ArrayType container type to store arrays (e.g., `std::vector` or
`std::list`)
@tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
#### Default type
With the default values for @a ArrayType (`std::vector`) and @a
AllocatorType (`std::allocator`), the default value for @a array_t is:
@code {.cpp}
std::vector<
basic_json, // value_type
std::allocator<basic_json> // allocator_type
>
@endcode
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the maximum depth of nesting.
In this class, the array's limit of nesting is not explicitly constrained.
However, a maximum depth of nesting may be introduced by the compiler or
runtime environment. A theoretical limit can be queried by calling the
@ref max_size function of a JSON array.
#### Storage
Arrays are stored as pointers in a @ref basic_json type. That is, for any
access to array values, a pointer of type `array_t*` must be dereferenced.
@sa @ref object_t -- type for an object value
@since version 1.0.0
*/
using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
/*!
@brief a type for a string
[RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
> A string is a sequence of zero or more Unicode characters.
To store objects in C++, a type is defined by the template parameter
described below. Unicode values are split by the JSON class into
byte-sized characters during deserialization.
@tparam StringType the container to store strings (e.g., `std::string`).
Note this container is used for keys/names in objects, see @ref object_t.
#### Default type
With the default values for @a StringType (`std::string`), the default
value for @a string_t is:
@code {.cpp}
std::string
@endcode
#### Encoding
Strings are stored in UTF-8 encoding. Therefore, functions like
`std::string::size()` or `std::string::length()` return the number of
bytes in the string rather than the number of characters or glyphs.
#### String comparison
[RFC 7159](http://rfc7159.net/rfc7159) states:
> Software implementations are typically required to test names of object
> members for equality. Implementations that transform the textual
> representation into sequences of Unicode code units and then perform the
> comparison numerically, code unit by code unit, are interoperable in the
> sense that implementations will agree in all cases on equality or
> inequality of two strings. For example, implementations that compare
> strings with escaped characters unconverted may incorrectly find that
> `"a\\b"` and `"a\u005Cb"` are not equal.
This implementation is interoperable as it does compare strings code unit
by code unit.
#### Storage
String values are stored as pointers in a @ref basic_json type. That is,
for any access to string values, a pointer of type `string_t*` must be
dereferenced.
@since version 1.0.0
*/
using string_t = StringType;
/*!
@brief a type for a boolean
[RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
type which differentiates the two literals `true` and `false`.
To store objects in C++, a type is defined by the template parameter @a
BooleanType which chooses the type to use.
#### Default type
With the default values for @a BooleanType (`bool`), the default value for
@a boolean_t is:
@code {.cpp}
bool
@endcode
#### Storage
Boolean values are stored directly inside a @ref basic_json type.
@since version 1.0.0
*/
using boolean_t = BooleanType;
/*!
@brief a type for a number (integer)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store integer numbers in C++, a type is defined by the template
parameter @a NumberIntegerType which chooses the type to use.
#### Default type
With the default values for @a NumberIntegerType (`int64_t`), the default
value for @a number_integer_t is:
@code {.cpp}
int64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
that are out of range will yield over/underflow when used in a
constructor. During deserialization, too large or small integer numbers
will be automatically be stored as @ref number_unsigned_t or @ref
number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange of the exactly supported range [INT64_MIN,
INT64_MAX], this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_integer_t = NumberIntegerType;
/*!
@brief a type for a number (unsigned)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store unsigned integer numbers in C++, a type is defined by the
template parameter @a NumberUnsignedType which chooses the type to use.
#### Default type
With the default values for @a NumberUnsignedType (`uint64_t`), the
default value for @a number_unsigned_t is:
@code {.cpp}
uint64_t
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in integer literals lead to an interpretation as octal
number. Internally, the value will be stored as decimal number. For
instance, the C++ integer literal `010` will be serialized to `8`.
During deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) specifies:
> An implementation may set limits on the range and precision of numbers.
When the default type is used, the maximal integer number that can be
stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
number that can be stored is `0`. Integer numbers that are out of range
will yield over/underflow when used in a constructor. During
deserialization, too large or small integer numbers will be automatically
be stored as @ref number_integer_t or @ref number_float_t.
[RFC 7159](http://rfc7159.net/rfc7159) further states:
> Note that when such software is used, numbers that are integers and are
> in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
> that implementations will agree exactly on their numeric values.
As this range is a subrange (when considered in conjunction with the
number_integer_t type) of the exactly supported range [0, UINT64_MAX],
this class's integer type is interoperable.
#### Storage
Integer number values are stored directly inside a @ref basic_json type.
@sa @ref number_float_t -- type for number values (floating-point)
@sa @ref number_integer_t -- type for number values (integer)
@since version 2.0.0
*/
using number_unsigned_t = NumberUnsignedType;
/*!
@brief a type for a number (floating-point)
[RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
> The representation of numbers is similar to that used in most
> programming languages. A number is represented in base 10 using decimal
> digits. It contains an integer component that may be prefixed with an
> optional minus sign, which may be followed by a fraction part and/or an
> exponent part. Leading zeros are not allowed. (...) Numeric values that
> cannot be represented in the grammar below (such as Infinity and NaN)
> are not permitted.
This description includes both integer and floating-point numbers.
However, C++ allows more precise storage if it is known whether the number
is a signed integer, an unsigned integer or a floating-point number.
Therefore, three different types, @ref number_integer_t, @ref
number_unsigned_t and @ref number_float_t are used.
To store floating-point numbers in C++, a type is defined by the template
parameter @a NumberFloatType which chooses the type to use.
#### Default type
With the default values for @a NumberFloatType (`double`), the default
value for @a number_float_t is:
@code {.cpp}
double
@endcode
#### Default behavior
- The restrictions about leading zeros is not enforced in C++. Instead,
leading zeros in floating-point literals will be ignored. Internally,
the value will be stored as decimal number. For instance, the C++
floating-point literal `01.2` will be serialized to `1.2`. During
deserialization, leading zeros yield an error.
- Not-a-number (NaN) values will be serialized to `null`.
#### Limits
[RFC 7159](http://rfc7159.net/rfc7159) states:
> This specification allows implementations to set limits on the range and
> precision of numbers accepted. Since software that implements IEEE
> 754-2008 binary64 (double precision) numbers is generally available and
> widely used, good interoperability can be achieved by implementations
> that expect no more precision or range than these provide, in the sense
> that implementations will approximate JSON numbers within the expected
> precision.
This implementation does exactly follow this approach, as it uses double
precision floating-point numbers. Note values smaller than
`-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
will be stored as NaN internally and be serialized to `null`.
#### Storage
Floating-point number values are stored directly inside a @ref basic_json
type.
@sa @ref number_integer_t -- type for number values (integer)
@sa @ref number_unsigned_t -- type for number values (unsigned integer)
@since version 1.0.0
*/
using number_float_t = NumberFloatType;
/// @}
private:
/// helper for exception-safe object creation
template<typename T, typename... Args>
static T* create(Args&& ... args)
{
AllocatorType<T> alloc;
auto deleter = [&](T * object)
{
alloc.deallocate(object, 1);
};
std::unique_ptr<T, decltype(deleter)> object(alloc.allocate(1), deleter);
alloc.construct(object.get(), std::forward<Args>(args)...);
assert(object != nullptr);
return object.release();
}
////////////////////////
// JSON value storage //
////////////////////////
/*!
@brief a JSON value
The actual storage for a JSON value of the @ref basic_json class. This
union combines the different storage types for the JSON value types
defined in @ref value_t.
JSON type | value_t type | used type
--------- | --------------- | ------------------------
object | object | pointer to @ref object_t
array | array | pointer to @ref array_t
string | string | pointer to @ref string_t
boolean | boolean | @ref boolean_t
number | number_integer | @ref number_integer_t
number | number_unsigned | @ref number_unsigned_t
number | number_float | @ref number_float_t
null | null | *no value is stored*
@note Variable-length types (objects, arrays, and strings) are stored as
pointers. The size of the union should not exceed 64 bits if the default
value types are used.
@since version 1.0.0
*/
union json_value
{
/// object (stored with pointer to save storage)
object_t* object;
/// array (stored with pointer to save storage)
array_t* array;
/// string (stored with pointer to save storage)
string_t* string;
/// boolean
boolean_t boolean;
/// number (integer)
number_integer_t number_integer;
/// number (unsigned integer)
number_unsigned_t number_unsigned;
/// number (floating-point)
number_float_t number_float;
/// default constructor (for null values)
json_value() = default;
/// constructor for booleans
json_value(boolean_t v) noexcept : boolean(v) {}
/// constructor for numbers (integer)
json_value(number_integer_t v) noexcept : number_integer(v) {}
/// constructor for numbers (unsigned)
json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
/// constructor for numbers (floating-point)
json_value(number_float_t v) noexcept : number_float(v) {}
/// constructor for empty values of a given type
json_value(value_t t)
{
switch (t)
{
case value_t::object:
{
object = create<object_t>();
break;
}
case value_t::array:
{
array = create<array_t>();
break;
}
case value_t::string:
{
string = create<string_t>("");
break;
}
case value_t::boolean:
{
boolean = boolean_t(false);
break;
}
case value_t::number_integer:
{
number_integer = number_integer_t(0);
break;
}
case value_t::number_unsigned:
{
number_unsigned = number_unsigned_t(0);
break;
}
case value_t::number_float:
{
number_float = number_float_t(0.0);
break;
}
case value_t::null:
{
object = nullptr; // silence warning, see #821
break;
}
default:
{
object = nullptr; // silence warning, see #821
if (JSON_UNLIKELY(t == value_t::null))
{
JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 2.1.1")); // LCOV_EXCL_LINE
}
break;
}
}
}
/// constructor for strings
json_value(const string_t& value)
{
string = create<string_t>(value);
}
/// constructor for rvalue strings
json_value(string_t&& value)
{
string = create<string_t>(std::move(value));
}
/// constructor for objects
json_value(const object_t& value)
{
object = create<object_t>(value);
}
/// constructor for rvalue objects
json_value(object_t&& value)
{
object = create<object_t>(std::move(value));
}
/// constructor for arrays
json_value(const array_t& value)
{
array = create<array_t>(value);
}
/// constructor for rvalue arrays
json_value(array_t&& value)
{
array = create<array_t>(std::move(value));
}
void destroy(value_t t)
{
switch (t)
{
case value_t::object:
{
AllocatorType<object_t> alloc;
alloc.destroy(object);
alloc.deallocate(object, 1);
break;
}
case value_t::array:
{
AllocatorType<array_t> alloc;
alloc.destroy(array);
alloc.deallocate(array, 1);
break;
}
case value_t::string:
{
AllocatorType<string_t> alloc;
alloc.destroy(string);
alloc.deallocate(string, 1);
break;
}
default:
{
break;
}
}
}
};
/*!
@brief checks the class invariants
This function asserts the class invariants. It needs to be called at the
end of every constructor to make sure that created objects respect the
invariant. Furthermore, it has to be called each time the type of a JSON
value is changed, because the invariant expresses a relationship between
@a m_type and @a m_value.
*/
void assert_invariant() const
{
assert(m_type != value_t::object or m_value.object != nullptr);
assert(m_type != value_t::array or m_value.array != nullptr);
assert(m_type != value_t::string or m_value.string != nullptr);
}
public:
//////////////////////////
// JSON parser callback //
//////////////////////////
using parse_event_t = typename parser::parse_event_t;
/*!
@brief per-element parser callback type
With a parser callback function, the result of parsing a JSON text can be
influenced. When passed to @ref parse, it is called on certain events
(passed as @ref parse_event_t via parameter @a event) with a set recursion
depth @a depth and context JSON value @a parsed. The return value of the
callback function is a boolean indicating whether the element that emitted
the callback shall be kept or not.
We distinguish six scenarios (determined by the event type) in which the
callback function can be called. The following table describes the values
of the parameters @a depth, @a event, and @a parsed.
parameter @a event | description | parameter @a depth | parameter @a parsed
------------------ | ----------- | ------------------ | -------------------
parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
@image html callback_events.png "Example when certain parse events are triggered"
Discarding a value (i.e., returning `false`) has different effects
depending on the context in which function was called:
- Discarded values in structured types are skipped. That is, the parser
will behave as if the discarded value was never read.
- In case a value outside a structured type is skipped, it is replaced
with `null`. This case happens if the top-level element is skipped.
@param[in] depth the depth of the recursion during parsing
@param[in] event an event of type parse_event_t indicating the context in
the callback function has been called
@param[in,out] parsed the current intermediate parse result; note that
writing to this value has no effect for parse_event_t::key events
@return Whether the JSON value which called the function during parsing
should be kept (`true`) or not (`false`). In the latter case, it is either
skipped completely or replaced by an empty discarded object.
@sa @ref parse for examples
@since version 1.0.0
*/
using parser_callback_t = typename parser::parser_callback_t;
//////////////////
// constructors //
//////////////////
/// @name constructors and destructors
/// Constructors of class @ref basic_json, copy/move constructor, copy
/// assignment, static functions creating objects, and the destructor.
/// @{
/*!
@brief create an empty value with a given type
Create an empty JSON value with a given type. The value will be default
initialized with an empty value which depends on the type:
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@param[in] v the type of the value to create
@complexity Constant.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows the constructor for different @ref
value_t values,basic_json__value_t}
@sa @ref clear() -- restores the postcondition of this constructor
@since version 1.0.0
*/
basic_json(const value_t v)
: m_type(v), m_value(v)
{
assert_invariant();
}
/*!
@brief create a null object
Create a `null` JSON value. It either takes a null pointer as parameter
(explicitly creating `null`) or no parameter (implicitly creating `null`).
The passed null pointer itself is not read -- it is only used to choose
the right constructor.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@liveexample{The following code shows the constructor with and without a
null pointer parameter.,basic_json__nullptr_t}
@since version 1.0.0
*/
basic_json(std::nullptr_t = nullptr) noexcept
: basic_json(value_t::null)
{
assert_invariant();
}
/*!
@brief create a JSON value
This is a "catch all" constructor for all compatible JSON types; that is,
types for which a `to_json()` method exsits. The constructor forwards the
parameter @a val to that method (to `json_serializer<U>::to_json` method
with `U = uncvref_t<CompatibleType>`, to be exact).
Template type @a CompatibleType includes, but is not limited to, the
following types:
- **arrays**: @ref array_t and all kinds of compatible containers such as
`std::vector`, `std::deque`, `std::list`, `std::forward_list`,
`std::array`, `std::valarray`, `std::set`, `std::unordered_set`,
`std::multiset`, and `std::unordered_multiset` with a `value_type` from
which a @ref basic_json value can be constructed.
- **objects**: @ref object_t and all kinds of compatible associative
containers such as `std::map`, `std::unordered_map`, `std::multimap`,
and `std::unordered_multimap` with a `key_type` compatible to
@ref string_t and a `value_type` from which a @ref basic_json value can
be constructed.
- **strings**: @ref string_t, string literals, and all compatible string
containers can be used.
- **numbers**: @ref number_integer_t, @ref number_unsigned_t,
@ref number_float_t, and all convertible number types such as `int`,
`size_t`, `int64_t`, `float` or `double` can be used.
- **boolean**: @ref boolean_t / `bool` can be used.
See the examples below.
@tparam CompatibleType a type such that:
- @a CompatibleType is not derived from `std::istream`,
- @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
constructors),
- @a CompatibleType is not a @ref basic_json nested type (e.g.,
@ref json_pointer, @ref iterator, etc ...)
- @ref @ref json_serializer<U> has a
`to_json(basic_json_t&, CompatibleType&&)` method
@tparam U = `uncvref_t<CompatibleType>`
@param[in] val the value to be forwarded to the respective constructor
@complexity Usually linear in the size of the passed @a val, also
depending on the implementation of the called `to_json()`
method.
@exceptionsafety Depends on the called constructor. For types directly
supported by the library (i.e., all types for which no `to_json()` function
was provided), strong guarantee holds: if an exception is thrown, there are
no changes to any JSON value.
@liveexample{The following code shows the constructor with several
compatible types.,basic_json__CompatibleType}
@since version 2.1.0
*/
template<typename CompatibleType, typename U = detail::uncvref_t<CompatibleType>,
detail::enable_if_t<not std::is_base_of<std::istream, U>::value and
not std::is_same<U, basic_json_t>::value and
not detail::is_basic_json_nested_type<
basic_json_t, U>::value and
detail::has_to_json<basic_json, U>::value,
int> = 0>
basic_json(CompatibleType && val) noexcept(noexcept(JSONSerializer<U>::to_json(
std::declval<basic_json_t&>(), std::forward<CompatibleType>(val))))
{
JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
assert_invariant();
}
/*!
@brief create a container (array or object) from an initializer list
Creates a JSON value of type array or object from the passed initializer
list @a init. In case @a type_deduction is `true` (default), the type of
the JSON value to be created is deducted from the initializer list @a init
according to the following rules:
1. If the list is empty, an empty JSON object value `{}` is created.
2. If the list consists of pairs whose first element is a string, a JSON
object value is created where the first elements of the pairs are
treated as keys and the second elements are as values.
3. In all other cases, an array is created.
The rules aim to create the best fit between a C++ initializer list and
JSON values. The rationale is as follows:
1. The empty initializer list is written as `{}` which is exactly an empty
JSON object.
2. C++ has no way of describing mapped types other than to list a list of
pairs. As JSON requires that keys must be of type string, rule 2 is the
weakest constraint one can pose on initializer lists to interpret them
as an object.
3. In all other cases, the initializer list could not be interpreted as
JSON object type, so interpreting it as JSON array type is safe.
With the rules described above, the following JSON values cannot be
expressed by an initializer list:
- the empty array (`[]`): use @ref array(initializer_list_t)
with an empty initializer list in this case
- arrays whose elements satisfy rule 2: use @ref
array(initializer_list_t) with the same initializer list
in this case
@note When used without parentheses around an empty initializer list, @ref
basic_json() is called instead of this function, yielding the JSON null
value.
@param[in] init initializer list with JSON values
@param[in] type_deduction internal parameter; when set to `true`, the type
of the JSON value is deducted from the initializer list @a init; when set
to `false`, the type provided via @a manual_type is forced. This mode is
used by the functions @ref array(initializer_list_t) and
@ref object(initializer_list_t).
@param[in] manual_type internal parameter; when @a type_deduction is set
to `false`, the created JSON value will use the provided type (only @ref
value_t::array and @ref value_t::object are valid); when @a type_deduction
is set to `true`, this parameter has no effect
@throw type_error.301 if @a type_deduction is `false`, @a manual_type is
`value_t::object`, but @a init contains an element which is not a pair
whose first element is a string. In this case, the constructor could not
create an object. If @a type_deduction would have be `true`, an array
would have been created. See @ref object(initializer_list_t)
for an example.
@complexity Linear in the size of the initializer list @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The example below shows how JSON values are created from
initializer lists.,basic_json__list_init_t}
@sa @ref array(initializer_list_t) -- create a JSON array
value from an initializer list
@sa @ref object(initializer_list_t) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
basic_json(initializer_list_t init,
bool type_deduction = true,
value_t manual_type = value_t::array)
{
// check if each element is an array with two elements whose first
// element is a string
bool is_an_object = std::all_of(init.begin(), init.end(),
[](const detail::json_ref<basic_json>& element_ref)
{
return (element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string());
});
// adjust type if type deduction is not wanted
if (not type_deduction)
{
// if array is wanted, do not create an object though possible
if (manual_type == value_t::array)
{
is_an_object = false;
}
// if object is wanted but impossible, throw an exception
if (JSON_UNLIKELY(manual_type == value_t::object and not is_an_object))
{
JSON_THROW(type_error::create(301, "cannot create object from initializer list"));
}
}
if (is_an_object)
{
// the initializer list is a list of pairs -> create object
m_type = value_t::object;
m_value = value_t::object;
std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref)
{
auto element = element_ref.moved_or_copied();
m_value.object->emplace(
std::move(*((*element.m_value.array)[0].m_value.string)),
std::move((*element.m_value.array)[1]));
});
}
else
{
// the initializer list describes an array -> create array
m_type = value_t::array;
m_value.array = create<array_t>(init.begin(), init.end());
}
assert_invariant();
}
/*!
@brief explicitly create an array from an initializer list
Creates a JSON array value from a given initializer list. That is, given a
list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
initializer list is empty, the empty array `[]` is created.
@note This function is only needed to express two edge cases that cannot
be realized with the initializer list constructor (@ref
basic_json(initializer_list_t, bool, value_t)). These cases
are:
1. creating an array whose elements are all pairs whose first element is a
string -- in this case, the initializer list constructor would create an
object, taking the first elements as keys
2. creating an empty array -- passing the empty initializer list to the
initializer list constructor yields an empty object
@param[in] init initializer list with JSON values to create an array from
(optional)
@return JSON array value
@complexity Linear in the size of @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows an example for the `array`
function.,array}
@sa @ref basic_json(initializer_list_t, bool, value_t) --
create a JSON value from an initializer list
@sa @ref object(initializer_list_t) -- create a JSON object
value from an initializer list
@since version 1.0.0
*/
static basic_json array(initializer_list_t init = {})
{
return basic_json(init, false, value_t::array);
}
/*!
@brief explicitly create an object from an initializer list
Creates a JSON object value from a given initializer list. The initializer
lists elements must be pairs, and their first elements must be strings. If
the initializer list is empty, the empty object `{}` is created.
@note This function is only added for symmetry reasons. In contrast to the
related function @ref array(initializer_list_t), there are
no cases which can only be expressed by this function. That is, any
initializer list @a init can also be passed to the initializer list
constructor @ref basic_json(initializer_list_t, bool, value_t).
@param[in] init initializer list to create an object from (optional)
@return JSON object value
@throw type_error.301 if @a init is not a list of pairs whose first
elements are strings. In this case, no object can be created. When such a
value is passed to @ref basic_json(initializer_list_t, bool, value_t),
an array would have been created from the passed initializer list @a init.
See example below.
@complexity Linear in the size of @a init.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows an example for the `object`
function.,object}
@sa @ref basic_json(initializer_list_t, bool, value_t) --
create a JSON value from an initializer list
@sa @ref array(initializer_list_t) -- create a JSON array
value from an initializer list
@since version 1.0.0
*/
static basic_json object(initializer_list_t init = {})
{
return basic_json(init, false, value_t::object);
}
/*!
@brief construct an array with count copies of given value
Constructs a JSON array value by creating @a cnt copies of a passed value.
In case @a cnt is `0`, an empty array is created.
@param[in] cnt the number of JSON copies of @a val to create
@param[in] val the JSON value to copy
@post `std::distance(begin(),end()) == cnt` holds.
@complexity Linear in @a cnt.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The following code shows examples for the @ref
basic_json(size_type\, const basic_json&)
constructor.,basic_json__size_type_basic_json}
@since version 1.0.0
*/
basic_json(size_type cnt, const basic_json& val)
: m_type(value_t::array)
{
m_value.array = create<array_t>(cnt, val);
assert_invariant();
}
/*!
@brief construct a JSON container given an iterator range
Constructs the JSON value with the contents of the range `[first, last)`.
The semantics depends on the different types a JSON value can have:
- In case of a null type, invalid_iterator.206 is thrown.
- In case of other primitive types (number, boolean, or string), @a first
must be `begin()` and @a last must be `end()`. In this case, the value is
copied. Otherwise, invalid_iterator.204 is thrown.
- In case of structured types (array, object), the constructor behaves as
similar versions for `std::vector` or `std::map`; that is, a JSON array
or object is constructed from the values in the range.
@tparam InputIT an input iterator type (@ref iterator or @ref
const_iterator)
@param[in] first begin of the range to copy from (included)
@param[in] last end of the range to copy from (excluded)
@pre Iterators @a first and @a last must be initialized. **This
precondition is enforced with an assertion (see warning).** If
assertions are switched off, a violation of this precondition yields
undefined behavior.
@pre Range `[first, last)` is valid. Usually, this precondition cannot be
checked efficiently. Only certain edge cases are detected; see the
description of the exceptions below. A violation of this precondition
yields undefined behavior.
@warning A precondition is enforced with a runtime assertion that will
result in calling `std::abort` if this precondition is not met.
Assertions can be disabled by defining `NDEBUG` at compile time.
See http://en.cppreference.com/w/cpp/error/assert for more
information.
@throw invalid_iterator.201 if iterators @a first and @a last are not
compatible (i.e., do not belong to the same JSON value). In this case,
the range `[first, last)` is undefined.
@throw invalid_iterator.204 if iterators @a first and @a last belong to a
primitive type (number, boolean, or string), but @a first does not point
to the first element any more. In this case, the range `[first, last)` is
undefined. See example code below.
@throw invalid_iterator.206 if iterators @a first and @a last belong to a
null value. In this case, the range `[first, last)` is undefined.
@complexity Linear in distance between @a first and @a last.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@liveexample{The example below shows several ways to create JSON values by
specifying a subrange with iterators.,basic_json__InputIt_InputIt}
@since version 1.0.0
*/
template<class InputIT, typename std::enable_if<
std::is_same<InputIT, typename basic_json_t::iterator>::value or
std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
basic_json(InputIT first, InputIT last)
{
assert(first.m_object != nullptr);
assert(last.m_object != nullptr);
// make sure iterator fits the current value
if (JSON_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(201, "iterators are not compatible"));
}
// copy type from first iterator
m_type = first.m_object->m_type;
// check if iterator range is complete for primitive values
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_UNLIKELY(not first.m_it.primitive_iterator.is_begin()
or not last.m_it.primitive_iterator.is_end()))
{
JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
}
break;
}
default:
break;
}
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = first.m_object->m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = first.m_object->m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value.number_float = first.m_object->m_value.number_float;
break;
}
case value_t::boolean:
{
m_value.boolean = first.m_object->m_value.boolean;
break;
}
case value_t::string:
{
m_value = *first.m_object->m_value.string;
break;
}
case value_t::object:
{
m_value.object = create<object_t>(first.m_it.object_iterator,
last.m_it.object_iterator);
break;
}
case value_t::array:
{
m_value.array = create<array_t>(first.m_it.array_iterator,
last.m_it.array_iterator);
break;
}
default:
JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " +
std::string(first.m_object->type_name())));
}
assert_invariant();
}
///////////////////////////////////////
// other constructors and destructor //
///////////////////////////////////////
/// @private
basic_json(const detail::json_ref<basic_json>& ref)
: basic_json(ref.moved_or_copied())
{}
/*!
@brief copy constructor
Creates a copy of a given JSON value.
@param[in] other the JSON value to copy
@post `*this == other`
@complexity Linear in the size of @a other.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes to any JSON value.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
- As postcondition, it holds: `other == basic_json(other)`.
@liveexample{The following code shows an example for the copy
constructor.,basic_json__basic_json}
@since version 1.0.0
*/
basic_json(const basic_json& other)
: m_type(other.m_type)
{
// check of passed value is valid
other.assert_invariant();
switch (m_type)
{
case value_t::object:
{
m_value = *other.m_value.object;
break;
}
case value_t::array:
{
m_value = *other.m_value.array;
break;
}
case value_t::string:
{
m_value = *other.m_value.string;
break;
}
case value_t::boolean:
{
m_value = other.m_value.boolean;
break;
}
case value_t::number_integer:
{
m_value = other.m_value.number_integer;
break;
}
case value_t::number_unsigned:
{
m_value = other.m_value.number_unsigned;
break;
}
case value_t::number_float:
{
m_value = other.m_value.number_float;
break;
}
default:
break;
}
assert_invariant();
}
/*!
@brief move constructor
Move constructor. Constructs a JSON value with the contents of the given
value @a other using move semantics. It "steals" the resources from @a
other and leaves it as JSON null value.
@param[in,out] other value to move to this object
@post `*this` has the same value as @a other before the call.
@post @a other is a JSON null value.
@complexity Constant.
@exceptionsafety No-throw guarantee: this constructor never throws
exceptions.
@requirement This function helps `basic_json` satisfying the
[MoveConstructible](http://en.cppreference.com/w/cpp/concept/MoveConstructible)
requirements.
@liveexample{The code below shows the move constructor explicitly called
via std::move.,basic_json__moveconstructor}
@since version 1.0.0
*/
basic_json(basic_json&& other) noexcept
: m_type(std::move(other.m_type)),
m_value(std::move(other.m_value))
{
// check that passed value is valid
other.assert_invariant();
// invalidate payload
other.m_type = value_t::null;
other.m_value = {};
assert_invariant();
}
/*!
@brief copy assignment
Copy assignment operator. Copies a JSON value via the "copy and swap"
strategy: It is expressed in terms of the copy constructor, destructor,
and the `swap()` member function.
@param[in] other value to copy from
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
@liveexample{The code below shows and example for the copy assignment. It
creates a copy of value `a` which is then swapped with `b`. Finally\, the
copy of `a` (which is the null value after the swap) is
destroyed.,basic_json__copyassignment}
@since version 1.0.0
*/
reference& operator=(basic_json other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
// check that passed value is valid
other.assert_invariant();
using std::swap;
swap(m_type, other.m_type);
swap(m_value, other.m_value);
assert_invariant();
return *this;
}
/*!
@brief destructor
Destroys the JSON value and frees all allocated memory.
@complexity Linear.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is linear.
- All stored elements are destroyed and all memory is freed.
@since version 1.0.0
*/
~basic_json()
{
assert_invariant();
m_value.destroy(m_type);
}
/// @}
public:
///////////////////////
// object inspection //
///////////////////////
/// @name object inspection
/// Functions to inspect the type of a JSON value.
/// @{
/*!
@brief serialization
Serialization function for JSON values. The function tries to mimic
Python's `json.dumps()` function, and currently supports its @a indent
and @a ensure_ascii parameters.
@param[in] indent If indent is nonnegative, then array elements and object
members will be pretty-printed with that indent level. An indent level of
`0` will only insert newlines. `-1` (the default) selects the most compact
representation.
@param[in] indent_char The character to use for indentation if @a indent is
greater than `0`. The default is ` ` (space).
@param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
in the output are escaped with \uXXXX sequences, and the result consists
of ASCII characters only.
@return string containing the serialization of the JSON value
@complexity Linear.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@liveexample{The following example shows the effect of different @a indent\,
@a indent_char\, and @a ensure_ascii parameters to the result of the
serialization.,dump}
@see https://docs.python.org/2/library/json.html#json.dump
@since version 1.0.0; indentation character @a indent_char and option
@a ensure_ascii added in version 3.0.0
*/
string_t dump(const int indent = -1, const char indent_char = ' ',
const bool ensure_ascii = false) const
{
string_t result;
serializer s(detail::output_adapter<char>(result), indent_char);
if (indent >= 0)
{
s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
}
else
{
s.dump(*this, false, ensure_ascii, 0);
}
return result;
}
/*!
@brief return the type of the JSON value (explicit)
Return the type of the JSON value as a value from the @ref value_t
enumeration.
@return the type of the JSON value
Value type | return value
------------------------- | -------------------------
null | value_t::null
boolean | value_t::boolean
string | value_t::string
number (integer) | value_t::number_integer
number (unsigned integer) | value_t::number_unsigned
number (foating-point) | value_t::number_float
object | value_t::object
array | value_t::array
discarded | value_t::discarded
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `type()` for all JSON
types.,type}
@sa @ref operator value_t() -- return the type of the JSON value (implicit)
@sa @ref type_name() -- return the type as string
@since version 1.0.0
*/
constexpr value_t type() const noexcept
{
return m_type;
}
/*!
@brief return whether type is primitive
This function returns true if and only if the JSON type is primitive
(string, number, boolean, or null).
@return `true` if type is primitive (string, number, boolean, or null),
`false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_primitive()` for all JSON
types.,is_primitive}
@sa @ref is_structured() -- returns whether JSON value is structured
@sa @ref is_null() -- returns whether JSON value is `null`
@sa @ref is_string() -- returns whether JSON value is a string
@sa @ref is_boolean() -- returns whether JSON value is a boolean
@sa @ref is_number() -- returns whether JSON value is a number
@since version 1.0.0
*/
constexpr bool is_primitive() const noexcept
{
return is_null() or is_string() or is_boolean() or is_number();
}
/*!
@brief return whether type is structured
This function returns true if and only if the JSON type is structured
(array or object).
@return `true` if type is structured (array or object), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_structured()` for all JSON
types.,is_structured}
@sa @ref is_primitive() -- returns whether value is primitive
@sa @ref is_array() -- returns whether value is an array
@sa @ref is_object() -- returns whether value is an object
@since version 1.0.0
*/
constexpr bool is_structured() const noexcept
{
return is_array() or is_object();
}
/*!
@brief return whether value is null
This function returns true if and only if the JSON value is null.
@return `true` if type is null, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_null()` for all JSON
types.,is_null}
@since version 1.0.0
*/
constexpr bool is_null() const noexcept
{
return (m_type == value_t::null);
}
/*!
@brief return whether value is a boolean
This function returns true if and only if the JSON value is a boolean.
@return `true` if type is boolean, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_boolean()` for all JSON
types.,is_boolean}
@since version 1.0.0
*/
constexpr bool is_boolean() const noexcept
{
return (m_type == value_t::boolean);
}
/*!
@brief return whether value is a number
This function returns true if and only if the JSON value is a number. This
includes both integer (signed and unsigned) and floating-point values.
@return `true` if type is number (regardless whether integer, unsigned
integer or floating-type), `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number()` for all JSON
types.,is_number}
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number() const noexcept
{
return is_number_integer() or is_number_float();
}
/*!
@brief return whether value is an integer number
This function returns true if and only if the JSON value is a signed or
unsigned integer number. This excludes floating-point values.
@return `true` if type is an integer or unsigned integer number, `false`
otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_integer()` for all
JSON types.,is_number_integer}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 1.0.0
*/
constexpr bool is_number_integer() const noexcept
{
return (m_type == value_t::number_integer or m_type == value_t::number_unsigned);
}
/*!
@brief return whether value is an unsigned integer number
This function returns true if and only if the JSON value is an unsigned
integer number. This excludes floating-point and signed integer values.
@return `true` if type is an unsigned integer number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_unsigned()` for all
JSON types.,is_number_unsigned}
@sa @ref is_number() -- check if value is a number
@sa @ref is_number_integer() -- check if value is an integer or unsigned
integer number
@sa @ref is_number_float() -- check if value is a floating-point number
@since version 2.0.0
*/
constexpr bool is_number_unsigned() const noexcept
{
return (m_type == value_t::number_unsigned);
}
/*!
@brief return whether value is a floating-point number
This function returns true if and only if the JSON value is a
floating-point number. This excludes signed and unsigned integer values.
@return `true` if type is a floating-point number, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_number_float()` for all
JSON types.,is_number_float}
@sa @ref is_number() -- check if value is number
@sa @ref is_number_integer() -- check if value is an integer number
@sa @ref is_number_unsigned() -- check if value is an unsigned integer
number
@since version 1.0.0
*/
constexpr bool is_number_float() const noexcept
{
return (m_type == value_t::number_float);
}
/*!
@brief return whether value is an object
This function returns true if and only if the JSON value is an object.
@return `true` if type is object, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_object()` for all JSON
types.,is_object}
@since version 1.0.0
*/
constexpr bool is_object() const noexcept
{
return (m_type == value_t::object);
}
/*!
@brief return whether value is an array
This function returns true if and only if the JSON value is an array.
@return `true` if type is array, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_array()` for all JSON
types.,is_array}
@since version 1.0.0
*/
constexpr bool is_array() const noexcept
{
return (m_type == value_t::array);
}
/*!
@brief return whether value is a string
This function returns true if and only if the JSON value is a string.
@return `true` if type is string, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_string()` for all JSON
types.,is_string}
@since version 1.0.0
*/
constexpr bool is_string() const noexcept
{
return (m_type == value_t::string);
}
/*!
@brief return whether value is discarded
This function returns true if and only if the JSON value was discarded
during parsing with a callback function (see @ref parser_callback_t).
@note This function will always be `false` for JSON values after parsing.
That is, discarded values can only occur during parsing, but will be
removed when inside a structured value or replaced by null in other cases.
@return `true` if type is discarded, `false` otherwise.
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies `is_discarded()` for all JSON
types.,is_discarded}
@since version 1.0.0
*/
constexpr bool is_discarded() const noexcept
{
return (m_type == value_t::discarded);
}
/*!
@brief return the type of the JSON value (implicit)
Implicitly return the type of the JSON value as a value from the @ref
value_t enumeration.
@return the type of the JSON value
@complexity Constant.
@exceptionsafety No-throw guarantee: this member function never throws
exceptions.
@liveexample{The following code exemplifies the @ref value_t operator for
all JSON types.,operator__value_t}
@sa @ref type() -- return the type of the JSON value (explicit)
@sa @ref type_name() -- return the type as string
@since version 1.0.0
*/
constexpr operator value_t() const noexcept
{
return m_type;
}
/// @}
private:
//////////////////
// value access //
//////////////////
/// get a boolean (explicit)
boolean_t get_impl(boolean_t* /*unused*/) const
{
if (JSON_LIKELY(is_boolean()))
{
return m_value.boolean;
}
JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name())));
}
/// get a pointer to the value (object)
object_t* get_impl_ptr(object_t* /*unused*/) noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (object)
constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
{
return is_object() ? m_value.object : nullptr;
}
/// get a pointer to the value (array)
array_t* get_impl_ptr(array_t* /*unused*/) noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (array)
constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
{
return is_array() ? m_value.array : nullptr;
}
/// get a pointer to the value (string)
string_t* get_impl_ptr(string_t* /*unused*/) noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (string)
constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
{
return is_string() ? m_value.string : nullptr;
}
/// get a pointer to the value (boolean)
boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (boolean)
constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
{
return is_boolean() ? &m_value.boolean : nullptr;
}
/// get a pointer to the value (integer number)
number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (integer number)
constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
{
return is_number_integer() ? &m_value.number_integer : nullptr;
}
/// get a pointer to the value (unsigned number)
number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (unsigned number)
constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
{
return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
}
/// get a pointer to the value (floating-point number)
number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/// get a pointer to the value (floating-point number)
constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
{
return is_number_float() ? &m_value.number_float : nullptr;
}
/*!
@brief helper function to implement get_ref()
This function helps to implement get_ref() without code duplication for
const and non-const overloads
@tparam ThisType will be deduced as `basic_json` or `const basic_json`
@throw type_error.303 if ReferenceType does not match underlying value
type of the current JSON
*/
template<typename ReferenceType, typename ThisType>
static ReferenceType get_ref_impl(ThisType& obj)
{
// delegate the call to get_ptr<>()
auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
if (JSON_LIKELY(ptr != nullptr))
{
return *ptr;
}
JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name())));
}
public:
/// @name value access
/// Direct access to the stored value of a JSON value.
/// @{
/*!
@brief get special-case overload
This overloads avoids a lot of template boilerplate, it can be seen as the
identity method
@tparam BasicJsonType == @ref basic_json
@return a copy of *this
@complexity Constant.
@since version 2.1.0
*/
template <
typename BasicJsonType,
detail::enable_if_t<std::is_same<typename std::remove_const<BasicJsonType>::type,
basic_json_t>::value,
int> = 0 >
basic_json get() const
{
return *this;
}
/*!
@brief get a value (explicit)
Explicit type conversion between the JSON value and a compatible value
which is [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
The function is equivalent to executing
@code {.cpp}
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json,
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`void from_json(const basic_json&, ValueType&)`, and
- @ref json_serializer<ValueType> does not have a `from_json()` method of
the form `ValueType from_json(const basic_json&)`
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,get__ValueType_const}
@since version 2.1.0
*/
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t <
not std::is_same<basic_json_t, ValueType>::value and
detail::has_from_json<basic_json_t, ValueType>::value and
not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
int > = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
{
// we cannot static_assert on ValueTypeCV being non-const, because
// there is support for get<const basic_json_t>(), which is why we
// still need the uncvref
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
static_assert(std::is_default_constructible<ValueType>::value,
"types must be DefaultConstructible when used with get()");
ValueType ret;
JSONSerializer<ValueType>::from_json(*this, ret);
return ret;
}
/*!
@brief get a value (explicit); special case
Explicit type conversion between the JSON value and a compatible value
which is **not** [CopyConstructible](http://en.cppreference.com/w/cpp/concept/CopyConstructible)
and **not** [DefaultConstructible](http://en.cppreference.com/w/cpp/concept/DefaultConstructible).
The value is converted by calling the @ref json_serializer<ValueType>
`from_json()` method.
The function is equivalent to executing
@code {.cpp}
return JSONSerializer<ValueTypeCV>::from_json(*this);
@endcode
This overloads is chosen if:
- @a ValueType is not @ref basic_json and
- @ref json_serializer<ValueType> has a `from_json()` method of the form
`ValueType from_json(const basic_json&)`
@note If @ref json_serializer<ValueType> has both overloads of
`from_json()`, this one is chosen.
@tparam ValueTypeCV the provided value type
@tparam ValueType the returned value type
@return copy of the JSON value, converted to @a ValueType
@throw what @ref json_serializer<ValueType> `from_json()` method throws
@since version 2.1.0
*/
template <
typename ValueTypeCV,
typename ValueType = detail::uncvref_t<ValueTypeCV>,
detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
detail::has_non_default_from_json<basic_json_t,
ValueType>::value, int> = 0 >
ValueType get() const noexcept(noexcept(
JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
{
static_assert(not std::is_reference<ValueTypeCV>::value,
"get() cannot be used with reference types, you might want to use get_ref()");
return JSONSerializer<ValueTypeCV>::from_json(*this);
}
/*!
@brief get a pointer value (explicit)
Explicit pointer access to the internally stored JSON value. No copies are
made.
@warning The pointer becomes invalid if the underlying JSON object
changes.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get__PointerType}
@sa @ref get_ptr() for explicit pointer-member access
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
PointerType get() noexcept
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a pointer value (explicit)
@copydoc get()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
constexpr const PointerType get() const noexcept
{
// delegate the call to get_ptr
return get_ptr<PointerType>();
}
/*!
@brief get a pointer value (implicit)
Implicit pointer access to the internally stored JSON value. No copies are
made.
@warning Writing data to the pointee of the result yields an undefined
state.
@tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
@ref number_unsigned_t, or @ref number_float_t. Enforced by a static
assertion.
@return pointer to the internally stored JSON value if the requested
pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
@complexity Constant.
@liveexample{The example below shows how pointers to internal values of a
JSON value can be requested. Note that no type conversions are made and a
`nullptr` is returned if the value and the requested pointer type does not
match.,get_ptr}
@since version 1.0.0
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value, int>::type = 0>
PointerType get_ptr() noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std::remove_const<typename
std::remove_pointer<typename
std::remove_const<PointerType>::type>::type>::type;
// make sure the type matches the allowed types
static_assert(
std::is_same<object_t, pointee_t>::value
or std::is_same<array_t, pointee_t>::value
or std::is_same<string_t, pointee_t>::value
or std::is_same<boolean_t, pointee_t>::value
or std::is_same<number_integer_t, pointee_t>::value
or std::is_same<number_unsigned_t, pointee_t>::value
or std::is_same<number_float_t, pointee_t>::value
, "incompatible pointer type");
// delegate the call to get_impl_ptr<>()
return get_impl_ptr(static_cast<PointerType>(nullptr));
}
/*!
@brief get a pointer value (implicit)
@copydoc get_ptr()
*/
template<typename PointerType, typename std::enable_if<
std::is_pointer<PointerType>::value and
std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
constexpr const PointerType get_ptr() const noexcept
{
// get the type of the PointerType (remove pointer and const)
using pointee_t = typename std::remove_const<typename
std::remove_pointer<typename
std::remove_const<PointerType>::type>::type>::type;
// make sure the type matches the allowed types
static_assert(
std::is_same<object_t, pointee_t>::value
or std::is_same<array_t, pointee_t>::value
or std::is_same<string_t, pointee_t>::value
or std::is_same<boolean_t, pointee_t>::value
or std::is_same<number_integer_t, pointee_t>::value
or std::is_same<number_unsigned_t, pointee_t>::value
or std::is_same<number_float_t, pointee_t>::value
, "incompatible pointer type");
// delegate the call to get_impl_ptr<>() const
return get_impl_ptr(static_cast<PointerType>(nullptr));
}
/*!
@brief get a reference value (implicit)
Implicit reference access to the internally stored JSON value. No copies
are made.
@warning Writing data to the referee of the result yields an undefined
state.
@tparam ReferenceType reference type; must be a reference to @ref array_t,
@ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
@ref number_float_t. Enforced by static assertion.
@return reference to the internally stored JSON value if the requested
reference type @a ReferenceType fits to the JSON value; throws
type_error.303 otherwise
@throw type_error.303 in case passed type @a ReferenceType is incompatible
with the stored JSON value; see example below
@complexity Constant.
@liveexample{The example shows several calls to `get_ref()`.,get_ref}
@since version 1.1.0
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value, int>::type = 0>
ReferenceType get_ref()
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a reference value (implicit)
@copydoc get_ref()
*/
template<typename ReferenceType, typename std::enable_if<
std::is_reference<ReferenceType>::value and
std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
ReferenceType get_ref() const
{
// delegate call to get_ref_impl
return get_ref_impl<ReferenceType>(*this);
}
/*!
@brief get a value (implicit)
Implicit type conversion between the JSON value and a compatible value.
The call is realized by calling @ref get() const.
@tparam ValueType non-pointer type compatible to the JSON value, for
instance `int` for JSON integer numbers, `bool` for JSON booleans, or
`std::vector` types for JSON arrays. The character type of @ref string_t
as well as an initializer list of this type is excluded to avoid
ambiguities as these types implicitly convert to `std::string`.
@return copy of the JSON value, converted to type @a ValueType
@throw type_error.302 in case passed type @a ValueType is incompatible
to the JSON value type (e.g., the JSON value is of type boolean, but a
string is requested); see example below
@complexity Linear in the size of the JSON value.
@liveexample{The example below shows several conversions from JSON values
to other types. There a few things to note: (1) Floating-point numbers can
be converted to integers\, (2) A JSON array can be converted to a standard
`std::vector<short>`\, (3) A JSON object can be converted to C++
associative containers such as `std::unordered_map<std::string\,
json>`.,operator__ValueType}
@since version 1.0.0
*/
template < typename ValueType, typename std::enable_if <
not std::is_pointer<ValueType>::value and
not std::is_same<ValueType, detail::json_ref<basic_json>>::value and
not std::is_same<ValueType, typename string_t::value_type>::value
#ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
#endif
#if defined(JSON_HAS_CPP_17)
and not std::is_same<ValueType, typename std::string_view>::value
#endif
, int >::type = 0 >
operator ValueType() const
{
// delegate the call to get<>() const
return get<ValueType>();
}
/// @}
////////////////////
// element access //
////////////////////
/// @name element access
/// Access to the JSON value.
/// @{
/*!
@brief access specified array element with bounds checking
Returns a reference to the element at specified location @a idx, with
bounds checking.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw type_error.304 if the JSON value is not an array; in this case,
calling `at` with an index makes no sense. See example below.
@throw out_of_range.401 if the index @a idx is out of range of the array;
that is, `idx >= size()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 1.0.0
@liveexample{The example below shows how array elements can be read and
written using `at()`. It also demonstrates the different exceptions that
can be thrown.,at__size_type}
*/
reference at(size_type idx)
{
// at only works for arrays
if (JSON_LIKELY(is_array()))
{
JSON_TRY
{
return m_value.array->at(idx);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified array element with bounds checking
Returns a const reference to the element at specified location @a idx,
with bounds checking.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw type_error.304 if the JSON value is not an array; in this case,
calling `at` with an index makes no sense. See example below.
@throw out_of_range.401 if the index @a idx is out of range of the array;
that is, `idx >= size()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 1.0.0
@liveexample{The example below shows how array elements can be read using
`at()`. It also demonstrates the different exceptions that can be thrown.,
at__size_type_const}
*/
const_reference at(size_type idx) const
{
// at only works for arrays
if (JSON_LIKELY(is_array()))
{
JSON_TRY
{
return m_value.array->at(idx);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified object element with bounds checking
Returns a reference to the element at with specified key @a key, with
bounds checking.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.304 if the JSON value is not an object; in this case,
calling `at` with a key makes no sense. See example below.
@throw out_of_range.403 if the key @a key is is not stored in the object;
that is, `find(key) == end()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Logarithmic in the size of the container.
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
@liveexample{The example below shows how object elements can be read and
written using `at()`. It also demonstrates the different exceptions that
can be thrown.,at__object_t_key_type}
*/
reference at(const typename object_t::key_type& key)
{
// at only works for objects
if (JSON_LIKELY(is_object()))
{
JSON_TRY
{
return m_value.object->at(key);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified object element with bounds checking
Returns a const reference to the element at with specified key @a key,
with bounds checking.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@throw type_error.304 if the JSON value is not an object; in this case,
calling `at` with a key makes no sense. See example below.
@throw out_of_range.403 if the key @a key is is not stored in the object;
that is, `find(key) == end()`. See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Logarithmic in the size of the container.
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@sa @ref value() for access by value with a default value
@since version 1.0.0
@liveexample{The example below shows how object elements can be read using
`at()`. It also demonstrates the different exceptions that can be thrown.,
at__object_t_key_type_const}
*/
const_reference at(const typename object_t::key_type& key) const
{
// at only works for objects
if (JSON_LIKELY(is_object()))
{
JSON_TRY
{
return m_value.object->at(key);
}
JSON_CATCH (std::out_of_range&)
{
// create better exception explanation
JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
}
}
else
{
JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
}
}
/*!
@brief access specified array element
Returns a reference to the element at specified location @a idx.
@note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
then the array is silently filled up with `null` values to make `idx` a
valid reference to the last stored element.
@param[in] idx index of the element to access
@return reference to the element at index @a idx
@throw type_error.305 if the JSON value is not an array or null; in that
cases, using the [] operator with an index makes no sense.
@complexity Constant if @a idx is in the range of the array. Otherwise
linear in `idx - size()`.
@liveexample{The example below shows how array elements can be read and
written using `[]` operator. Note the addition of `null`
values.,operatorarray__size_type}
@since version 1.0.0
*/
reference operator[](size_type idx)
{
// implicitly convert null value to an empty array
if (is_null())
{
m_type = value_t::array;
m_value.array = create<array_t>();
assert_invariant();
}
// operator[] only works for arrays
if (JSON_LIKELY(is_array()))
{
// fill up array with null values if given idx is outside range
if (idx >= m_value.array->size())
{
m_value.array->insert(m_value.array->end(),
idx - m_value.array->size() + 1,
basic_json());
}
return m_value.array->operator[](idx);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief access specified array element
Returns a const reference to the element at specified location @a idx.
@param[in] idx index of the element to access
@return const reference to the element at index @a idx
@throw type_error.305 if the JSON value is not an array; in that cases,
using the [] operator with an index makes no sense.
@complexity Constant.
@liveexample{The example below shows how array elements can be read using
the `[]` operator.,operatorarray__size_type_const}
@since version 1.0.0
*/
const_reference operator[](size_type idx) const
{
// const operator[] only works for arrays
if (JSON_LIKELY(is_array()))
{
return m_value.array->operator[](idx);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.305 if the JSON value is not an object or null; in that
cases, using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
reference operator[](const typename object_t::key_type& key)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
// operator[] only works for objects
if (JSON_LIKELY(is_object()))
{
return m_value.object->operator[](key);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw type_error.305 if the JSON value is not an object; in that cases,
using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.0.0
*/
const_reference operator[](const typename object_t::key_type& key) const
{
// const operator[] only works for objects
if (JSON_LIKELY(is_object()))
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief access specified object element
Returns a reference to the element at with specified key @a key.
@note If @a key is not found in the object, then it is silently added to
the object and filled with a `null` value to make `key` a valid reference.
In case the value was `null` before, it is converted to an object.
@param[in] key key of the element to access
@return reference to the element at key @a key
@throw type_error.305 if the JSON value is not an object or null; in that
cases, using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read and
written using the `[]` operator.,operatorarray__key_type}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
reference operator[](T* key)
{
// implicitly convert null to object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// at only works for objects
if (JSON_LIKELY(is_object()))
{
return m_value.object->operator[](key);
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief read-only access specified object element
Returns a const reference to the element at with specified key @a key. No
bounds checking is performed.
@warning If the element with key @a key does not exist, the behavior is
undefined.
@param[in] key key of the element to access
@return const reference to the element at key @a key
@pre The element with key @a key must exist. **This precondition is
enforced with an assertion.**
@throw type_error.305 if the JSON value is not an object; in that cases,
using the [] operator with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be read using
the `[]` operator.,operatorarray__key_type_const}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref value() for access by value with a default value
@since version 1.1.0
*/
template<typename T>
const_reference operator[](T* key) const
{
// at only works for objects
if (JSON_LIKELY(is_object()))
{
assert(m_value.object->find(key) != m_value.object->end());
return m_value.object->find(key)->second;
}
JSON_THROW(type_error::create(305, "cannot use operator[] with " + std::string(type_name())));
}
/*!
@brief access specified object element with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(key);
} catch(out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const typename object_t::key_type&), this function
does not throw if the given key @a key was not found.
@note Unlike @ref operator[](const typename object_t::key_type& key), this
function does not implicitly add an element to the position defined by @a
key. This function is furthermore also applicable to const objects.
@param[in] key key of the element to access
@param[in] default_value the value to return if @a key is not found
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw type_error.306 if the JSON value is not an objec; in that cases,
using `value()` with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value}
@sa @ref at(const typename object_t::key_type&) for access by reference
with range checking
@sa @ref operator[](const typename object_t::key_type&) for unchecked
access by reference
@since version 1.0.0
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
{
// at only works for objects
if (JSON_LIKELY(is_object()))
{
// if key is found, return value and given default value otherwise
const auto it = find(key);
if (it != end())
{
return *it;
}
return default_value;
}
JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const typename object_t::key_type&, ValueType) const
*/
string_t value(const typename object_t::key_type& key, const char* default_value) const
{
return value(key, string_t(default_value));
}
/*!
@brief access specified object element via JSON Pointer with default value
Returns either a copy of an object's element at the specified key @a key
or a given default value if no element with key @a key exists.
The function is basically equivalent to executing
@code {.cpp}
try {
return at(ptr);
} catch(out_of_range) {
return default_value;
}
@endcode
@note Unlike @ref at(const json_pointer&), this function does not throw
if the given key @a key was not found.
@param[in] ptr a JSON pointer to the element to access
@param[in] default_value the value to return if @a ptr found no value
@tparam ValueType type compatible to JSON values, for instance `int` for
JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
JSON arrays. Note the type of the expected value at @a key and the default
value @a default_value must be compatible.
@return copy of the element at key @a key or @a default_value if @a key
is not found
@throw type_error.306 if the JSON value is not an objec; in that cases,
using `value()` with a key makes no sense.
@complexity Logarithmic in the size of the container.
@liveexample{The example below shows how object elements can be queried
with a default value.,basic_json__value_ptr}
@sa @ref operator[](const json_pointer&) for unchecked access by reference
@since version 2.0.2
*/
template<class ValueType, typename std::enable_if<
std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
ValueType value(const json_pointer& ptr, const ValueType& default_value) const
{
// at only works for objects
if (JSON_LIKELY(is_object()))
{
// if pointer resolves a value, return it or use default value
JSON_TRY
{
return ptr.get_checked(this);
}
JSON_CATCH (out_of_range&)
{
return default_value;
}
}
JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
}
/*!
@brief overload for a default value of type const char*
@copydoc basic_json::value(const json_pointer&, ValueType) const
*/
string_t value(const json_pointer& ptr, const char* default_value) const
{
return value(ptr, string_t(default_value));
}
/*!
@brief access the first element
Returns a reference to the first element in the container. For a JSON
container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
@return In case of a structured type (array or object), a reference to the
first element is returned. In case of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw invalid_iterator.214 when called on `null` value
@liveexample{The following code shows an example for `front()`.,front}
@sa @ref back() -- access the last element
@since version 1.0.0
*/
reference front()
{
return *begin();
}
/*!
@copydoc basic_json::front()
*/
const_reference front() const
{
return *cbegin();
}
/*!
@brief access the last element
Returns a reference to the last element in the container. For a JSON
container `c`, the expression `c.back()` is equivalent to
@code {.cpp}
auto tmp = c.end();
--tmp;
return *tmp;
@endcode
@return In case of a structured type (array or object), a reference to the
last element is returned. In case of number, string, or boolean values, a
reference to the value is returned.
@complexity Constant.
@pre The JSON value must not be `null` (would throw `std::out_of_range`)
or an empty array or object (undefined behavior, **guarded by
assertions**).
@post The JSON value remains unchanged.
@throw invalid_iterator.214 when called on a `null` value. See example
below.
@liveexample{The following code shows an example for `back()`.,back}
@sa @ref front() -- access the first element
@since version 1.0.0
*/
reference back()
{
auto tmp = end();
--tmp;
return *tmp;
}
/*!
@copydoc basic_json::back()
*/
const_reference back() const
{
auto tmp = cend();
--tmp;
return *tmp;
}
/*!
@brief remove element given an iterator
Removes the element specified by iterator @a pos. The iterator @a pos must
be valid and dereferenceable. Thus the `end()` iterator (which is valid,
but is not dereferenceable) cannot be used as a value for @a pos.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] pos iterator to the element to remove
@return Iterator following the last removed element. If the iterator @a
pos refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw type_error.307 if called on a `null` value; example: `"cannot use
erase() with null"`
@throw invalid_iterator.202 if called on an iterator which does not belong
to the current JSON value; example: `"iterator does not fit current
value"`
@throw invalid_iterator.205 if called on a primitive type with invalid
iterator (i.e., any iterator which is not `begin()`); example: `"iterator
out of range"`
@complexity The complexity depends on the type:
- objects: amortized constant
- arrays: linear in distance between @a pos and the end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType}
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType pos)
{
// make sure iterator fits the current value
if (JSON_UNLIKELY(this != pos.m_object))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_UNLIKELY(not pos.m_it.primitive_iterator.is_begin()))
{
JSON_THROW(invalid_iterator::create(205, "iterator out of range"));
}
if (is_string())
{
AllocatorType<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
break;
}
default:
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
return result;
}
/*!
@brief remove elements given an iterator range
Removes the element specified by the range `[first; last)`. The iterator
@a first does not need to be dereferenceable if `first == last`: erasing
an empty range is a no-op.
If called on a primitive type other than `null`, the resulting JSON value
will be `null`.
@param[in] first iterator to the beginning of the range to remove
@param[in] last iterator past the end of the range to remove
@return Iterator following the last removed element. If the iterator @a
second refers to the last element, the `end()` iterator is returned.
@tparam IteratorType an @ref iterator or @ref const_iterator
@post Invalidates iterators and references at or after the point of the
erase, including the `end()` iterator.
@throw type_error.307 if called on a `null` value; example: `"cannot use
erase() with null"`
@throw invalid_iterator.203 if called on iterators which does not belong
to the current JSON value; example: `"iterators do not fit current value"`
@throw invalid_iterator.204 if called on a primitive type with invalid
iterators (i.e., if `first != begin()` and `last != end()`); example:
`"iterators out of range"`
@complexity The complexity depends on the type:
- objects: `log(size()) + std::distance(first, last)`
- arrays: linear in the distance between @a first and @a last, plus linear
in the distance between @a last and end of the container
- strings: linear in the length of the string
- other types: constant
@liveexample{The example shows the result of `erase()` for different JSON
types.,erase__IteratorType_IteratorType}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
template<class IteratorType, typename std::enable_if<
std::is_same<IteratorType, typename basic_json_t::iterator>::value or
std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
= 0>
IteratorType erase(IteratorType first, IteratorType last)
{
// make sure iterator fits the current value
if (JSON_UNLIKELY(this != first.m_object or this != last.m_object))
{
JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value"));
}
IteratorType result = end();
switch (m_type)
{
case value_t::boolean:
case value_t::number_float:
case value_t::number_integer:
case value_t::number_unsigned:
case value_t::string:
{
if (JSON_LIKELY(not first.m_it.primitive_iterator.is_begin()
or not last.m_it.primitive_iterator.is_end()))
{
JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
}
if (is_string())
{
AllocatorType<string_t> alloc;
alloc.destroy(m_value.string);
alloc.deallocate(m_value.string, 1);
m_value.string = nullptr;
}
m_type = value_t::null;
assert_invariant();
break;
}
case value_t::object:
{
result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
last.m_it.object_iterator);
break;
}
case value_t::array:
{
result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
last.m_it.array_iterator);
break;
}
default:
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
return result;
}
/*!
@brief remove element from a JSON object given a key
Removes elements from a JSON object with the key value @a key.
@param[in] key value of the elements to remove
@return Number of elements removed. If @a ObjectType is the default
`std::map` type, the return value will always be `0` (@a key was not
found) or `1` (@a key was found).
@post References and iterators to the erased elements are invalidated.
Other references and iterators are not affected.
@throw type_error.307 when called on a type other than JSON object;
example: `"cannot use erase() with null"`
@complexity `log(size()) + count(key)`
@liveexample{The example shows the effect of `erase()`.,erase__key_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const size_type) -- removes the element from an array at
the given index
@since version 1.0.0
*/
size_type erase(const typename object_t::key_type& key)
{
// this erase only works for objects
if (JSON_LIKELY(is_object()))
{
return m_value.object->erase(key);
}
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
/*!
@brief remove element from a JSON array given an index
Removes element from a JSON array at the index @a idx.
@param[in] idx index of the element to remove
@throw type_error.307 when called on a type other than JSON object;
example: `"cannot use erase() with null"`
@throw out_of_range.401 when `idx >= size()`; example: `"array index 17
is out of range"`
@complexity Linear in distance between @a idx and the end of the container.
@liveexample{The example shows the effect of `erase()`.,erase__size_type}
@sa @ref erase(IteratorType) -- removes the element at a given position
@sa @ref erase(IteratorType, IteratorType) -- removes the elements in
the given range
@sa @ref erase(const typename object_t::key_type&) -- removes the element
from an object at the given key
@since version 1.0.0
*/
void erase(const size_type idx)
{
// this erase only works for arrays
if (JSON_LIKELY(is_array()))
{
if (JSON_UNLIKELY(idx >= size()))
{
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
}
else
{
JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
}
}
/// @}
////////////
// lookup //
////////////
/// @name lookup
/// @{
/*!
@brief find an element in a JSON object
Finds an element in a JSON object with key equivalent to @a key. If the
element is not found or the JSON value is not an object, end() is
returned.
@note This method always returns @ref end() when executed on a JSON type
that is not an object.
@param[in] key key value of the element to search for.
@return Iterator to an element with key equivalent to @a key. If no such
element is found or the JSON value is not an object, past-the-end (see
@ref end()) iterator is returned.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `find()` is used.,find__key_type}
@since version 1.0.0
*/
template<typename KeyT>
iterator find(KeyT&& key)
{
auto result = end();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
}
return result;
}
/*!
@brief find an element in a JSON object
@copydoc find(KeyT&&)
*/
template<typename KeyT>
const_iterator find(KeyT&& key) const
{
auto result = cend();
if (is_object())
{
result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
}
return result;
}
/*!
@brief returns the number of occurrences of a key in a JSON object
Returns the number of elements with key @a key. If ObjectType is the
default `std::map` type, the return value will always be `0` (@a key was
not found) or `1` (@a key was found).
@note This method always returns `0` when executed on a JSON type that is
not an object.
@param[in] key key value of the element to count
@return Number of elements with key @a key. If the JSON value is not an
object, the return value will be `0`.
@complexity Logarithmic in the size of the JSON object.
@liveexample{The example shows how `count()` is used.,count}
@since version 1.0.0
*/
template<typename KeyT>
size_type count(KeyT&& key) const
{
// return 0 for all nonobject types
return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0;
}
/// @}
///////////////
// iterators //
///////////////
/// @name iterators
/// @{
/*!
@brief returns an iterator to the first element
Returns an iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `begin()`.,begin}
@sa @ref cbegin() -- returns a const iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
iterator begin() noexcept
{
iterator result(this);
result.set_begin();
return result;
}
/*!
@copydoc basic_json::cbegin()
*/
const_iterator begin() const noexcept
{
return cbegin();
}
/*!
@brief returns a const iterator to the first element
Returns a const iterator to the first element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator to the first element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
@liveexample{The following code shows an example for `cbegin()`.,cbegin}
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref end() -- returns an iterator to the end
@sa @ref cend() -- returns a const iterator to the end
@since version 1.0.0
*/
const_iterator cbegin() const noexcept
{
const_iterator result(this);
result.set_begin();
return result;
}
/*!
@brief returns an iterator to one past the last element
Returns an iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
@liveexample{The following code shows an example for `end()`.,end}
@sa @ref cend() -- returns a const iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
iterator end() noexcept
{
iterator result(this);
result.set_end();
return result;
}
/*!
@copydoc basic_json::cend()
*/
const_iterator end() const noexcept
{
return cend();
}
/*!
@brief returns a const iterator to one past the last element
Returns a const iterator to one past the last element.
@image html range-begin-end.svg "Illustration from cppreference.com"
@return const iterator one past the last element
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).end()`.
@liveexample{The following code shows an example for `cend()`.,cend}
@sa @ref end() -- returns an iterator to the end
@sa @ref begin() -- returns an iterator to the beginning
@sa @ref cbegin() -- returns a const iterator to the beginning
@since version 1.0.0
*/
const_iterator cend() const noexcept
{
const_iterator result(this);
result.set_end();
return result;
}
/*!
@brief returns an iterator to the reverse-beginning
Returns an iterator to the reverse-beginning; that is, the last element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(end())`.
@liveexample{The following code shows an example for `rbegin()`.,rbegin}
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
reverse_iterator rbegin() noexcept
{
return reverse_iterator(end());
}
/*!
@copydoc basic_json::crbegin()
*/
const_reverse_iterator rbegin() const noexcept
{
return crbegin();
}
/*!
@brief returns an iterator to the reverse-end
Returns an iterator to the reverse-end; that is, one before the first
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `reverse_iterator(begin())`.
@liveexample{The following code shows an example for `rend()`.,rend}
@sa @ref crend() -- returns a const reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
reverse_iterator rend() noexcept
{
return reverse_iterator(begin());
}
/*!
@copydoc basic_json::crend()
*/
const_reverse_iterator rend() const noexcept
{
return crend();
}
/*!
@brief returns a const reverse iterator to the last element
Returns a const iterator to the reverse-beginning; that is, the last
element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
@liveexample{The following code shows an example for `crbegin()`.,crbegin}
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref crend() -- returns a const reverse iterator to the end
@since version 1.0.0
*/
const_reverse_iterator crbegin() const noexcept
{
return const_reverse_iterator(cend());
}
/*!
@brief returns a const reverse iterator to one before the first
Returns a const reverse iterator to the reverse-end; that is, one before
the first element.
@image html range-rbegin-rend.svg "Illustration from cppreference.com"
@complexity Constant.
@requirement This function helps `basic_json` satisfying the
[ReversibleContainer](http://en.cppreference.com/w/cpp/concept/ReversibleContainer)
requirements:
- The complexity is constant.
- Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
@liveexample{The following code shows an example for `crend()`.,crend}
@sa @ref rend() -- returns a reverse iterator to the end
@sa @ref rbegin() -- returns a reverse iterator to the beginning
@sa @ref crbegin() -- returns a const reverse iterator to the beginning
@since version 1.0.0
*/
const_reverse_iterator crend() const noexcept
{
return const_reverse_iterator(cbegin());
}
public:
/*!
@brief wrapper to access iterator member functions in range-based for
This function allows to access @ref iterator::key() and @ref
iterator::value() during range-based for loops. In these loops, a
reference to the JSON values is returned, so there is no access to the
underlying iterator.
@liveexample{The following code shows how the wrapper is used,iterator_wrapper}
@note The name of this function is not yet final and may change in the
future.
*/
static iteration_proxy<iterator> iterator_wrapper(reference cont)
{
return iteration_proxy<iterator>(cont);
}
/*!
@copydoc iterator_wrapper(reference)
*/
static iteration_proxy<const_iterator> iterator_wrapper(const_reference cont)
{
return iteration_proxy<const_iterator>(cont);
}
/// @}
//////////////
// capacity //
//////////////
/// @name capacity
/// @{
/*!
@brief checks whether the container is empty.
Checks if a JSON value has no elements (i.e. whether its @ref size is `0`).
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `true`
boolean | `false`
string | `false`
number | `false`
object | result of function `object_t::empty()`
array | result of function `array_t::empty()`
@liveexample{The following code uses `empty()` to check if a JSON
object contains any elements.,empty}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `empty()` functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@note This function does not return whether a string stored as JSON value
is empty - it returns whether the JSON container itself is empty which is
false in the case of a string.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `begin() == end()`.
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
bool empty() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return true;
}
case value_t::array:
{
// delegate call to array_t::empty()
return m_value.array->empty();
}
case value_t::object:
{
// delegate call to object_t::empty()
return m_value.object->empty();
}
default:
{
// all other types are nonempty
return false;
}
}
}
/*!
@brief returns the number of elements
Returns the number of elements in a JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0`
boolean | `1`
string | `1`
number | `1`
object | result of function object_t::size()
array | result of function array_t::size()
@liveexample{The following code calls `size()` on the different value
types.,size}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their size() functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@note This function does not return the length of a string stored as JSON
value - it returns the number of elements in the JSON value which is 1 in
the case of a string.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of `std::distance(begin(), end())`.
@sa @ref empty() -- checks whether the container is empty
@sa @ref max_size() -- returns the maximal number of elements
@since version 1.0.0
*/
size_type size() const noexcept
{
switch (m_type)
{
case value_t::null:
{
// null values are empty
return 0;
}
case value_t::array:
{
// delegate call to array_t::size()
return m_value.array->size();
}
case value_t::object:
{
// delegate call to object_t::size()
return m_value.object->size();
}
default:
{
// all other types have size 1
return 1;
}
}
}
/*!
@brief returns the maximum possible number of elements
Returns the maximum number of elements a JSON value is able to hold due to
system or library implementation limitations, i.e. `std::distance(begin(),
end())` for the JSON value.
@return The return value depends on the different types and is
defined as follows:
Value type | return value
----------- | -------------
null | `0` (same as `size()`)
boolean | `1` (same as `size()`)
string | `1` (same as `size()`)
number | `1` (same as `size()`)
object | result of function `object_t::max_size()`
array | result of function `array_t::max_size()`
@liveexample{The following code calls `max_size()` on the different value
types. Note the output is implementation specific.,max_size}
@complexity Constant, as long as @ref array_t and @ref object_t satisfy
the Container concept; that is, their `max_size()` functions have constant
complexity.
@iterators No changes.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@requirement This function helps `basic_json` satisfying the
[Container](http://en.cppreference.com/w/cpp/concept/Container)
requirements:
- The complexity is constant.
- Has the semantics of returning `b.size()` where `b` is the largest
possible JSON value.
@sa @ref size() -- returns the number of elements
@since version 1.0.0
*/
size_type max_size() const noexcept
{
switch (m_type)
{
case value_t::array:
{
// delegate call to array_t::max_size()
return m_value.array->max_size();
}
case value_t::object:
{
// delegate call to object_t::max_size()
return m_value.object->max_size();
}
default:
{
// all other types have max_size() == size()
return size();
}
}
}
/// @}
///////////////
// modifiers //
///////////////
/// @name modifiers
/// @{
/*!
@brief clears the contents
Clears the content of a JSON value and resets it to the default value as
if @ref basic_json(value_t) would have been called with the current value
type from @ref type():
Value type | initial value
----------- | -------------
null | `null`
boolean | `false`
string | `""`
number | `0`
object | `{}`
array | `[]`
@post Has the same effect as calling
@code {.cpp}
*this = basic_json(type());
@endcode
@liveexample{The example below shows the effect of `clear()` to different
JSON types.,clear}
@complexity Linear in the size of the JSON value.
@iterators All iterators, pointers and references related to this container
are invalidated.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@sa @ref basic_json(value_t) -- constructor that creates an object with the
same value than calling `clear()`
@since version 1.0.0
*/
void clear() noexcept
{
switch (m_type)
{
case value_t::number_integer:
{
m_value.number_integer = 0;
break;
}
case value_t::number_unsigned:
{
m_value.number_unsigned = 0;
break;
}
case value_t::number_float:
{
m_value.number_float = 0.0;
break;
}
case value_t::boolean:
{
m_value.boolean = false;
break;
}
case value_t::string:
{
m_value.string->clear();
break;
}
case value_t::array:
{
m_value.array->clear();
break;
}
case value_t::object:
{
m_value.object->clear();
break;
}
default:
break;
}
}
/*!
@brief add an object to an array
Appends the given element @a val to the end of the JSON value. If the
function is called on a JSON null value, an empty array is created before
appending @a val.
@param[in] val the value to add to the JSON array
@throw type_error.308 when called on a type other than JSON array or
null; example: `"cannot use push_back() with number"`
@complexity Amortized constant.
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON array. Note how the `null` value was silently
converted to a JSON array.,push_back}
@since version 1.0.0
*/
void push_back(basic_json&& val)
{
// push_back only works for null objects or arrays
if (JSON_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array (move semantics)
m_value.array->push_back(std::move(val));
// invalidate object
val.m_type = value_t::null;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(basic_json&& val)
{
push_back(std::move(val));
return *this;
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
void push_back(const basic_json& val)
{
// push_back only works for null objects or arrays
if (JSON_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array
m_value.array->push_back(val);
}
/*!
@brief add an object to an array
@copydoc push_back(basic_json&&)
*/
reference operator+=(const basic_json& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
Inserts the given element @a val to the JSON object. If the function is
called on a JSON null value, an empty object is created before inserting
@a val.
@param[in] val the value to add to the JSON object
@throw type_error.308 when called on a type other than JSON object or
null; example: `"cannot use push_back() with number"`
@complexity Logarithmic in the size of the container, O(log(`size()`)).
@liveexample{The example shows how `push_back()` and `+=` can be used to
add elements to a JSON object. Note how the `null` value was silently
converted to a JSON object.,push_back__object_t__value}
@since version 1.0.0
*/
void push_back(const typename object_t::value_type& val)
{
// push_back only works for null objects or objects
if (JSON_UNLIKELY(not(is_null() or is_object())))
{
JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
}
// transform null object into an object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// add element to array
m_value.object->insert(val);
}
/*!
@brief add an object to an object
@copydoc push_back(const typename object_t::value_type&)
*/
reference operator+=(const typename object_t::value_type& val)
{
push_back(val);
return *this;
}
/*!
@brief add an object to an object
This function allows to use `push_back` with an initializer list. In case
1. the current value is an object,
2. the initializer list @a init contains only two elements, and
3. the first element of @a init is a string,
@a init is converted into an object element and added using
@ref push_back(const typename object_t::value_type&). Otherwise, @a init
is converted to a JSON value and added using @ref push_back(basic_json&&).
@param[in] init an initializer list
@complexity Linear in the size of the initializer list @a init.
@note This function is required to resolve an ambiguous overload error,
because pairs like `{"key", "value"}` can be both interpreted as
`object_t::value_type` or `std::initializer_list<basic_json>`, see
https://github.com/nlohmann/json/issues/235 for more information.
@liveexample{The example shows how initializer lists are treated as
objects when possible.,push_back__initializer_list}
*/
void push_back(initializer_list_t init)
{
if (is_object() and init.size() == 2 and (*init.begin())->is_string())
{
basic_json&& key = init.begin()->moved_or_copied();
push_back(typename object_t::value_type(
std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
}
else
{
push_back(basic_json(init));
}
}
/*!
@brief add an object to an object
@copydoc push_back(initializer_list_t)
*/
reference operator+=(initializer_list_t init)
{
push_back(init);
return *this;
}
/*!
@brief add an object to an array
Creates a JSON value from the passed parameters @a args to the end of the
JSON value. If the function is called on a JSON null value, an empty array
is created before appending the value created from @a args.
@param[in] args arguments to forward to a constructor of @ref basic_json
@tparam Args compatible types to create a @ref basic_json object
@throw type_error.311 when called on a type other than JSON array or
null; example: `"cannot use emplace_back() with number"`
@complexity Amortized constant.
@liveexample{The example shows how `push_back()` can be used to add
elements to a JSON array. Note how the `null` value was silently converted
to a JSON array.,emplace_back}
@since version 2.0.8
*/
template<class... Args>
void emplace_back(Args&& ... args)
{
// emplace_back only works for null objects or arrays
if (JSON_UNLIKELY(not(is_null() or is_array())))
{
JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name())));
}
// transform null object into an array
if (is_null())
{
m_type = value_t::array;
m_value = value_t::array;
assert_invariant();
}
// add element to array (perfect forwarding)
m_value.array->emplace_back(std::forward<Args>(args)...);
}
/*!
@brief add an object to an object if key does not exist
Inserts a new element into a JSON object constructed in-place with the
given @a args if there is no element with the key in the container. If the
function is called on a JSON null value, an empty object is created before
appending the value created from @a args.
@param[in] args arguments to forward to a constructor of @ref basic_json
@tparam Args compatible types to create a @ref basic_json object
@return a pair consisting of an iterator to the inserted element, or the
already-existing element if no insertion happened, and a bool
denoting whether the insertion took place.
@throw type_error.311 when called on a type other than JSON object or
null; example: `"cannot use emplace() with number"`
@complexity Logarithmic in the size of the container, O(log(`size()`)).
@liveexample{The example shows how `emplace()` can be used to add elements
to a JSON object. Note how the `null` value was silently converted to a
JSON object. Further note how no value is added if there was already one
value stored with the same key.,emplace}
@since version 2.0.8
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&& ... args)
{
// emplace only works for null objects or arrays
if (JSON_UNLIKELY(not(is_null() or is_object())))
{
JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name())));
}
// transform null object into an object
if (is_null())
{
m_type = value_t::object;
m_value = value_t::object;
assert_invariant();
}
// add element to array (perfect forwarding)
auto res = m_value.object->emplace(std::forward<Args>(args)...);
// create result iterator and set iterator to the result of emplace
auto it = begin();
it.m_it.object_iterator = res.first;
// return pair of iterator and boolean
return {it, res.second};
}
/*!
@brief inserts element
Inserts element @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] val element to insert
@return iterator pointing to the inserted @a val.
@throw type_error.309 if called on JSON values other than arrays;
example: `"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@complexity Constant plus linear in the distance between @a pos and end of
the container.
@liveexample{The example shows how `insert()` is used.,insert}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const basic_json& val)
{
// insert only works for arrays
if (JSON_LIKELY(is_array()))
{
// check if iterator pos fits to this JSON value
if (JSON_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, val);
return result;
}
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
/*!
@brief inserts element
@copydoc insert(const_iterator, const basic_json&)
*/
iterator insert(const_iterator pos, basic_json&& val)
{
return insert(pos, val);
}
/*!
@brief inserts elements
Inserts @a cnt copies of @a val before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] cnt number of copies of @a val to insert
@param[in] val element to insert
@return iterator pointing to the first element inserted, or @a pos if
`cnt==0`
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@complexity Linear in @a cnt plus linear in the distance between @a pos
and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__count}
@since version 1.0.0
*/
iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
{
// insert only works for arrays
if (JSON_LIKELY(is_array()))
{
// check if iterator pos fits to this JSON value
if (JSON_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
return result;
}
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
/*!
@brief inserts elements
Inserts elements from range `[first, last)` before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@throw invalid_iterator.211 if @a first or @a last are iterators into
container for which insert is called; example: `"passed iterators may not
belong to container"`
@return iterator pointing to the first element inserted, or @a pos if
`first==last`
@complexity Linear in `std::distance(first, last)` plus linear in the
distance between @a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__range}
@since version 1.0.0
*/
iterator insert(const_iterator pos, const_iterator first, const_iterator last)
{
// insert only works for arrays
if (JSON_UNLIKELY(not is_array()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if iterator pos fits to this JSON value
if (JSON_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// check if range iterators belong to the same JSON object
if (JSON_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
if (JSON_UNLIKELY(first.m_object == this))
{
JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container"));
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(
pos.m_it.array_iterator,
first.m_it.array_iterator,
last.m_it.array_iterator);
return result;
}
/*!
@brief inserts elements
Inserts elements from initializer list @a ilist before iterator @a pos.
@param[in] pos iterator before which the content will be inserted; may be
the end() iterator
@param[in] ilist initializer list to insert the values from
@throw type_error.309 if called on JSON values other than arrays; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if @a pos is not an iterator of *this;
example: `"iterator does not fit current value"`
@return iterator pointing to the first element inserted, or @a pos if
`ilist` is empty
@complexity Linear in `ilist.size()` plus linear in the distance between
@a pos and end of the container.
@liveexample{The example shows how `insert()` is used.,insert__ilist}
@since version 1.0.0
*/
iterator insert(const_iterator pos, initializer_list_t ilist)
{
// insert only works for arrays
if (JSON_UNLIKELY(not is_array()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if iterator pos fits to this JSON value
if (JSON_UNLIKELY(pos.m_object != this))
{
JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
}
// insert to array and return iterator
iterator result(this);
result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, ilist.begin(), ilist.end());
return result;
}
/*!
@brief inserts elements
Inserts elements from range `[first, last)`.
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.309 if called on JSON values other than objects; example:
`"cannot use insert() with string"`
@throw invalid_iterator.202 if iterator @a first or @a last does does not
point to an object; example: `"iterators first and last must point to
objects"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number
of elements to insert.
@liveexample{The example shows how `insert()` is used.,insert__range_object}
@since version 3.0.0
*/
void insert(const_iterator first, const_iterator last)
{
// insert only works for objects
if (JSON_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
}
// check if range iterators belong to the same JSON object
if (JSON_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
// passed iterators must belong to objects
if (JSON_UNLIKELY(not first.m_object->is_object()))
{
JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
}
m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
}
/*!
@brief updates a JSON object from another object, overwriting existing keys
Inserts all values from JSON object @a j and overwrites existing keys.
@param[in] j JSON object to read values from
@throw type_error.312 if called on JSON values other than objects; example:
`"cannot use update() with string"`
@complexity O(N*log(size() + N)), where N is the number of elements to
insert.
@liveexample{The example shows how `update()` is used.,update}
@sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
@since version 3.0.0
*/
void update(const_reference j)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
if (JSON_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
}
if (JSON_UNLIKELY(not j.is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name())));
}
for (auto it = j.begin(); it != j.end(); ++it)
{
m_value.object->operator[](it.key()) = it.value();
}
}
/*!
@brief updates a JSON object from another object, overwriting existing keys
Inserts all values from from range `[first, last)` and overwrites existing
keys.
@param[in] first begin of the range of elements to insert
@param[in] last end of the range of elements to insert
@throw type_error.312 if called on JSON values other than objects; example:
`"cannot use update() with string"`
@throw invalid_iterator.202 if iterator @a first or @a last does does not
point to an object; example: `"iterators first and last must point to
objects"`
@throw invalid_iterator.210 if @a first and @a last do not belong to the
same JSON value; example: `"iterators do not fit"`
@complexity O(N*log(size() + N)), where N is the number of elements to
insert.
@liveexample{The example shows how `update()` is used__range.,update}
@sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
@since version 3.0.0
*/
void update(const_iterator first, const_iterator last)
{
// implicitly convert null value to an empty object
if (is_null())
{
m_type = value_t::object;
m_value.object = create<object_t>();
assert_invariant();
}
if (JSON_UNLIKELY(not is_object()))
{
JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
}
// check if range iterators belong to the same JSON object
if (JSON_UNLIKELY(first.m_object != last.m_object))
{
JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
}
// passed iterators must belong to objects
if (JSON_UNLIKELY(not first.m_object->is_object()
or not first.m_object->is_object()))
{
JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
}
for (auto it = first; it != last; ++it)
{
m_value.object->operator[](it.key()) = it.value();
}
}
/*!
@brief exchanges the values
Exchanges the contents of the JSON value with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other JSON value to exchange the contents with
@complexity Constant.
@liveexample{The example below shows how JSON values can be swapped with
`swap()`.,swap__reference}
@since version 1.0.0
*/
void swap(reference other) noexcept (
std::is_nothrow_move_constructible<value_t>::value and
std::is_nothrow_move_assignable<value_t>::value and
std::is_nothrow_move_constructible<json_value>::value and
std::is_nothrow_move_assignable<json_value>::value
)
{
std::swap(m_type, other.m_type);
std::swap(m_value, other.m_value);
assert_invariant();
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON array with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other array to exchange the contents with
@throw type_error.310 when JSON value is not an array; example: `"cannot
use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how arrays can be swapped with
`swap()`.,swap__array_t}
@since version 1.0.0
*/
void swap(array_t& other)
{
// swap only works for arrays
if (JSON_LIKELY(is_array()))
{
std::swap(*(m_value.array), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON object with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other object to exchange the contents with
@throw type_error.310 when JSON value is not an object; example:
`"cannot use swap() with string"`
@complexity Constant.
@liveexample{The example below shows how objects can be swapped with
`swap()`.,swap__object_t}
@since version 1.0.0
*/
void swap(object_t& other)
{
// swap only works for objects
if (JSON_LIKELY(is_object()))
{
std::swap(*(m_value.object), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/*!
@brief exchanges the values
Exchanges the contents of a JSON string with those of @a other. Does not
invoke any move, copy, or swap operations on individual elements. All
iterators and references remain valid. The past-the-end iterator is
invalidated.
@param[in,out] other string to exchange the contents with
@throw type_error.310 when JSON value is not a string; example: `"cannot
use swap() with boolean"`
@complexity Constant.
@liveexample{The example below shows how strings can be swapped with
`swap()`.,swap__string_t}
@since version 1.0.0
*/
void swap(string_t& other)
{
// swap only works for strings
if (JSON_LIKELY(is_string()))
{
std::swap(*(m_value.string), other);
}
else
{
JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
}
}
/// @}
public:
//////////////////////////////////////////
// lexicographical comparison operators //
//////////////////////////////////////////
/// @name lexicographical comparison operators
/// @{
/*!
@brief comparison: equal
Compares two JSON values for equality according to the following rules:
- Two JSON values are equal if (1) they are from the same type and (2)
their stored values are the same according to their respective
`operator==`.
- Integer and floating-point numbers are automatically converted before
comparison. Note than two NaN values are always treated as unequal.
- Two JSON null values are equal.
@note Floating-point inside JSON values numbers are compared with
`json::number_float_t::operator==` which is `double::operator==` by
default. To compare floating-point while respecting an epsilon, an alternative
[comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39)
could be used, for instance
@code {.cpp}
template <typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type>
inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept
{
return std::abs(a - b) <= epsilon;
}
@endcode
@note NaN values never compare equal to themselves or to other NaN values.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are equal
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@complexity Linear.
@liveexample{The example demonstrates comparing several JSON
types.,operator__equal}
@since version 1.0.0
*/
friend bool operator==(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
return (*lhs.m_value.array == *rhs.m_value.array);
case value_t::object:
return (*lhs.m_value.object == *rhs.m_value.object);
case value_t::null:
return true;
case value_t::string:
return (*lhs.m_value.string == *rhs.m_value.string);
case value_t::boolean:
return (lhs.m_value.boolean == rhs.m_value.boolean);
case value_t::number_integer:
return (lhs.m_value.number_integer == rhs.m_value.number_integer);
case value_t::number_unsigned:
return (lhs.m_value.number_unsigned == rhs.m_value.number_unsigned);
case value_t::number_float:
return (lhs.m_value.number_float == rhs.m_value.number_float);
default:
return false;
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return (static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float);
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return (lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer));
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return (static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float);
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return (lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned));
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return (static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return (lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned));
}
return false;
}
/*!
@brief comparison: equal
@copydoc operator==(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs == basic_json(rhs));
}
/*!
@brief comparison: equal
@copydoc operator==(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) == rhs);
}
/*!
@brief comparison: not equal
Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether the values @a lhs and @a rhs are not equal
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__notequal}
@since version 1.0.0
*/
friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs == rhs);
}
/*!
@brief comparison: not equal
@copydoc operator!=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs != basic_json(rhs));
}
/*!
@brief comparison: not equal
@copydoc operator!=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) != rhs);
}
/*!
@brief comparison: less than
Compares whether one JSON value @a lhs is less than another JSON value @a
rhs according to the following rules:
- If @a lhs and @a rhs have the same type, the values are compared using
the default `<` operator.
- Integer and floating-point numbers are automatically converted before
comparison
- In case @a lhs and @a rhs have different types, the values are ignored
and the order of the types is considered, see
@ref operator<(const value_t, const value_t).
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__less}
@since version 1.0.0
*/
friend bool operator<(const_reference lhs, const_reference rhs) noexcept
{
const auto lhs_type = lhs.type();
const auto rhs_type = rhs.type();
if (lhs_type == rhs_type)
{
switch (lhs_type)
{
case value_t::array:
return (*lhs.m_value.array) < (*rhs.m_value.array);
case value_t::object:
return *lhs.m_value.object < *rhs.m_value.object;
case value_t::null:
return false;
case value_t::string:
return *lhs.m_value.string < *rhs.m_value.string;
case value_t::boolean:
return lhs.m_value.boolean < rhs.m_value.boolean;
case value_t::number_integer:
return lhs.m_value.number_integer < rhs.m_value.number_integer;
case value_t::number_unsigned:
return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned;
case value_t::number_float:
return lhs.m_value.number_float < rhs.m_value.number_float;
default:
return false;
}
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
{
return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
}
else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
{
return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
}
else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
{
return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
}
// We only reach this line if we cannot compare values. In that case,
// we compare types. Note we have to call the operator explicitly,
// because MSVC has problems otherwise.
return operator<(lhs_type, rhs_type);
}
/*!
@brief comparison: less than
@copydoc operator<(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs < basic_json(rhs));
}
/*!
@brief comparison: less than
@copydoc operator<(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) < rhs);
}
/*!
@brief comparison: less than or equal
Compares whether one JSON value @a lhs is less than or equal to another
JSON value by calculating `not (rhs < lhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is less than or equal to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greater}
@since version 1.0.0
*/
friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
{
return not (rhs < lhs);
}
/*!
@brief comparison: less than or equal
@copydoc operator<=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs <= basic_json(rhs));
}
/*!
@brief comparison: less than or equal
@copydoc operator<=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) <= rhs);
}
/*!
@brief comparison: greater than
Compares whether one JSON value @a lhs is greater than another
JSON value by calculating `not (lhs <= rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__lessequal}
@since version 1.0.0
*/
friend bool operator>(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs <= rhs);
}
/*!
@brief comparison: greater than
@copydoc operator>(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs > basic_json(rhs));
}
/*!
@brief comparison: greater than
@copydoc operator>(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) > rhs);
}
/*!
@brief comparison: greater than or equal
Compares whether one JSON value @a lhs is greater than or equal to another
JSON value by calculating `not (lhs < rhs)`.
@param[in] lhs first JSON value to consider
@param[in] rhs second JSON value to consider
@return whether @a lhs is greater than or equal to @a rhs
@complexity Linear.
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@liveexample{The example demonstrates comparing several JSON
types.,operator__greaterequal}
@since version 1.0.0
*/
friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
{
return not (lhs < rhs);
}
/*!
@brief comparison: greater than or equal
@copydoc operator>=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
{
return (lhs >= basic_json(rhs));
}
/*!
@brief comparison: greater than or equal
@copydoc operator>=(const_reference, const_reference)
*/
template<typename ScalarType, typename std::enable_if<
std::is_scalar<ScalarType>::value, int>::type = 0>
friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
{
return (basic_json(lhs) >= rhs);
}
/// @}
///////////////////
// serialization //
///////////////////
/// @name serialization
/// @{
/*!
@brief serialize to stream
Serialize the given JSON value @a j to the output stream @a o. The JSON
value will be serialized using the @ref dump member function.
- The indentation of the output can be controlled with the member variable
`width` of the output stream @a o. For instance, using the manipulator
`std::setw(4)` on @a o sets the indentation level to `4` and the
serialization result is the same as calling `dump(4)`.
- The indentation characrer can be controlled with the member variable
`fill` of the output stream @a o. For instance, the manipulator
`std::setfill('\\t')` sets indentation to use a tab character rather than
the default space character.
@param[in,out] o stream to serialize to
@param[in] j JSON value to serialize
@return the stream @a o
@complexity Linear.
@liveexample{The example below shows the serialization with different
parameters to `width` to adjust the indentation level.,operator_serialize}
@since version 1.0.0; indentaction character added in version 3.0.0
*/
friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
{
// read width member and use it as indentation parameter if nonzero
const bool pretty_print = (o.width() > 0);
const auto indentation = (pretty_print ? o.width() : 0);
// reset width to 0 for subsequent calls to this stream
o.width(0);
// do the actual serialization
serializer s(detail::output_adapter<char>(o), o.fill());
s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
return o;
}
/*!
@brief serialize to stream
@deprecated This stream operator is deprecated and will be removed in a
future version of the library. Please use
@ref operator<<(std::ostream&, const basic_json&)
instead; that is, replace calls like `j >> o;` with `o << j;`.
@since version 1.0.0; deprecated since version 3.0.0
*/
JSON_DEPRECATED
friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
{
return o << j;
}
/// @}
/////////////////////
// deserialization //
/////////////////////
/// @name deserialization
/// @{
/*!
@brief deserialize from a compatible input
This function reads from a compatible input. Examples are:
- an array of 1-byte values
- strings with character/literal type with size of 1 byte
- input streams
- container with contiguous storage of 1-byte values. Compatible container
types include `std::vector`, `std::string`, `std::array`,
`std::valarray`, and `std::initializer_list`. Furthermore, C-style
arrays can be used with `std::begin()`/`std::end()`. User-defined
containers can be used as long as they implement random-access iterators
and a contiguous storage.
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@pre The container storage is contiguous. Violating this precondition
yields undefined behavior. **This precondition is enforced with an
assertion.**
@pre Each element of the container has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with a noncompliant container and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@param[in] i input to read from
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@return result of the deserialization
@throw parse_error.101 if a parse error occurs; example: `""unexpected end
of input; expected string literal""`
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an array.,parse__array__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__string__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function with
and without callback function.,parse__istream__parser_callback_t}
@liveexample{The example below demonstrates the `parse()` function reading
from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
@since version 2.0.3 (contiguous containers)
*/
static basic_json parse(detail::input_adapter i,
const parser_callback_t cb = nullptr,
const bool allow_exceptions = true)
{
basic_json result;
parser(i, cb, allow_exceptions).parse(true, result);
return result;
}
/*!
@copydoc basic_json parse(detail::input_adapter, const parser_callback_t)
*/
static basic_json parse(detail::input_adapter& i,
const parser_callback_t cb = nullptr,
const bool allow_exceptions = true)
{
basic_json result;
parser(i, cb, allow_exceptions).parse(true, result);
return result;
}
static bool accept(detail::input_adapter i)
{
return parser(i).accept(true);
}
static bool accept(detail::input_adapter& i)
{
return parser(i).accept(true);
}
/*!
@brief deserialize from an iterator range with contiguous storage
This function reads from an iterator range of a container with contiguous
storage of 1-byte values. Compatible container types include
`std::vector`, `std::string`, `std::array`, `std::valarray`, and
`std::initializer_list`. Furthermore, C-style arrays can be used with
`std::begin()`/`std::end()`. User-defined containers can be used as long
as they implement random-access iterators and a contiguous storage.
@pre The iterator range is contiguous. Violating this precondition yields
undefined behavior. **This precondition is enforced with an assertion.**
@pre Each element in the range has a size of 1 byte. Violating this
precondition yields undefined behavior. **This precondition is enforced
with a static assertion.**
@warning There is no way to enforce all preconditions at compile-time. If
the function is called with noncompliant iterators and with
assertions switched off, the behavior is undefined and will most
likely yield segmentation violation.
@tparam IteratorType iterator of container with contiguous storage
@param[in] first begin of the range to parse (included)
@param[in] last end of the range to parse (excluded)
@param[in] cb a parser callback function of type @ref parser_callback_t
which is used to control the deserialization by filtering unwanted values
(optional)
@param[in] allow_exceptions whether to throw exceptions in case of a
parse error (optional, true by default)
@return result of the deserialization
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser. The complexity can be higher if the parser callback function
@a cb has a super-linear complexity.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below demonstrates the `parse()` function reading
from an iterator range.,parse__iteratortype__parser_callback_t}
@since version 2.0.3
*/
template<class IteratorType, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
static basic_json parse(IteratorType first, IteratorType last,
const parser_callback_t cb = nullptr,
const bool allow_exceptions = true)
{
basic_json result;
parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result);
return result;
}
template<class IteratorType, typename std::enable_if<
std::is_base_of<
std::random_access_iterator_tag,
typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
static bool accept(IteratorType first, IteratorType last)
{
return parser(detail::input_adapter(first, last)).accept(true);
}
/*!
@brief deserialize from stream
@deprecated This stream operator is deprecated and will be removed in a
future version of the library. Please use
@ref operator>>(std::istream&, basic_json&)
instead; that is, replace calls like `j << i;` with `i >> j;`.
@since version 1.0.0; deprecated since version 3.0.0
*/
JSON_DEPRECATED
friend std::istream& operator<<(basic_json& j, std::istream& i)
{
return operator>>(i, j);
}
/*!
@brief deserialize from stream
Deserializes an input stream to a JSON value.
@param[in,out] i input stream to read a serialized JSON value from
@param[in,out] j JSON value to write the deserialized input to
@throw parse_error.101 in case of an unexpected token
@throw parse_error.102 if to_unicode fails or surrogate error
@throw parse_error.103 if to_unicode fails
@complexity Linear in the length of the input. The parser is a predictive
LL(1) parser.
@note A UTF-8 byte order mark is silently ignored.
@liveexample{The example below shows how a JSON value is constructed by
reading a serialization from a stream.,operator_deserialize}
@sa parse(std::istream&, const parser_callback_t) for a variant with a
parser callback function to filter values while parsing
@since version 1.0.0
*/
friend std::istream& operator>>(std::istream& i, basic_json& j)
{
parser(detail::input_adapter(i)).parse(false, j);
return i;
}
/// @}
///////////////////////////
// convenience functions //
///////////////////////////
/*!
@brief return the type as string
Returns the type name as string to be used in error messages - usually to
indicate that a function was called on a wrong JSON type.
@return a string representation of a the @a m_type member:
Value type | return value
----------- | -------------
null | `"null"`
boolean | `"boolean"`
string | `"string"`
number | `"number"` (for all number types)
object | `"object"`
array | `"array"`
discarded | `"discarded"`
@exceptionsafety No-throw guarantee: this function never throws exceptions.
@complexity Constant.
@liveexample{The following code exemplifies `type_name()` for all JSON
types.,type_name}
@sa @ref type() -- return the type of the JSON value
@sa @ref operator value_t() -- return the type of the JSON value (implicit)
@since version 1.0.0, public since 2.1.0, `const char*` and `noexcept`
since 3.0.0
*/
const char* type_name() const noexcept
{
{
switch (m_type)
{
case value_t::null:
return "null";
case value_t::object:
return "object";
case value_t::array:
return "array";
case value_t::string:
return "string";
case value_t::boolean:
return "boolean";
case value_t::discarded:
return "discarded";
default:
return "number";
}
}
}
private:
//////////////////////
// member variables //
//////////////////////
/// the type of the current element
value_t m_type = value_t::null;
/// the value of the current element
json_value m_value = {};
//////////////////////////////////////////
// binary serialization/deserialization //
//////////////////////////////////////////
/// @name binary serialization/deserialization support
/// @{
public:
/*!
@brief create a CBOR serialization of a given JSON value
Serializes a given JSON value @a j to a byte vector using the CBOR (Concise
Binary Object Representation) serialization format. CBOR is a binary
serialization format which aims to be more compact than JSON itself, yet
more efficient to parse.
The library uses the following mapping from JSON values types to
CBOR types according to the CBOR specification (RFC 7049):
JSON value type | value/range | CBOR type | first byte
--------------- | ------------------------------------------ | ---------------------------------- | ---------------
null | `null` | Null | 0xf6
boolean | `true` | True | 0xf5
boolean | `false` | False | 0xf4
number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3b
number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3a
number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39
number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38
number_integer | -24..-1 | Negative integer | 0x20..0x37
number_integer | 0..23 | Integer | 0x00..0x17
number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18
number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1a
number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1b
number_unsigned | 0..23 | Integer | 0x00..0x17
number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18
number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1a
number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1b
number_float | *any value* | Double-Precision Float | 0xfb
string | *length*: 0..23 | UTF-8 string | 0x60..0x77
string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78
string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79
string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7a
string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7b
array | *size*: 0..23 | array | 0x80..0x97
array | *size*: 23..255 | array (1 byte follow) | 0x98
array | *size*: 256..65535 | array (2 bytes follow) | 0x99
array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9a
array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9b
object | *size*: 0..23 | map | 0xa0..0xb7
object | *size*: 23..255 | map (1 byte follow) | 0xb8
object | *size*: 256..65535 | map (2 bytes follow) | 0xb9
object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xba
object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xbb
@note The mapping is **complete** in the sense that any JSON value type
can be converted to a CBOR value.
@note If NaN or Infinity are stored inside a JSON number, they are
serialized properly. This behavior differs from the @ref dump()
function which serializes NaN or Infinity to `null`.
@note The following CBOR types are not used in the conversion:
- byte strings (0x40..0x5f)
- UTF-8 strings terminated by "break" (0x7f)
- arrays terminated by "break" (0x9f)
- maps terminated by "break" (0xbf)
- date/time (0xc0..0xc1)
- bignum (0xc2..0xc3)
- decimal fraction (0xc4)
- bigfloat (0xc5)
- tagged items (0xc6..0xd4, 0xd8..0xdb)
- expected conversions (0xd5..0xd7)
- simple values (0xe0..0xf3, 0xf8)
- undefined (0xf7)
- half and single-precision floats (0xf9-0xfa)
- break (0xff)
@param[in] j JSON value to serialize
@return MessagePack serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in CBOR format.,to_cbor}
@sa http://cbor.io
@sa @ref from_cbor(const std::vector<uint8_t>&, const size_t) for the
analogous deserialization
@sa @ref to_msgpack(const basic_json&) for the related MessagePack format
@since version 2.0.9
*/
static std::vector<uint8_t> to_cbor(const basic_json& j)
{
std::vector<uint8_t> result;
to_cbor(j, result);
return result;
}
static void to_cbor(const basic_json& j, detail::output_adapter<uint8_t> o)
{
binary_writer<uint8_t>(o).write_cbor(j);
}
static void to_cbor(const basic_json& j, detail::output_adapter<char> o)
{
binary_writer<char>(o).write_cbor(j);
}
/*!
@brief create a MessagePack serialization of a given JSON value
Serializes a given JSON value @a j to a byte vector using the MessagePack
serialization format. MessagePack is a binary serialization format which
aims to be more compact than JSON itself, yet more efficient to parse.
The library uses the following mapping from JSON values types to
MessagePack types according to the MessagePack specification:
JSON value type | value/range | MessagePack type | first byte
--------------- | --------------------------------- | ---------------- | ----------
null | `null` | nil | 0xc0
boolean | `true` | true | 0xc3
boolean | `false` | false | 0xc2
number_integer | -9223372036854775808..-2147483649 | int64 | 0xd3
number_integer | -2147483648..-32769 | int32 | 0xd2
number_integer | -32768..-129 | int16 | 0xd1
number_integer | -128..-33 | int8 | 0xd0
number_integer | -32..-1 | negative fixint | 0xe0..0xff
number_integer | 0..127 | positive fixint | 0x00..0x7f
number_integer | 128..255 | uint 8 | 0xcc
number_integer | 256..65535 | uint 16 | 0xcd
number_integer | 65536..4294967295 | uint 32 | 0xce
number_integer | 4294967296..18446744073709551615 | uint 64 | 0xcf
number_unsigned | 0..127 | positive fixint | 0x00..0x7f
number_unsigned | 128..255 | uint 8 | 0xcc
number_unsigned | 256..65535 | uint 16 | 0xcd
number_unsigned | 65536..4294967295 | uint 32 | 0xce
number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xcf
number_float | *any value* | float 64 | 0xcb
string | *length*: 0..31 | fixstr | 0xa0..0xbf
string | *length*: 32..255 | str 8 | 0xd9
string | *length*: 256..65535 | str 16 | 0xda
string | *length*: 65536..4294967295 | str 32 | 0xdb
array | *size*: 0..15 | fixarray | 0x90..0x9f
array | *size*: 16..65535 | array 16 | 0xdc
array | *size*: 65536..4294967295 | array 32 | 0xdd
object | *size*: 0..15 | fix map | 0x80..0x8f
object | *size*: 16..65535 | map 16 | 0xde
object | *size*: 65536..4294967295 | map 32 | 0xdf
@note The mapping is **complete** in the sense that any JSON value type
can be converted to a MessagePack value.
@note The following values can **not** be converted to a MessagePack value:
- strings with more than 4294967295 bytes
- arrays with more than 4294967295 elements
- objects with more than 4294967295 elements
@note The following MessagePack types are not used in the conversion:
- bin 8 - bin 32 (0xc4..0xc6)
- ext 8 - ext 32 (0xc7..0xc9)
- float 32 (0xca)
- fixext 1 - fixext 16 (0xd4..0xd8)
@note Any MessagePack output created @ref to_msgpack can be successfully
parsed by @ref from_msgpack.
@note If NaN or Infinity are stored inside a JSON number, they are
serialized properly. This behavior differs from the @ref dump()
function which serializes NaN or Infinity to `null`.
@param[in] j JSON value to serialize
@return MessagePack serialization as byte vector
@complexity Linear in the size of the JSON value @a j.
@liveexample{The example shows the serialization of a JSON value to a byte
vector in MessagePack format.,to_msgpack}
@sa http://msgpack.org
@sa @ref from_msgpack(const std::vector<uint8_t>&, const size_t) for the
analogous deserialization
@sa @ref to_cbor(const basic_json& for the related CBOR format
@since version 2.0.9
*/
static std::vector<uint8_t> to_msgpack(const basic_json& j)
{
std::vector<uint8_t> result;
to_msgpack(j, result);
return result;
}
static void to_msgpack(const basic_json& j, detail::output_adapter<uint8_t> o)
{
binary_writer<uint8_t>(o).write_msgpack(j);
}
static void to_msgpack(const basic_json& j, detail::output_adapter<char> o)
{
binary_writer<char>(o).write_msgpack(j);
}
/*!
@brief create a JSON value from an input in CBOR format
Deserializes a given input @a i to a JSON value using the CBOR (Concise
Binary Object Representation) serialization format.
The library maps CBOR types to JSON value types as follows:
CBOR type | JSON value type | first byte
---------------------- | --------------- | ----------
Integer | number_unsigned | 0x00..0x17
Unsigned integer | number_unsigned | 0x18
Unsigned integer | number_unsigned | 0x19
Unsigned integer | number_unsigned | 0x1a
Unsigned integer | number_unsigned | 0x1b
Negative integer | number_integer | 0x20..0x37
Negative integer | number_integer | 0x38
Negative integer | number_integer | 0x39
Negative integer | number_integer | 0x3a
Negative integer | number_integer | 0x3b
Negative integer | number_integer | 0x40..0x57
UTF-8 string | string | 0x60..0x77
UTF-8 string | string | 0x78
UTF-8 string | string | 0x79
UTF-8 string | string | 0x7a
UTF-8 string | string | 0x7b
UTF-8 string | string | 0x7f
array | array | 0x80..0x97
array | array | 0x98
array | array | 0x99
array | array | 0x9a
array | array | 0x9b
array | array | 0x9f
map | object | 0xa0..0xb7
map | object | 0xb8
map | object | 0xb9
map | object | 0xba
map | object | 0xbb
map | object | 0xbf
False | `false` | 0xf4
True | `true` | 0xf5
Nill | `null` | 0xf6
Half-Precision Float | number_float | 0xf9
Single-Precision Float | number_float | 0xfa
Double-Precision Float | number_float | 0xfb
@warning The mapping is **incomplete** in the sense that not all CBOR
types can be converted to a JSON value. The following CBOR types
are not supported and will yield parse errors (parse_error.112):
- byte strings (0x40..0x5f)
- date/time (0xc0..0xc1)
- bignum (0xc2..0xc3)
- decimal fraction (0xc4)
- bigfloat (0xc5)
- tagged items (0xc6..0xd4, 0xd8..0xdb)
- expected conversions (0xd5..0xd7)
- simple values (0xe0..0xf3, 0xf8)
- undefined (0xf7)
@warning CBOR allows map keys of any type, whereas JSON only allows
strings as keys in object values. Therefore, CBOR maps with keys
other than UTF-8 strings are rejected (parse_error.113).
@note Any CBOR output created @ref to_cbor can be successfully parsed by
@ref from_cbor.
@param[in] i an input in CBOR format convertible to an input adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@return deserialized JSON value
@throw parse_error.110 if the given input ends prematurely or the end of
file was not reached when @a strict was set to true
@throw parse_error.112 if unsupported features from CBOR were
used in the given input @a v or if the input is not valid CBOR
@throw parse_error.113 if a string was expected as map key, but not found
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in CBOR
format to a JSON value.,from_cbor}
@sa http://cbor.io
@sa @ref to_cbor(const basic_json&) for the analogous serialization
@sa @ref from_msgpack(detail::input_adapter, const bool) for the
related MessagePack format
@since version 2.0.9; parameter @a start_index since 2.1.1; changed to
consume input adapters, removed start_index parameter, and added
@a strict parameter since 3.0.0
*/
static basic_json from_cbor(detail::input_adapter i,
const bool strict = true)
{
return binary_reader(i).parse_cbor(strict);
}
/*!
@copydoc from_cbor(detail::input_adapter, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
static basic_json from_cbor(A1 && a1, A2 && a2, const bool strict = true)
{
return binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).parse_cbor(strict);
}
/*!
@brief create a JSON value from an input in MessagePack format
Deserializes a given input @a i to a JSON value using the MessagePack
serialization format.
The library maps MessagePack types to JSON value types as follows:
MessagePack type | JSON value type | first byte
---------------- | --------------- | ----------
positive fixint | number_unsigned | 0x00..0x7f
fixmap | object | 0x80..0x8f
fixarray | array | 0x90..0x9f
fixstr | string | 0xa0..0xbf
nil | `null` | 0xc0
false | `false` | 0xc2
true | `true` | 0xc3
float 32 | number_float | 0xca
float 64 | number_float | 0xcb
uint 8 | number_unsigned | 0xcc
uint 16 | number_unsigned | 0xcd
uint 32 | number_unsigned | 0xce
uint 64 | number_unsigned | 0xcf
int 8 | number_integer | 0xd0
int 16 | number_integer | 0xd1
int 32 | number_integer | 0xd2
int 64 | number_integer | 0xd3
str 8 | string | 0xd9
str 16 | string | 0xda
str 32 | string | 0xdb
array 16 | array | 0xdc
array 32 | array | 0xdd
map 16 | object | 0xde
map 32 | object | 0xdf
negative fixint | number_integer | 0xe0-0xff
@warning The mapping is **incomplete** in the sense that not all
MessagePack types can be converted to a JSON value. The following
MessagePack types are not supported and will yield parse errors:
- bin 8 - bin 32 (0xc4..0xc6)
- ext 8 - ext 32 (0xc7..0xc9)
- fixext 1 - fixext 16 (0xd4..0xd8)
@note Any MessagePack output created @ref to_msgpack can be successfully
parsed by @ref from_msgpack.
@param[in] i an input in MessagePack format convertible to an input
adapter
@param[in] strict whether to expect the input to be consumed until EOF
(true by default)
@throw parse_error.110 if the given input ends prematurely or the end of
file was not reached when @a strict was set to true
@throw parse_error.112 if unsupported features from MessagePack were
used in the given input @a i or if the input is not valid MessagePack
@throw parse_error.113 if a string was expected as map key, but not found
@complexity Linear in the size of the input @a i.
@liveexample{The example shows the deserialization of a byte vector in
MessagePack format to a JSON value.,from_msgpack}
@sa http://msgpack.org
@sa @ref to_msgpack(const basic_json&) for the analogous serialization
@sa @ref from_cbor(detail::input_adapter, const bool) for the related CBOR
format
@since version 2.0.9; parameter @a start_index since 2.1.1; changed to
consume input adapters, removed start_index parameter, and added
@a strict parameter since 3.0.0
*/
static basic_json from_msgpack(detail::input_adapter i,
const bool strict = true)
{
return binary_reader(i).parse_msgpack(strict);
}
/*!
@copydoc from_msgpack(detail::input_adapter, const bool)
*/
template<typename A1, typename A2,
detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
static basic_json from_msgpack(A1 && a1, A2 && a2, const bool strict = true)
{
return binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).parse_msgpack(strict);
}
/// @}
//////////////////////////
// JSON Pointer support //
//////////////////////////
/// @name JSON Pointer functions
/// @{
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. Similar to @ref operator[](const typename
object_t::key_type&), `null` values are created in arrays and objects if
necessary.
In particular:
- If the JSON pointer points to an object key that does not exist, it
is created an filled with a `null` value before a reference to it
is returned.
- If the JSON pointer points to an array index that does not exist, it
is created an filled with a `null` value before a reference to it
is returned. All indices between the current maximum and the given
index are also filled with `null`.
- The special value `-` is treated as a synonym for the index past the
end.
@param[in] ptr a JSON pointer
@return reference to the element pointed to by @a ptr
@complexity Constant.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.404 if the JSON pointer can not be resolved
@liveexample{The behavior is shown in the example.,operatorjson_pointer}
@since version 2.0.0
*/
reference operator[](const json_pointer& ptr)
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Uses a JSON pointer to retrieve a reference to the respective JSON value.
No bound checking is performed. The function does not change the JSON
value; no `null` values are created. In particular, the the special value
`-` yields an exception.
@param[in] ptr JSON pointer to the desired element
@return const reference to the element pointed to by @a ptr
@complexity Constant.
@throw parse_error.106 if an array index begins with '0'
@throw parse_error.109 if an array index was not a number
@throw out_of_range.402 if the array index '-' is used
@throw out_of_range.404 if the JSON pointer can not be resolved
@liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
@since version 2.0.0
*/
const_reference operator[](const json_pointer& ptr) const
{
return ptr.get_unchecked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a reference to the element at with specified JSON pointer @a ptr,
with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@throw parse_error.106 if an array index in the passed JSON pointer @a ptr
begins with '0'. See example below.
@throw parse_error.109 if an array index in the passed JSON pointer @a ptr
is not a number. See example below.
@throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
is out of range. See example below.
@throw out_of_range.402 if the array index '-' is used in the passed JSON
pointer @a ptr. As `at` provides checked access (and no elements are
implicitly inserted), the index '-' is always invalid. See example below.
@throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 2.0.0
@liveexample{The behavior is shown in the example.,at_json_pointer}
*/
reference at(const json_pointer& ptr)
{
return ptr.get_checked(this);
}
/*!
@brief access specified element via JSON Pointer
Returns a const reference to the element at with specified JSON pointer @a
ptr, with bounds checking.
@param[in] ptr JSON pointer to the desired element
@return reference to the element pointed to by @a ptr
@throw parse_error.106 if an array index in the passed JSON pointer @a ptr
begins with '0'. See example below.
@throw parse_error.109 if an array index in the passed JSON pointer @a ptr
is not a number. See example below.
@throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
is out of range. See example below.
@throw out_of_range.402 if the array index '-' is used in the passed JSON
pointer @a ptr. As `at` provides checked access (and no elements are
implicitly inserted), the index '-' is always invalid. See example below.
@throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
See example below.
@exceptionsafety Strong guarantee: if an exception is thrown, there are no
changes in the JSON value.
@complexity Constant.
@since version 2.0.0
@liveexample{The behavior is shown in the example.,at_json_pointer_const}
*/
const_reference at(const json_pointer& ptr) const
{
return ptr.get_checked(this);
}
/*!
@brief return flattened JSON value
The function creates a JSON object whose keys are JSON pointers (see [RFC
6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
primitive. The original JSON value can be restored using the @ref
unflatten() function.
@return an object that maps JSON pointers to primitive values
@note Empty objects and arrays are flattened to `null` and will not be
reconstructed correctly by the @ref unflatten() function.
@complexity Linear in the size the JSON value.
@liveexample{The following code shows how a JSON object is flattened to an
object whose keys consist of JSON pointers.,flatten}
@sa @ref unflatten() for the reverse function
@since version 2.0.0
*/
basic_json flatten() const
{
basic_json result(value_t::object);
json_pointer::flatten("", *this, result);
return result;
}
/*!
@brief unflatten a previously flattened JSON value
The function restores the arbitrary nesting of a JSON value that has been
flattened before using the @ref flatten() function. The JSON value must
meet certain constraints:
1. The value must be an object.
2. The keys must be JSON pointers (see
[RFC 6901](https://tools.ietf.org/html/rfc6901))
3. The mapped values must be primitive JSON types.
@return the original JSON from a flattened version
@note Empty objects and arrays are flattened by @ref flatten() to `null`
values and can not unflattened to their original type. Apart from
this example, for a JSON value `j`, the following is always true:
`j == j.flatten().unflatten()`.
@complexity Linear in the size the JSON value.
@throw type_error.314 if value is not an object
@throw type_error.315 if object values are not primitive
@liveexample{The following code shows how a flattened JSON object is
unflattened into the original nested JSON object.,unflatten}
@sa @ref flatten() for the reverse function
@since version 2.0.0
*/
basic_json unflatten() const
{
return json_pointer::unflatten(*this);
}
/// @}
//////////////////////////
// JSON Patch functions //
//////////////////////////
/// @name JSON Patch functions
/// @{
/*!
@brief applies a JSON patch
[JSON Patch](http://jsonpatch.com) defines a JSON document structure for
expressing a sequence of operations to apply to a JSON) document. With
this function, a JSON Patch is applied to the current JSON value by
executing all operations from the patch.
@param[in] json_patch JSON patch document
@return patched document
@note The application of a patch is atomic: Either all operations succeed
and the patched document is returned or an exception is thrown. In
any case, the original value is not changed: the patch is applied
to a copy of the value.
@throw parse_error.104 if the JSON patch does not consist of an array of
objects
@throw parse_error.105 if the JSON patch is malformed (e.g., mandatory
attributes are missing); example: `"operation add must have member path"`
@throw out_of_range.401 if an array index is out of range.
@throw out_of_range.403 if a JSON pointer inside the patch could not be
resolved successfully in the current JSON value; example: `"key baz not
found"`
@throw out_of_range.405 if JSON pointer has no parent ("add", "remove",
"move")
@throw other_error.501 if "test" operation was unsuccessful
@complexity Linear in the size of the JSON value and the length of the
JSON patch. As usually only a fraction of the JSON value is affected by
the patch, the complexity can usually be neglected.
@liveexample{The following code shows how a JSON patch is applied to a
value.,patch}
@sa @ref diff -- create a JSON patch by comparing two JSON values
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
@since version 2.0.0
*/
basic_json patch(const basic_json& json_patch) const
{
// make a working copy to apply the patch to
basic_json result = *this;
// the valid JSON Patch operations
enum class patch_operations {add, remove, replace, move, copy, test, invalid};
const auto get_op = [](const std::string & op)
{
if (op == "add")
{
return patch_operations::add;
}
if (op == "remove")
{
return patch_operations::remove;
}
if (op == "replace")
{
return patch_operations::replace;
}
if (op == "move")
{
return patch_operations::move;
}
if (op == "copy")
{
return patch_operations::copy;
}
if (op == "test")
{
return patch_operations::test;
}
return patch_operations::invalid;
};
// wrapper for "add" operation; add value at ptr
const auto operation_add = [&result](json_pointer & ptr, basic_json val)
{
// adding to the root of the target document means replacing it
if (ptr.is_root())
{
result = val;
}
else
{
// make sure the top element of the pointer exists
json_pointer top_pointer = ptr.top();
if (top_pointer != ptr)
{
result.at(top_pointer);
}
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.pop_back();
basic_json& parent = result[ptr];
switch (parent.m_type)
{
case value_t::null:
case value_t::object:
{
// use operator[] to add value
parent[last_path] = val;
break;
}
case value_t::array:
{
if (last_path == "-")
{
// special case: append to back
parent.push_back(val);
}
else
{
const auto idx = std::stoi(last_path);
if (JSON_UNLIKELY(static_cast<size_type>(idx) > parent.size()))
{
// avoid undefined behavior
JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
}
else
{
// default case: insert add offset
parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
}
}
break;
}
default:
{
// if there exists a parent it cannot be primitive
assert(false); // LCOV_EXCL_LINE
}
}
}
};
// wrapper for "remove" operation; remove value at ptr
const auto operation_remove = [&result](json_pointer & ptr)
{
// get reference to parent of JSON pointer ptr
const auto last_path = ptr.pop_back();
basic_json& parent = result.at(ptr);
// remove child
if (parent.is_object())
{
// perform range check
auto it = parent.find(last_path);
if (JSON_LIKELY(it != parent.end()))
{
parent.erase(it);
}
else
{
JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found"));
}
}
else if (parent.is_array())
{
// note erase performs range check
parent.erase(static_cast<size_type>(std::stoi(last_path)));
}
};
// type check: top level value must be an array
if (JSON_UNLIKELY(not json_patch.is_array()))
{
JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
}
// iterate and apply the operations
for (const auto& val : json_patch)
{
// wrapper to get a value for an operation
const auto get_value = [&val](const std::string & op,
const std::string & member,
bool string_type) -> basic_json&
{
// find value
auto it = val.m_value.object->find(member);
// context-sensitive error message
const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
// check if desired value is present
if (JSON_UNLIKELY(it == val.m_value.object->end()))
{
JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'"));
}
// check if result is of type string
if (JSON_UNLIKELY(string_type and not it->second.is_string()))
{
JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'"));
}
// no error: return value
return it->second;
};
// type check: every element of the array must be an object
if (JSON_UNLIKELY(not val.is_object()))
{
JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
}
// collect mandatory members
const std::string op = get_value("op", "op", true);
const std::string path = get_value(op, "path", true);
json_pointer ptr(path);
switch (get_op(op))
{
case patch_operations::add:
{
operation_add(ptr, get_value("add", "value", false));
break;
}
case patch_operations::remove:
{
operation_remove(ptr);
break;
}
case patch_operations::replace:
{
// the "path" location must exist - use at()
result.at(ptr) = get_value("replace", "value", false);
break;
}
case patch_operations::move:
{
const std::string from_path = get_value("move", "from", true);
json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
basic_json v = result.at(from_ptr);
// The move operation is functionally identical to a
// "remove" operation on the "from" location, followed
// immediately by an "add" operation at the target
// location with the value that was just removed.
operation_remove(from_ptr);
operation_add(ptr, v);
break;
}
case patch_operations::copy:
{
const std::string from_path = get_value("copy", "from", true);
const json_pointer from_ptr(from_path);
// the "from" location must exist - use at()
result[ptr] = result.at(from_ptr);
break;
}
case patch_operations::test:
{
bool success = false;
JSON_TRY
{
// check if "value" matches the one at "path"
// the "path" location must exist - use at()
success = (result.at(ptr) == get_value("test", "value", false));
}
JSON_CATCH (out_of_range&)
{
// ignore out of range errors: success remains false
}
// throw an exception if test fails
if (JSON_UNLIKELY(not success))
{
JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump()));
}
break;
}
case patch_operations::invalid:
{
// op must be "add", "remove", "replace", "move", "copy", or
// "test"
JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid"));
}
}
}
return result;
}
/*!
@brief creates a diff as a JSON patch
Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
be changed into the value @a target by calling @ref patch function.
@invariant For two JSON values @a source and @a target, the following code
yields always `true`:
@code {.cpp}
source.patch(diff(source, target)) == target;
@endcode
@note Currently, only `remove`, `add`, and `replace` operations are
generated.
@param[in] source JSON value to compare from
@param[in] target JSON value to compare against
@param[in] path helper value to create JSON pointers
@return a JSON patch to convert the @a source to @a target
@complexity Linear in the lengths of @a source and @a target.
@liveexample{The following code shows how a JSON patch is created as a
diff for two JSON values.,diff}
@sa @ref patch -- apply a JSON patch
@sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
@since version 2.0.0
*/
static basic_json diff(const basic_json& source, const basic_json& target,
const std::string& path = "")
{
// the patch
basic_json result(value_t::array);
// if the values are the same, return empty patch
if (source == target)
{
return result;
}
if (source.type() != target.type())
{
// different types: replace value
result.push_back(
{
{"op", "replace"}, {"path", path}, {"value", target}
});
}
else
{
switch (source.type())
{
case value_t::array:
{
// first pass: traverse common elements
std::size_t i = 0;
while (i < source.size() and i < target.size())
{
// recursive call to compare array values at index i
auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
++i;
}
// i now reached the end of at least one array
// in a second pass, traverse the remaining elements
// remove my remaining elements
const auto end_index = static_cast<difference_type>(result.size());
while (i < source.size())
{
// add operations in reverse order to avoid invalid
// indices
result.insert(result.begin() + end_index, object(
{
{"op", "remove"},
{"path", path + "/" + std::to_string(i)}
}));
++i;
}
// add other remaining elements
while (i < target.size())
{
result.push_back(
{
{"op", "add"},
{"path", path + "/" + std::to_string(i)},
{"value", target[i]}
});
++i;
}
break;
}
case value_t::object:
{
// first pass: traverse this object's elements
for (auto it = source.begin(); it != source.end(); ++it)
{
// escape the key name to be used in a JSON patch
const auto key = json_pointer::escape(it.key());
if (target.find(it.key()) != target.end())
{
// recursive call to compare object values at key it
auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
result.insert(result.end(), temp_diff.begin(), temp_diff.end());
}
else
{
// found a key that is not in o -> remove it
result.push_back(object(
{
{"op", "remove"}, {"path", path + "/" + key}
}));
}
}
// second pass: traverse other object's elements
for (auto it = target.begin(); it != target.end(); ++it)
{
if (source.find(it.key()) == source.end())
{
// found a key that is not in this -> add it
const auto key = json_pointer::escape(it.key());
result.push_back(
{
{"op", "add"}, {"path", path + "/" + key},
{"value", it.value()}
});
}
}
break;
}
default:
{
// both primitive type: replace value
result.push_back(
{
{"op", "replace"}, {"path", path}, {"value", target}
});
break;
}
}
}
return result;
}
/// @}
};
/////////////
// presets //
/////////////
/*!
@brief default JSON class
This type is the default specialization of the @ref basic_json class which
uses the standard template types.
@since version 1.0.0
*/
using json = basic_json<>;
//////////////////
// json_pointer //
//////////////////
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL&
json_pointer::get_and_create(NLOHMANN_BASIC_JSON_TPL& j) const
{
using size_type = typename NLOHMANN_BASIC_JSON_TPL::size_type;
auto result = &j;
// in case no reference tokens exist, return a reference to the JSON value
// j which will be overwritten by a primitive value
for (const auto& reference_token : reference_tokens)
{
switch (result->m_type)
{
case detail::value_t::null:
{
if (reference_token == "0")
{
// start a new array if reference token is 0
result = &result->operator[](0);
}
else
{
// start a new object otherwise
result = &result->operator[](reference_token);
}
break;
}
case detail::value_t::object:
{
// create an entry in the object
result = &result->operator[](reference_token);
break;
}
case detail::value_t::array:
{
// create an entry in the array
JSON_TRY
{
result = &result->operator[](static_cast<size_type>(std::stoi(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
/*
The following code is only reached if there exists a reference
token _and_ the current value is primitive. In this case, we have
an error situation, because primitive values may only occur as
single value; that is, with an empty list of reference tokens.
*/
default:
JSON_THROW(detail::type_error::create(313, "invalid value to unflatten"));
}
}
return *result;
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL&
json_pointer::get_unchecked(NLOHMANN_BASIC_JSON_TPL* ptr) const
{
using size_type = typename NLOHMANN_BASIC_JSON_TPL::size_type;
for (const auto& reference_token : reference_tokens)
{
// convert null values to arrays or objects before continuing
if (ptr->m_type == detail::value_t::null)
{
// check if reference token is a number
const bool nums =
std::all_of(reference_token.begin(), reference_token.end(),
[](const char x)
{
return (x >= '0' and x <= '9');
});
// change value to array for numbers or "-" or to object otherwise
*ptr = (nums or reference_token == "-")
? detail::value_t::array
: detail::value_t::object;
}
switch (ptr->m_type)
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
if (reference_token == "-")
{
// explicitly treat "-" as index beyond the end
ptr = &ptr->operator[](ptr->m_value.array->size());
}
else
{
// convert array index to number; unchecked access
JSON_TRY
{
ptr = &ptr->operator[](
static_cast<size_type>(std::stoi(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL&
json_pointer::get_checked(NLOHMANN_BASIC_JSON_TPL* ptr) const
{
using size_type = typename NLOHMANN_BASIC_JSON_TPL::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// note: at performs range check
JSON_TRY
{
ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
const NLOHMANN_BASIC_JSON_TPL&
json_pointer::get_unchecked(const NLOHMANN_BASIC_JSON_TPL* ptr) const
{
using size_type = typename NLOHMANN_BASIC_JSON_TPL::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case detail::value_t::object:
{
// use unchecked object access
ptr = &ptr->operator[](reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_UNLIKELY(reference_token == "-"))
{
// "-" cannot be used for const access
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// use unchecked array access
JSON_TRY
{
ptr = &ptr->operator[](
static_cast<size_type>(std::stoi(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
const NLOHMANN_BASIC_JSON_TPL&
json_pointer::get_checked(const NLOHMANN_BASIC_JSON_TPL* ptr) const
{
using size_type = typename NLOHMANN_BASIC_JSON_TPL::size_type;
for (const auto& reference_token : reference_tokens)
{
switch (ptr->m_type)
{
case detail::value_t::object:
{
// note: at performs range check
ptr = &ptr->at(reference_token);
break;
}
case detail::value_t::array:
{
if (JSON_UNLIKELY(reference_token == "-"))
{
// "-" always fails the range check
JSON_THROW(detail::out_of_range::create(402,
"array index '-' (" + std::to_string(ptr->m_value.array->size()) +
") is out of range"));
}
// error condition (cf. RFC 6901, Sect. 4)
if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
{
JSON_THROW(detail::parse_error::create(106, 0,
"array index '" + reference_token +
"' must not begin with '0'"));
}
// note: at performs range check
JSON_TRY
{
ptr = &ptr->at(static_cast<size_type>(std::stoi(reference_token)));
}
JSON_CATCH(std::invalid_argument&)
{
JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
}
break;
}
default:
JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
}
}
return *ptr;
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
void json_pointer::flatten(const std::string& reference_string,
const NLOHMANN_BASIC_JSON_TPL& value,
NLOHMANN_BASIC_JSON_TPL& result)
{
switch (value.m_type)
{
case detail::value_t::array:
{
if (value.m_value.array->empty())
{
// flatten empty array as null
result[reference_string] = nullptr;
}
else
{
// iterate array and use index as reference string
for (std::size_t i = 0; i < value.m_value.array->size(); ++i)
{
flatten(reference_string + "/" + std::to_string(i),
value.m_value.array->operator[](i), result);
}
}
break;
}
case detail::value_t::object:
{
if (value.m_value.object->empty())
{
// flatten empty object as null
result[reference_string] = nullptr;
}
else
{
// iterate object and use keys as reference string
for (const auto& element : *value.m_value.object)
{
flatten(reference_string + "/" + escape(element.first), element.second, result);
}
}
break;
}
default:
{
// add primitive value with its reference string
result[reference_string] = value;
break;
}
}
}
NLOHMANN_BASIC_JSON_TPL_DECLARATION
NLOHMANN_BASIC_JSON_TPL
json_pointer::unflatten(const NLOHMANN_BASIC_JSON_TPL& value)
{
if (JSON_UNLIKELY(not value.is_object()))
{
JSON_THROW(detail::type_error::create(314, "only objects can be unflattened"));
}
NLOHMANN_BASIC_JSON_TPL result;
// iterate the JSON object values
for (const auto& element : *value.m_value.object)
{
if (JSON_UNLIKELY(not element.second.is_primitive()))
{
JSON_THROW(detail::type_error::create(315, "values in object must be primitive"));
}
// assign value to reference pointed to by JSON pointer; Note that if
// the JSON pointer is "" (i.e., points to the whole value), function
// get_and_create returns a reference to result itself. An assignment
// will then create a primitive value.
json_pointer(element.first).get_and_create(result) = element.second;
}
return result;
}
inline bool operator==(json_pointer const& lhs, json_pointer const& rhs) noexcept
{
return (lhs.reference_tokens == rhs.reference_tokens);
}
inline bool operator!=(json_pointer const& lhs, json_pointer const& rhs) noexcept
{
return not (lhs == rhs);
}
} // namespace nlohmann
///////////////////////
// nonmember support //
///////////////////////
// specialization of std::swap, and std::hash
namespace std
{
/*!
@brief exchanges the values of two JSON objects
@since version 1.0.0
*/
template<>
inline void swap(nlohmann::json& j1,
nlohmann::json& j2) noexcept(
is_nothrow_move_constructible<nlohmann::json>::value and
is_nothrow_move_assignable<nlohmann::json>::value
)
{
j1.swap(j2);
}
/// hash value for JSON objects
template<>
struct hash<nlohmann::json>
{
/*!
@brief return a hash value for a JSON object
@since version 1.0.0
*/
std::size_t operator()(const nlohmann::json& j) const
{
// a naive hashing via the string representation
const auto& h = hash<nlohmann::json::string_t>();
return h(j.dump());
}
};
/// specialization for std::less<value_t>
/// @note: do not remove the space after '<',
/// see https://github.com/nlohmann/json/pull/679
template<>
struct less< ::nlohmann::detail::value_t>
{
/*!
@brief compare two value_t enum values
@since version 3.0.0
*/
bool operator()(nlohmann::detail::value_t lhs,
nlohmann::detail::value_t rhs) const noexcept
{
return nlohmann::detail::operator<(lhs, rhs);
}
};
} // namespace std
/*!
@brief user-defined string literal for JSON values
This operator implements a user-defined string literal for JSON objects. It
can be used by adding `"_json"` to a string literal and returns a JSON object
if no parse error occurred.
@param[in] s a string representation of a JSON object
@param[in] n the length of string @a s
@return a JSON object
@since version 1.0.0
*/
inline nlohmann::json operator "" _json(const char* s, std::size_t n)
{
return nlohmann::json::parse(s, s + n);
}
/*!
@brief user-defined string literal for JSON pointer
This operator implements a user-defined string literal for JSON Pointers. It
can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
object if no parse error occurred.
@param[in] s a string representation of a JSON Pointer
@param[in] n the length of string @a s
@return a JSON pointer object
@since version 2.0.0
*/
inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
{
return nlohmann::json::json_pointer(std::string(s, n));
}
// restore GCC/clang diagnostic settings
#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
#pragma GCC diagnostic pop
#endif
#if defined(__clang__)
#pragma GCC diagnostic pop
#endif
// clean up
#undef JSON_CATCH
#undef JSON_THROW
#undef JSON_TRY
#undef JSON_LIKELY
#undef JSON_UNLIKELY
#undef JSON_DEPRECATED
#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
#undef NLOHMANN_BASIC_JSON_TPL
#endif
|