about summary refs log tree commit diff
path: root/src/Xanthous/Util/Graphics.hs
blob: ea1dbffe839b121e5fe193a90d9bee3db1fb4482 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
-- | Graphics algorithms and utils for rendering things in 2D space
--------------------------------------------------------------------------------
module Xanthous.Util.Graphics
  ( circle
  , filledCircle
  , line
  , straightLine
  , delaunay
  ) where
--------------------------------------------------------------------------------
import           Xanthous.Prelude
--------------------------------------------------------------------------------
-- https://github.com/noinia/hgeometry/issues/28
-- import qualified Algorithms.Geometry.DelaunayTriangulation.DivideAndConquer
--               as Geometry
import qualified Algorithms.Geometry.DelaunayTriangulation.Naive
              as Geometry
import qualified Algorithms.Geometry.DelaunayTriangulation.Types as Geometry
import           Codec.Picture (imagePixels)
import qualified Data.Geometry.Point as Geometry
import           Data.Ext ((:+)(..))
import           Data.List (unfoldr)
import           Data.List.NonEmpty (NonEmpty)
import           Data.Ix (range, Ix)
import           Data.Word (Word8)
import qualified Graphics.Rasterific as Raster
import           Graphics.Rasterific hiding (circle, line, V2(..))
import           Graphics.Rasterific.Texture (uniformTexture)
import           Linear.V2
--------------------------------------------------------------------------------


-- | Generate a circle centered at the given point and with the given radius
-- using the <midpoint circle algorithm
-- https://en.wikipedia.org/wiki/Midpoint_circle_algorithm>.
--
-- Code taken from <https://rosettacode.org/wiki/Bitmap/Midpoint_circle_algorithm#Haskell>
circle :: (Num i, Ord i)
       => (i, i) -- ^ center
       -> i      -- ^ radius
       -> [(i, i)]
circle (x₀, y₀) radius
  -- Four initial points, plus the generated points
  = (x₀, y₀ + radius) : (x₀, y₀ - radius) : (x₀ + radius, y₀) : (x₀ - radius, y₀) : points
    where
      -- Creates the (x, y) octet offsets, then maps them to absolute points in all octets.
      points = concatMap generatePoints $ unfoldr step initialValues

      generatePoints (x, y)
        = [ (x₀ `xop` x', y₀ `yop` y')
          | (x', y') <- [(x, y), (y, x)]
          , xop <- [(+), (-)]
          , yop <- [(+), (-)]
          ]

      initialValues = (1 - radius, 1, (-2) * radius, 0, radius)

      step (f, ddf_x, ddf_y, x, y)
        | x >= y = Nothing
        | otherwise = Just ((x', y'), (f', ddf_x', ddf_y', x', y'))
        where
          (f', ddf_y', y') | f >= 0 = (f + ddf_y' + ddf_x', ddf_y + 2, y - 1)
                           | otherwise = (f + ddf_x, ddf_y, y)
          ddf_x' = ddf_x + 2
          x' = x + 1


-- | Generate a *filled* circle centered at the given point and with the given
-- radius using the Rasterific package. Note that since this uses a different
-- implementation, this is not a strict superset of the 'circle' function
-- (unfortunately - would like to make that not the case!)
filledCircle :: (Num i, Integral i, Ix i)
             => (i, i) -- ^ center
             -> i      -- ^ radius
             -> [(i, i)]
filledCircle (ox, oy) radius
  = pointsFromRaster (ox + radius) (oy + radius)
  $ fill
  $ Raster.circle (Raster.V2 (fromIntegral ox) (fromIntegral oy))
  $ fromIntegral radius

-- showCells . fromPoints . NE.fromList $ filledCircle (15, 15) 7
-- pointsFromRaster :: (Num i, Integral i, Ix i)
--                  => i      -- ^ width
--                  -> i      -- ^ height
--                  -> _
--                  -> [(i, i)]
pointsFromRaster
  :: (Integral a, Integral b, Ix a, Ix b)
  => a
  -> b
  -> Drawing Word8 ()
  -> [(a, b)]
pointsFromRaster w h raster
  = map snd
  $ filter ((== 1) . fst)
  $ zip pixels
  $ range ((1, 1), (w, h))
  where
    pixels = toListOf imagePixels
           $ renderDrawing @Word8 (fromIntegral w) (fromIntegral h) 0
           $ withTexture (uniformTexture 1) raster

-- | Draw a line between two points using Bresenham's line drawing algorithm
--
-- Code taken from <https://wiki.haskell.org/Bresenham%27s_line_drawing_algorithm>
line :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
line pa@(xa, ya) pb@(xb, yb)
  = (if maySwitch pa < maySwitch pb then id else reverse) points
  where
    points               = map maySwitch . unfoldr go $ (x₁, y₁, 0)
    steep                = abs (yb - ya) > abs (xb - xa)
    maySwitch            = if steep then swap else id
    [(x₁, y₁), (x₂, y₂)] = sort [maySwitch pa, maySwitch pb]
    δx                   = x₂ - x₁
    δy                   = abs (y₂ - y₁)
    ystep                = if y₁ < y₂ then 1 else -1
    go (xTemp, yTemp, err)
      | xTemp > x₂ = Nothing
      | otherwise  = Just ((xTemp, yTemp), (xTemp + 1, newY, newError))
      where
        tempError        = err + δy
        (newY, newError) = if (2 * tempError) >= δx
                           then (yTemp + ystep, tempError - δx)
                           else (yTemp, tempError)

straightLine :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
straightLine pa@(xa, _) pb@(_, yb) = line pa midpoint ++ line midpoint pb
  where midpoint = (xa, yb)


delaunay
  :: (Ord n, Fractional n)
  => NonEmpty (V2 n, p)
  -> [((V2 n, p), (V2 n, p))]
delaunay
  = map (over both fromPoint)
  . Geometry.triangulationEdges
  . Geometry.delaunayTriangulation
  . map toPoint
  where
    toPoint (V2 px py, pid) = Geometry.Point2 px py :+ pid
    fromPoint (Geometry.Point2 px py :+ pid) = (V2 px py, pid)