1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
|
-- | Graphics algorithms and utils for rendering things in 2D space
--------------------------------------------------------------------------------
module Xanthous.Util.Graphics
( circle
, filledCircle
, line
, straightLine
, delaunay
) where
--------------------------------------------------------------------------------
import Xanthous.Prelude
--------------------------------------------------------------------------------
import qualified Algorithms.Geometry.DelaunayTriangulation.DivideAndConquer
as Geometry
import qualified Algorithms.Geometry.DelaunayTriangulation.Types as Geometry
import Codec.Picture (imagePixels)
import qualified Data.Geometry.Point as Geometry
import Data.Ext ((:+)(..))
import Data.List (unfoldr)
import Data.List.NonEmpty (NonEmpty)
import Data.Ix (range, Ix)
import Data.Word (Word8)
import qualified Graphics.Rasterific as Raster
import Graphics.Rasterific hiding (circle, line, V2(..))
import Graphics.Rasterific.Texture (uniformTexture)
import Linear.V2
--------------------------------------------------------------------------------
circle :: (Num i, Integral i, Ix i)
=> (i, i) -- ^ center
-> i -- ^ radius
-> [(i, i)]
circle (ox, oy) radius
= pointsFromRaster (ox + radius) (oy + radius)
$ stroke 1 JoinRound (CapRound, CapRound)
$ Raster.circle (Raster.V2 (fromIntegral ox) (fromIntegral oy))
$ fromIntegral radius
filledCircle :: (Num i, Integral i, Ix i)
=> (i, i) -- ^ center
-> i -- ^ radius
-> [(i, i)]
filledCircle (ox, oy) radius
= pointsFromRaster (ox + radius) (oy + radius)
$ fill
$ Raster.circle (Raster.V2 (fromIntegral ox) (fromIntegral oy))
$ fromIntegral radius
-- showCells . fromPoints . NE.fromList $ filledCircle (15, 15) 7
-- pointsFromRaster :: (Num i, Integral i, Ix i)
-- => i -- ^ width
-- -> i -- ^ height
-- -> _
-- -> [(i, i)]
pointsFromRaster
:: (Integral a, Integral b, Ix a, Ix b)
=> a
-> b
-> Drawing Word8 ()
-> [(a, b)]
pointsFromRaster w h raster
= map snd
$ filter ((== 1) . fst)
$ zip pixels
$ range ((1, 1), (w, h))
where
pixels = toListOf imagePixels
$ renderDrawing @Word8 (fromIntegral w) (fromIntegral h) 0
$ withTexture (uniformTexture 1) raster
-- | Draw a line between two points using Bresenham's line drawing algorithm
--
-- Code taken from <https://wiki.haskell.org/Bresenham%27s_line_drawing_algorithm>
line :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
line pa@(xa, ya) pb@(xb, yb)
= (if maySwitch pa < maySwitch pb then id else reverse) points
where
points = map maySwitch . unfoldr go $ (x₁, y₁, 0)
steep = abs (yb - ya) > abs (xb - xa)
maySwitch = if steep then swap else id
[(x₁, y₁), (x₂, y₂)] = sort [maySwitch pa, maySwitch pb]
δx = x₂ - x₁
δy = abs (y₂ - y₁)
ystep = if y₁ < y₂ then 1 else -1
go (xTemp, yTemp, err)
| xTemp > x₂ = Nothing
| otherwise = Just ((xTemp, yTemp), (xTemp + 1, newY, newError))
where
tempError = err + δy
(newY, newError) = if (2 * tempError) >= δx
then (yTemp + ystep, tempError - δx)
else (yTemp, tempError)
straightLine :: (Num i, Ord i) => (i, i) -> (i, i) -> [(i, i)]
straightLine pa@(xa, _) pb@(_, yb) = line pa midpoint ++ line midpoint pb
where midpoint = (xa, yb)
delaunay
:: (Ord n, Fractional n)
=> NonEmpty (V2 n, p)
-> [((V2 n, p), (V2 n, p))]
delaunay
= map (over both fromPoint)
. Geometry.triangulationEdges
. Geometry.delaunayTriangulation
. map toPoint
where
toPoint (V2 px py, pid) = Geometry.Point2 px py :+ pid
fromPoint (Geometry.Point2 px py :+ pid) = (V2 px py, pid)
|