about summary refs log tree commit diff
path: root/presentation.tex
blob: 27e57433c9b8f325859461da335779e15039b8a9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
\documentclass[12pt]{beamer}
\usetheme{metropolis}
\newenvironment{code}{\ttfamily}{\par}
\title{Where does \textit{your} compiler come from?}
\date{2018-03-13}
\author{Vincent Ambo}
\institute{Norwegian Unix User Group}
\begin{document}
  \maketitle

  %% Slide 1:
  \section{Introduction}


  %% Slide 2:
  \begin{frame}{Chicken and egg}
    Self-hosted compilers are often built using themselves, for example:

    \begin{itemize}
    \item C-family compilers bootstrap themselves \& each other
    \item (Some!) Common Lisp compilers can bootstrap each other
    \item \texttt{rustc} bootstraps itself with a previous version
    \item ... same for many other languages!
    \end{itemize}
  \end{frame}

  %% Slide 3:
  \begin{frame}{Trusting Trust}
    \begin{center}
      \large{Could this be exploited?}
    \end{center}
  \end{frame}

  %% Slide 4:
  \begin{frame}{Short interlude: A quine}
    \begin{center}
      \begin{code}
        ((lambda (x) (list x (list 'quote x)))
        \newline\vspace*{6mm} '(lambda (x) (list x (list 'quote x))))
      \end{code}
    \end{center}
  \end{frame}

  %% Slide 5:
  \begin{frame}{Short interlude: Quine Relay}
    \begin{center}
      \includegraphics[
        keepaspectratio=true,
        height=\textheight
      ]{quine-relay.png}
    \end{center}
  \end{frame}

  %% Slide 6:
  \begin{frame}{Trusting Trust}
    An attack described by Ken Thompson in 1984:

    \begin{enumerate}
    \item Modify a compiler to detect when it's compiling itself.
    \item Let the modification insert \textit{itself} into the new compiler.
    \item Add arbitrary attack code to the modification.
    \item \textit{Optional!} Remove the attack from the source after compilation.
    \end{enumerate}
  \end{frame}

  %% Slide 7:
  \begin{frame}{Damage potential?}
    \begin{center}
      Let your imagination run wild!
    \end{center}
  \end{frame}

  %% Slide 8:
  \section{Countermeasures}

  %% Slide 9:
  \begin{frame}{Diverse Double-Compiling}
    Assume we have:

    \begin{itemize}
    \item Target language compilers $A$ and $T$
    \item The source code of $A$: $ S_{A} $
    \end{itemize}
  \end{frame}

  %% Slide 10:
  \begin{frame}{Diverse Double-Compiling}
    Apply the first stage (functional equivalence):

    \begin{itemize}
    \item $ X = A(S_{A})$
    \item $ Y = T(S_{A})$
    \end{itemize}

    Apply the second stage (bit-for-bit equivalence):

    \begin{itemize}
    \item $ V = X(S_{A})$
    \item $ W = Y(S_{A})$
    \end{itemize}

    Now we have a new problem: Reproducibility!
  \end{frame}

  %% Slide 11:
  \begin{frame}{Reproducibility}
    Bit-for-bit equivalent output is hard, for example:

    \begin{itemize}
    \item Timestamps in output artifacts
    \item Non-deterministic linking order in concurrent builds
    \item Non-deterministic VM \& memory states in outputs
    \item Randomness in builds (sic!)
    \end{itemize}
  \end{frame}

  \begin{frame}{Reproducibility}
    \begin{center}
      Without reproducibility, we can never trust that any shipped
      binary matches the source code!
    \end{center}
  \end{frame}

  %% Slide 12:
  \section{(Partial) State of the Union}

  \begin{frame}{The Desired State}
    \begin{center}
      \begin{enumerate}
      \item Full-source bootstrap!
      \item All packages reproducible!
      \end{enumerate}
    \end{center}
  \end{frame}

  %% Slide 13:
  \begin{frame}{Bootstrapping Debian}
    \begin{itemize}
    \item Sparse information on the Debian-wiki
    \item Bootstrapping discussions mostly resolve around new architectures
    \item GCC is compiled by depending on previous versions of gcc
    \end{itemize}
  \end{frame}

  \begin{frame}{Reproducing Debian}
    Debian has a very active effort for reproducible builds:

    \begin{itemize}
    \item Organised information about reproducibility status
    \item Over 90\% reproducibility in Debian package base!
    \end{itemize}
  \end{frame}

  \begin{frame}{Bootstrapping NixOS}

  \end{frame}

  \section{The future of bootstrapping}

  \begin{frame}{MES}
  \end{frame}

  \begin{frame}{The Nix project(s)}
  \end{frame}

  \begin{frame}{Other platforms}

  \end{frame}
  %% Next up: Debian, Fedora, NixOS
  %% Next up: Relevant projects: Nix, MES
  %% Next up: There's hope, but don't even think about phones ...
\end{document}