1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
|
//
// immer: immutable data structures for C++
// Copyright (C) 2016, 2017, 2018 Juan Pedro Bolivar Puente
//
// This software is distributed under the Boost Software License, Version 1.0.
// See accompanying file LICENSE or copy at http://boost.org/LICENSE_1_0.txt
//
#pragma once
#include <immer/detail/arrays/with_capacity.hpp>
#include <immer/memory_policy.hpp>
namespace immer {
template <typename T, typename MemoryPolicy>
class array_transient;
/*!
* Immutable container that stores a sequence of elements in
* contiguous memory.
*
* @tparam T The type of the values to be stored in the container.
*
* @rst
*
* It supports the most efficient iteration and random access,
* equivalent to a ``std::vector`` or ``std::array``, but all
* manipulations are :math:`O(size)`.
*
* .. tip:: Don't be fooled by the bad complexity of this data
* structure. It is a great choice for short sequence or when it
* is seldom or never changed. This depends on the ``sizeof(T)``
* and the expensiveness of its ``T``'s copy constructor, in case
* of doubt, measure. For basic types, using an `array` when
* :math:`n < 100` is a good heuristic.
*
* @endrst
*/
template <typename T, typename MemoryPolicy = default_memory_policy>
class array
{
using impl_t =
std::conditional_t<MemoryPolicy::use_transient_rvalues,
detail::arrays::with_capacity<T, MemoryPolicy>,
detail::arrays::no_capacity<T, MemoryPolicy>>;
using move_t =
std::integral_constant<bool, MemoryPolicy::use_transient_rvalues>;
public:
using value_type = T;
using reference = const T&;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using const_reference = const T&;
using iterator = const T*;
using const_iterator = iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using memory_policy = MemoryPolicy;
using transient_type = array_transient<T, MemoryPolicy>;
/*!
* Default constructor. It creates an array of `size() == 0`. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
array() = default;
/*!
* Constructs an array containing the elements in `values`.
*/
array(std::initializer_list<T> values)
: impl_{impl_t::from_initializer_list(values)}
{}
/*!
* Constructs a array containing the elements in the range
* defined by the forward iterator `first` and range sentinel `last`.
*/
template <typename Iter,
typename Sent,
std::enable_if_t<detail::compatible_sentinel_v<Iter, Sent> &&
detail::is_forward_iterator_v<Iter>,
bool> = true>
array(Iter first, Sent last)
: impl_{impl_t::from_range(first, last)}
{}
/*!
* Constructs a array containing the element `val` repeated `n`
* times.
*/
array(size_type n, T v = {})
: impl_{impl_t::from_fill(n, v)}
{}
/*!
* Returns an iterator pointing at the first element of the
* collection. It does not allocate memory and its complexity is
* @f$ O(1) @f$.
*/
IMMER_NODISCARD iterator begin() const { return impl_.data(); }
/*!
* Returns an iterator pointing just after the last element of the
* collection. It does not allocate and its complexity is @f$ O(1) @f$.
*/
IMMER_NODISCARD iterator end() const { return impl_.data() + impl_.size; }
/*!
* Returns an iterator that traverses the collection backwards,
* pointing at the first element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
IMMER_NODISCARD reverse_iterator rbegin() const
{
return reverse_iterator{end()};
}
/*!
* Returns an iterator that traverses the collection backwards,
* pointing after the last element of the reversed collection. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
IMMER_NODISCARD reverse_iterator rend() const
{
return reverse_iterator{begin()};
}
/*!
* Returns the number of elements in the container. It does
* not allocate memory and its complexity is @f$ O(1) @f$.
*/
IMMER_NODISCARD std::size_t size() const { return impl_.size; }
/*!
* Returns `true` if there are no elements in the container. It
* does not allocate memory and its complexity is @f$ O(1) @f$.
*/
IMMER_NODISCARD bool empty() const { return impl_.size == 0; }
/*!
* Access the raw data.
*/
IMMER_NODISCARD const T* data() const { return impl_.data(); }
/*!
* Access the last element.
*/
IMMER_NODISCARD const T& back() const { return data()[size() - 1]; }
/*!
* Access the first element.
*/
IMMER_NODISCARD const T& front() const { return data()[0]; }
/*!
* Returns a `const` reference to the element at position `index`.
* It is undefined when @f$ 0 index \geq size() @f$. It does not
* allocate memory and its complexity is *effectively* @f$ O(1)
* @f$.
*/
IMMER_NODISCARD reference operator[](size_type index) const
{
return impl_.get(index);
}
/*!
* Returns a `const` reference to the element at position
* `index`. It throws an `std::out_of_range` exception when @f$
* index \geq size() @f$. It does not allocate memory and its
* complexity is *effectively* @f$ O(1) @f$.
*/
reference at(size_type index) const { return impl_.get_check(index); }
/*!
* Returns whether the vectors are equal.
*/
IMMER_NODISCARD bool operator==(const array& other) const
{
return impl_.equals(other.impl_);
}
IMMER_NODISCARD bool operator!=(const array& other) const
{
return !(*this == other);
}
/*!
* Returns an array with `value` inserted at the end. It may
* allocate memory and its complexity is @f$ O(size) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/array/array.cpp
* :language: c++
* :dedent: 8
* :start-after: push-back/start
* :end-before: push-back/end
*
* @endrst
*/
IMMER_NODISCARD array push_back(value_type value) const&
{
return impl_.push_back(std::move(value));
}
IMMER_NODISCARD decltype(auto) push_back(value_type value) &&
{
return push_back_move(move_t{}, std::move(value));
}
/*!
* Returns an array containing value `value` at position `idx`.
* Undefined for `index >= size()`.
* It may allocate memory and its complexity is @f$ O(size) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/array/array.cpp
* :language: c++
* :dedent: 8
* :start-after: set/start
* :end-before: set/end
*
* @endrst
*/
IMMER_NODISCARD array set(std::size_t index, value_type value) const&
{
return impl_.assoc(index, std::move(value));
}
IMMER_NODISCARD decltype(auto) set(size_type index, value_type value) &&
{
return set_move(move_t{}, index, std::move(value));
}
/*!
* Returns an array containing the result of the expression
* `fn((*this)[idx])` at position `idx`.
* Undefined for `index >= size()`.
* It may allocate memory and its complexity is @f$ O(size) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/array/array.cpp
* :language: c++
* :dedent: 8
* :start-after: update/start
* :end-before: update/end
*
* @endrst
*/
template <typename FnT>
IMMER_NODISCARD array update(std::size_t index, FnT&& fn) const&
{
return impl_.update(index, std::forward<FnT>(fn));
}
template <typename FnT>
IMMER_NODISCARD decltype(auto) update(size_type index, FnT&& fn) &&
{
return update_move(move_t{}, index, std::forward<FnT>(fn));
}
/*!
* Returns a array containing only the first `min(elems, size())`
* elements. It may allocate memory and its complexity is
* *effectively* @f$ O(1) @f$.
*
* @rst
*
* **Example**
* .. literalinclude:: ../example/array/array.cpp
* :language: c++
* :dedent: 8
* :start-after: take/start
* :end-before: take/end
*
* @endrst
*/
IMMER_NODISCARD array take(size_type elems) const&
{
return impl_.take(elems);
}
IMMER_NODISCARD decltype(auto) take(size_type elems) &&
{
return take_move(move_t{}, elems);
}
/*!
* Returns an @a transient form of this container, an
* `immer::array_transient`.
*/
IMMER_NODISCARD transient_type transient() const&
{
return transient_type{impl_};
}
IMMER_NODISCARD transient_type transient() &&
{
return transient_type{std::move(impl_)};
}
// Semi-private
const impl_t& impl() const { return impl_; }
private:
friend transient_type;
array(impl_t impl)
: impl_(std::move(impl))
{}
array&& push_back_move(std::true_type, value_type value)
{
impl_.push_back_mut({}, std::move(value));
return std::move(*this);
}
array push_back_move(std::false_type, value_type value)
{
return impl_.push_back(std::move(value));
}
array&& set_move(std::true_type, size_type index, value_type value)
{
impl_.assoc_mut({}, index, std::move(value));
return std::move(*this);
}
array set_move(std::false_type, size_type index, value_type value)
{
return impl_.assoc(index, std::move(value));
}
template <typename Fn>
array&& update_move(std::true_type, size_type index, Fn&& fn)
{
impl_.update_mut({}, index, std::forward<Fn>(fn));
return std::move(*this);
}
template <typename Fn>
array update_move(std::false_type, size_type index, Fn&& fn)
{
return impl_.update(index, std::forward<Fn>(fn));
}
array&& take_move(std::true_type, size_type elems)
{
impl_.take_mut({}, elems);
return std::move(*this);
}
array take_move(std::false_type, size_type elems)
{
return impl_.take(elems);
}
impl_t impl_ = impl_t::empty();
};
} /* namespace immer */
|