about summary refs log tree commit diff
path: root/emacs/.emacs.d/wpc/series.el
blob: 55e97f27898486f83e00627cdb836f7cdbe1f417 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
;;; series.el --- Hosting common series of numbers -*- lexical-binding: t -*-
;; Author: William Carroll <wpcarro@gmail.com>

;;; Commentary:
;; Encoding number series as I learn about them.
;;
;; These are the following series I'm interested in supporting:
;; - Fibonacci
;; - Catalan numbers
;; - Figurate number series
;;   - Triangular
;;   - Square
;;   - Pentagonal
;;   - Hexagonal
;;   - Lazy-caterer
;; - Magic square
;; - Look-and-say

;;; Code:

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Dependencies
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(require 'number)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Library
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun series/range (beg end)
  "Create a list of numbers from `BEG' to `END'.
This is an inclusive number range."
  (if (< end beg)
      (list/reverse
       (number-sequence end beg))
    (number-sequence beg end)))

(defun series/fibonacci-number (i)
  "Return the number in the fibonacci series at `I'."
  (cond
   ((= 0 i) 0)
   ((= 1 i) 1)
   (t (+ (series/fibonacci-number (- i 1))
         (series/fibonacci-number (- i 2))))))

(defun series/fibonacci (n)
  "Return the first `N' numbers of the fibonaccci series starting at zero."
  (if (= 0 n)
      '()
    (list/reverse
     (list/cons (series/fibonacci-number (number/dec n))
                (list/reverse
                 (series/fibonacci (number/dec n)))))))

;; TODO: Consider memoization.
(defun series/triangular-number (i)
  "Return the number in the triangular series at `I'."
  (if (= 0 i)
      0
    (+ i (series/triangular-number (number/dec i)))))

;; TODO: Improve performance.
;; TODO: Consider creating a stream protocol with `stream/next' and implement
;; this using that.
(defun series/triangular (n)
  "Return the first `N' numbers of a triangular series starting at 0."
  (if (= 0 n)
      '()
    (list/reverse
     (list/cons (series/triangular-number (number/dec n))
                (list/reverse
                 (series/triangular (number/dec n)))))))

(defun series/catalan-number (i)
  "Return the catalan number in the series at `I'."
  (if (= 0 i)
      1
    (/ (number/factorial (* 2 i))
       (* (number/factorial (number/inc i))
          (number/factorial i)))))

(defun series/catalan (n)
  "Return the first `N' numbers in a catalan series."
  (->> (series/range 0 (number/dec n))
       (list/map #'series/catalan-number)))

(provide 'series)
;;; series.el ends here