1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
|
#!/usr/bin/python
import codecs
import json
import random
import socket
import struct
import threading
import time
from datetime import datetime
from zlib import adler32
from cryptography.hazmat.backends import default_backend
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
def gendevice(devtype, host, mac, name=None, cloud=None):
devices = {
sp1: [0],
sp2: [0x2711, # SP2
0x2719, 0x7919, 0x271a, 0x791a, # Honeywell SP2
0x2720, # SPMini
0x753e, # SP3
0x7D00, # OEM branded SP3
0x947a, 0x9479, # SP3S
0x2728, # SPMini2
0x2733, 0x273e, # OEM branded SPMini
0x7530, 0x7546, 0x7918, # OEM branded SPMini2
0x7D0D, # TMall OEM SPMini3
0x2736 # SPMiniPlus
],
rm: [0x2712, # RM2
0x2737, # RM Mini
0x273d, # RM Pro Phicomm
0x2783, # RM2 Home Plus
0x277c, # RM2 Home Plus GDT
0x272a, # RM2 Pro Plus
0x2787, # RM2 Pro Plus2
0x279d, # RM2 Pro Plus3
0x27a9, # RM2 Pro Plus_300
0x278b, # RM2 Pro Plus BL
0x2797, # RM2 Pro Plus HYC
0x27a1, # RM2 Pro Plus R1
0x27a6, # RM2 Pro PP
0x278f, # RM Mini Shate
0x27c2, # RM Mini 3
0x27d1, # new RM Mini3
0x27de # RM Mini 3 (C)
],
rm4: [0x51da, # RM4b
0x5f36, # RM Mini 3
0x6026, # RM4 Pro
0x610e, # RM4 Mini
0x610f, # RM4c
0x62bc, # RM4 Mini
0x62be # RM4c
],
a1: [0x2714], # A1
mp1: [0x4EB5, # MP1
0x4EF7 # Honyar oem mp1
],
hysen: [0x4EAD], # Hysen controller
S1C: [0x2722], # S1 (SmartOne Alarm Kit)
dooya: [0x4E4D], # Dooya DT360E (DOOYA_CURTAIN_V2)
bg1: [0x51E3], # BG Electrical Smart Power Socket
lb1 : [0x60c8] # RGB Smart Bulb
}
# Look for the class associated to devtype in devices
[device_class] = [dev for dev in devices if devtype in devices[dev]] or [None]
if device_class is None:
return device(host, mac, devtype, name=name, cloud=cloud)
return device_class(host, mac, devtype, name=name, cloud=cloud)
def discover(timeout=None, local_ip_address=None, discover_ip_address='255.255.255.255'):
if local_ip_address is None:
local_ip_address = socket.gethostbyname(socket.gethostname())
if local_ip_address.startswith('127.'):
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.connect(('8.8.8.8', 53)) # connecting to a UDP address doesn't send packets
local_ip_address = s.getsockname()[0]
address = local_ip_address.split('.')
cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
cs.bind((local_ip_address, 0))
port = cs.getsockname()[1]
starttime = time.time()
devices = []
timezone = int(time.timezone / -3600)
packet = bytearray(0x30)
year = datetime.now().year
if timezone < 0:
packet[0x08] = 0xff + timezone - 1
packet[0x09] = 0xff
packet[0x0a] = 0xff
packet[0x0b] = 0xff
else:
packet[0x08] = timezone
packet[0x09] = 0
packet[0x0a] = 0
packet[0x0b] = 0
packet[0x0c] = year & 0xff
packet[0x0d] = year >> 8
packet[0x0e] = datetime.now().minute
packet[0x0f] = datetime.now().hour
subyear = str(year)[2:]
packet[0x10] = int(subyear)
packet[0x11] = datetime.now().isoweekday()
packet[0x12] = datetime.now().day
packet[0x13] = datetime.now().month
packet[0x18] = int(address[0])
packet[0x19] = int(address[1])
packet[0x1a] = int(address[2])
packet[0x1b] = int(address[3])
packet[0x1c] = port & 0xff
packet[0x1d] = port >> 8
packet[0x26] = 6
checksum = adler32(packet, 0xbeaf) & 0xffff
packet[0x20] = checksum & 0xff
packet[0x21] = checksum >> 8
cs.sendto(packet, (discover_ip_address, 80))
if timeout is None:
response = cs.recvfrom(1024)
responsepacket = bytearray(response[0])
host = response[1]
devtype = responsepacket[0x34] | responsepacket[0x35] << 8
mac = responsepacket[0x3a:0x40]
name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8')
cloud = bool(responsepacket[-1])
device = gendevice(devtype, host, mac, name=name, cloud=cloud)
return device
while (time.time() - starttime) < timeout:
cs.settimeout(timeout - (time.time() - starttime))
try:
response = cs.recvfrom(1024)
except socket.timeout:
return devices
responsepacket = bytearray(response[0])
host = response[1]
devtype = responsepacket[0x34] | responsepacket[0x35] << 8
mac = responsepacket[0x3a:0x40]
name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8')
cloud = bool(responsepacket[-1])
device = gendevice(devtype, host, mac, name=name, cloud=cloud)
devices.append(device)
return devices
class device:
def __init__(self, host, mac, devtype, timeout=10, name=None, cloud=None):
self.host = host
self.mac = mac.encode() if isinstance(mac, str) else mac
self.devtype = devtype if devtype is not None else 0x272a
self.name = name
self.cloud = cloud
self.timeout = timeout
self.count = random.randrange(0xffff)
self.iv = bytearray(
[0x56, 0x2e, 0x17, 0x99, 0x6d, 0x09, 0x3d, 0x28, 0xdd, 0xb3, 0xba, 0x69, 0x5a, 0x2e, 0x6f, 0x58])
self.id = bytearray([0, 0, 0, 0])
self.cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
self.cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
self.cs.bind(('', 0))
self.type = "Unknown"
self.lock = threading.Lock()
self.aes = None
key = bytearray(
[0x09, 0x76, 0x28, 0x34, 0x3f, 0xe9, 0x9e, 0x23, 0x76, 0x5c, 0x15, 0x13, 0xac, 0xcf, 0x8b, 0x02])
self.update_aes(key)
def update_aes(self, key):
self.aes = Cipher(algorithms.AES(key), modes.CBC(self.iv),
backend=default_backend())
def encrypt(self, payload):
encryptor = self.aes.encryptor()
return encryptor.update(payload) + encryptor.finalize()
def decrypt(self, payload):
decryptor = self.aes.decryptor()
return decryptor.update(payload) + decryptor.finalize()
def auth(self):
payload = bytearray(0x50)
payload[0x04] = 0x31
payload[0x05] = 0x31
payload[0x06] = 0x31
payload[0x07] = 0x31
payload[0x08] = 0x31
payload[0x09] = 0x31
payload[0x0a] = 0x31
payload[0x0b] = 0x31
payload[0x0c] = 0x31
payload[0x0d] = 0x31
payload[0x0e] = 0x31
payload[0x0f] = 0x31
payload[0x10] = 0x31
payload[0x11] = 0x31
payload[0x12] = 0x31
payload[0x1e] = 0x01
payload[0x2d] = 0x01
payload[0x30] = ord('T')
payload[0x31] = ord('e')
payload[0x32] = ord('s')
payload[0x33] = ord('t')
payload[0x34] = ord(' ')
payload[0x35] = ord(' ')
payload[0x36] = ord('1')
response = self.send_packet(0x65, payload)
if any(response[0x22:0x24]):
return False
payload = self.decrypt(response[0x38:])
key = payload[0x04:0x14]
if len(key) % 16 != 0:
return False
self.id = payload[0x00:0x04]
self.update_aes(key)
return True
def get_type(self):
return self.type
def send_packet(self, command, payload):
self.count = (self.count + 1) & 0xffff
packet = bytearray(0x38)
packet[0x00] = 0x5a
packet[0x01] = 0xa5
packet[0x02] = 0xaa
packet[0x03] = 0x55
packet[0x04] = 0x5a
packet[0x05] = 0xa5
packet[0x06] = 0xaa
packet[0x07] = 0x55
packet[0x24] = self.devtype & 0xff
packet[0x25] = self.devtype >> 8
packet[0x26] = command
packet[0x28] = self.count & 0xff
packet[0x29] = self.count >> 8
packet[0x2a] = self.mac[0]
packet[0x2b] = self.mac[1]
packet[0x2c] = self.mac[2]
packet[0x2d] = self.mac[3]
packet[0x2e] = self.mac[4]
packet[0x2f] = self.mac[5]
packet[0x30] = self.id[0]
packet[0x31] = self.id[1]
packet[0x32] = self.id[2]
packet[0x33] = self.id[3]
# pad the payload for AES encryption
if payload:
payload += bytearray((16 - len(payload)) % 16)
checksum = adler32(payload, 0xbeaf) & 0xffff
packet[0x34] = checksum & 0xff
packet[0x35] = checksum >> 8
payload = self.encrypt(payload)
for i in range(len(payload)):
packet.append(payload[i])
checksum = adler32(packet, 0xbeaf) & 0xffff
packet[0x20] = checksum & 0xff
packet[0x21] = checksum >> 8
start_time = time.time()
with self.lock:
while True:
try:
self.cs.sendto(packet, self.host)
self.cs.settimeout(1)
response = self.cs.recvfrom(2048)
break
except socket.timeout:
if (time.time() - start_time) > self.timeout:
raise
return bytearray(response[0])
class mp1(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "MP1"
def set_power_mask(self, sid_mask, state):
"""Sets the power state of the smart power strip."""
packet = bytearray(16)
packet[0x00] = 0x0d
packet[0x02] = 0xa5
packet[0x03] = 0xa5
packet[0x04] = 0x5a
packet[0x05] = 0x5a
packet[0x06] = 0xb2 + ((sid_mask << 1) if state else sid_mask)
packet[0x07] = 0xc0
packet[0x08] = 0x02
packet[0x0a] = 0x03
packet[0x0d] = sid_mask
packet[0x0e] = sid_mask if state else 0
self.send_packet(0x6a, packet)
def set_power(self, sid, state):
"""Sets the power state of the smart power strip."""
sid_mask = 0x01 << (sid - 1)
return self.set_power_mask(sid_mask, state)
def check_power_raw(self):
"""Returns the power state of the smart power strip in raw format."""
packet = bytearray(16)
packet[0x00] = 0x0a
packet[0x02] = 0xa5
packet[0x03] = 0xa5
packet[0x04] = 0x5a
packet[0x05] = 0x5a
packet[0x06] = 0xae
packet[0x07] = 0xc0
packet[0x08] = 0x01
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
state = payload[0x0e]
else:
state = ord(payload[0x0e])
return state
def check_power(self):
"""Returns the power state of the smart power strip."""
state = self.check_power_raw()
if state is None:
return {'s1': None, 's2': None, 's3': None, 's4': None}
data = {}
data['s1'] = bool(state & 0x01)
data['s2'] = bool(state & 0x02)
data['s3'] = bool(state & 0x04)
data['s4'] = bool(state & 0x08)
return data
class bg1(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "BG1"
def get_state(self):
"""Get state of device.
Returns:
dict: Dictionary of current state
eg. `{"pwr":1,"pwr1":1,"pwr2":0,"maxworktime":60,"maxworktime1":60,"maxworktime2":0,"idcbrightness":50}`"""
packet = self._encode(1, b'{}')
response = self.send_packet(0x6a, packet)
return self._decode(response)
def set_state(self, pwr=None, pwr1=None, pwr2=None, maxworktime=None, maxworktime1=None, maxworktime2=None, idcbrightness=None):
data = {}
if pwr is not None:
data['pwr'] = int(bool(pwr))
if pwr1 is not None:
data['pwr1'] = int(bool(pwr1))
if pwr2 is not None:
data['pwr2'] = int(bool(pwr2))
if maxworktime is not None:
data['maxworktime'] = maxworktime
if maxworktime1 is not None:
data['maxworktime1'] = maxworktime1
if maxworktime2 is not None:
data['maxworktime2'] = maxworktime2
if idcbrightness is not None:
data['idcbrightness'] = idcbrightness
js = json.dumps(data).encode('utf8')
packet = self._encode(2, js)
response = self.send_packet(0x6a, packet)
return self._decode(response)
def _encode(self, flag, js):
# packet format is:
# 0x00-0x01 length
# 0x02-0x05 header
# 0x06-0x07 00
# 0x08 flag (1 for read or 2 write?)
# 0x09 unknown (0xb)
# 0x0a-0x0d length of json
# 0x0e- json data
packet = bytearray(14)
length = 4 + 2 + 2 + 4 + len(js)
struct.pack_into('<HHHHBBI', packet, 0, length, 0xa5a5, 0x5a5a, 0x0000, flag, 0x0b, len(js))
for i in range(len(js)):
packet.append(js[i])
checksum = adler32(packet[0x08:], 0xc0ad) & 0xffff
packet[0x06] = checksum & 0xff
packet[0x07] = checksum >> 8
return packet
def _decode(self, response):
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
js_len = struct.unpack_from('<I', payload, 0x0a)[0]
state = json.loads(payload[0x0e:0x0e+js_len])
return state
class sp1(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "SP1"
def set_power(self, state):
packet = bytearray(4)
packet[0] = state
self.send_packet(0x66, packet)
class sp2(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "SP2"
def set_power(self, state):
"""Sets the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 2
if self.check_nightlight():
packet[4] = 3 if state else 2
else:
packet[4] = 1 if state else 0
self.send_packet(0x6a, packet)
def set_nightlight(self, state):
"""Sets the night light state of the smart plug"""
packet = bytearray(16)
packet[0] = 2
if self.check_power():
packet[4] = 3 if state else 1
else:
packet[4] = 2 if state else 0
self.send_packet(0x6a, packet)
def check_power(self):
"""Returns the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
return bool(payload[0x4] == 1 or payload[0x4] == 3 or payload[0x4] == 0xFD)
return bool(ord(payload[0x4]) == 1 or ord(payload[0x4]) == 3 or ord(payload[0x4]) == 0xFD)
def check_nightlight(self):
"""Returns the power state of the smart plug."""
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
return bool(payload[0x4] == 2 or payload[0x4] == 3 or payload[0x4] == 0xFF)
return bool(ord(payload[0x4]) == 2 or ord(payload[0x4]) == 3 or ord(payload[0x4]) == 0xFF)
def get_energy(self):
packet = bytearray([8, 0, 254, 1, 5, 1, 0, 0, 0, 45])
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x7], int):
energy = int(hex(payload[0x07] * 256 + payload[0x06])[2:]) + int(hex(payload[0x05])[2:]) / 100.0
else:
energy = int(hex(ord(payload[0x07]) * 256 + ord(payload[0x06]))[2:]) + int(
hex(ord(payload[0x05]))[2:]) / 100.0
return energy
class a1(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "A1"
def check_sensors(self):
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
data = {}
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0
data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0
light = payload[0x8]
air_quality = payload[0x0a]
noise = payload[0xc]
else:
data['temperature'] = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
data['humidity'] = (ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0
light = ord(payload[0x8])
air_quality = ord(payload[0x0a])
noise = ord(payload[0xc])
if light == 0:
data['light'] = 'dark'
elif light == 1:
data['light'] = 'dim'
elif light == 2:
data['light'] = 'normal'
elif light == 3:
data['light'] = 'bright'
else:
data['light'] = 'unknown'
if air_quality == 0:
data['air_quality'] = 'excellent'
elif air_quality == 1:
data['air_quality'] = 'good'
elif air_quality == 2:
data['air_quality'] = 'normal'
elif air_quality == 3:
data['air_quality'] = 'bad'
else:
data['air_quality'] = 'unknown'
if noise == 0:
data['noise'] = 'quiet'
elif noise == 1:
data['noise'] = 'normal'
elif noise == 2:
data['noise'] = 'noisy'
else:
data['noise'] = 'unknown'
return data
def check_sensors_raw(self):
packet = bytearray(16)
packet[0] = 1
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
data = {}
payload = self.decrypt(bytes(response[0x38:]))
if isinstance(payload[0x4], int):
data['temperature'] = (payload[0x4] * 10 + payload[0x5]) / 10.0
data['humidity'] = (payload[0x6] * 10 + payload[0x7]) / 10.0
data['light'] = payload[0x8]
data['air_quality'] = payload[0x0a]
data['noise'] = payload[0xc]
else:
data['temperature'] = (ord(payload[0x4]) * 10 + ord(payload[0x5])) / 10.0
data['humidity'] = (ord(payload[0x6]) * 10 + ord(payload[0x7])) / 10.0
data['light'] = ord(payload[0x8])
data['air_quality'] = ord(payload[0x0a])
data['noise'] = ord(payload[0xc])
return data
class rm(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "RM2"
self._request_header = bytes()
self._code_sending_header = bytes()
def check_data(self):
packet = bytearray(self._request_header)
packet.append(0x04)
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
return payload[len(self._request_header) + 4:]
def send_data(self, data):
packet = bytearray(self._code_sending_header)
packet += bytes([0x02, 0x00, 0x00, 0x00])
packet += data
self.send_packet(0x6a, packet)
def enter_learning(self):
packet = bytearray(self._request_header)
packet.append(0x03)
self.send_packet(0x6a, packet)
def sweep_frequency(self):
packet = bytearray(self._request_header)
packet.append(0x19)
self.send_packet(0x6a, packet)
def cancel_sweep_frequency(self):
packet = bytearray(self._request_header)
packet.append(0x1e)
self.send_packet(0x6a, packet)
def check_frequency(self):
packet = bytearray(self._request_header)
packet.append(0x1a)
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
if payload[len(self._request_header) + 4] == 1:
return True
return False
def find_rf_packet(self):
packet = bytearray(self._request_header)
packet.append(0x1b)
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
if payload[len(self._request_header) + 4] == 1:
return True
return False
def _read_sensor(self, type, offset, divider):
packet = bytearray(self._request_header)
packet.append(type)
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return False
payload = self.decrypt(bytes(response[0x38:]))
value_pos = len(self._request_header) + offset
if isinstance(payload[value_pos], int):
value = (payload[value_pos] + payload[value_pos+1] / divider)
else:
value = (ord(payload[value_pos]) + ord(payload[value_pos+1]) / divider)
return value
def check_temperature(self):
return self._read_sensor( 0x01, 4, 10.0 )
class rm4(rm):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "RM4"
self._request_header = b'\x04\x00'
self._code_sending_header = b'\xd0\x00'
def check_temperature(self):
return self._read_sensor( 0x24, 4, 100.0 )
def check_humidity(self):
return self._read_sensor( 0x24, 6, 100.0 )
def check_sensors(self):
return {
'temperature': self.check_temperature(),
'humidity': self.check_humidity()
}
# For legacy compatibility - don't use this
class rm2(rm):
def __init__(self):
device.__init__(self, None, None, None)
def discover(self):
dev = discover()
self.host = dev.host
self.mac = dev.mac
class hysen(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "Hysen heating controller"
# Send a request
# input_payload should be a bytearray, usually 6 bytes, e.g. bytearray([0x01,0x06,0x00,0x02,0x10,0x00])
# Returns decrypted payload
# New behaviour: raises a ValueError if the device response indicates an error or CRC check fails
# The function prepends length (2 bytes) and appends CRC
def calculate_crc16(self, input_data):
from ctypes import c_ushort
crc16_tab = []
crc16_constant = 0xA001
for i in range(0, 256):
crc = c_ushort(i).value
for j in range(0, 8):
if (crc & 0x0001):
crc = c_ushort(crc >> 1).value ^ crc16_constant
else:
crc = c_ushort(crc >> 1).value
crc16_tab.append(hex(crc))
try:
is_string = isinstance(input_data, str)
is_bytes = isinstance(input_data, bytes)
if not is_string and not is_bytes:
raise Exception("Please provide a string or a byte sequence "
"as argument for calculation.")
crcValue = 0xffff
for c in input_data:
d = ord(c) if is_string else c
tmp = crcValue ^ d
rotated = c_ushort(crcValue >> 8).value
crcValue = rotated ^ int(crc16_tab[(tmp & 0x00ff)], 0)
return crcValue
except Exception as e:
print("EXCEPTION(calculate): {}".format(e))
def send_request(self, input_payload):
crc = calculate_crc16(bytes(input_payload))
# first byte is length, +2 for CRC16
request_payload = bytearray([len(input_payload) + 2, 0x00])
request_payload.extend(input_payload)
# append CRC
request_payload.append(crc & 0xFF)
request_payload.append((crc >> 8) & 0xFF)
# send to device
response = self.send_packet(0x6a, request_payload)
# check for error
err = response[0x22] | (response[0x23] << 8)
if err:
raise ValueError('broadlink_response_error', err)
response_payload = bytearray(self.decrypt(bytes(response[0x38:])))
# experimental check on CRC in response (first 2 bytes are len, and trailing bytes are crc)
response_payload_len = response_payload[0]
if response_payload_len + 2 > len(response_payload):
raise ValueError('hysen_response_error', 'first byte of response is not length')
crc = calculate_crc16(bytes(response_payload[2:response_payload_len]))
if (response_payload[response_payload_len] == crc & 0xFF) and (
response_payload[response_payload_len + 1] == (crc >> 8) & 0xFF):
return response_payload[2:response_payload_len]
raise ValueError('hysen_response_error', 'CRC check on response failed')
# Get current room temperature in degrees celsius
def get_temp(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08]))
return payload[0x05] / 2.0
# Get current external temperature in degrees celsius
def get_external_temp(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x08]))
return payload[18] / 2.0
# Get full status (including timer schedule)
def get_full_status(self):
payload = self.send_request(bytearray([0x01, 0x03, 0x00, 0x00, 0x00, 0x16]))
data = {}
data['remote_lock'] = payload[3] & 1
data['power'] = payload[4] & 1
data['active'] = (payload[4] >> 4) & 1
data['temp_manual'] = (payload[4] >> 6) & 1
data['room_temp'] = (payload[5] & 255) / 2.0
data['thermostat_temp'] = (payload[6] & 255) / 2.0
data['auto_mode'] = payload[7] & 15
data['loop_mode'] = (payload[7] >> 4) & 15
data['sensor'] = payload[8]
data['osv'] = payload[9]
data['dif'] = payload[10]
data['svh'] = payload[11]
data['svl'] = payload[12]
data['room_temp_adj'] = ((payload[13] << 8) + payload[14]) / 2.0
if data['room_temp_adj'] > 32767:
data['room_temp_adj'] = 32767 - data['room_temp_adj']
data['fre'] = payload[15]
data['poweron'] = payload[16]
data['unknown'] = payload[17]
data['external_temp'] = (payload[18] & 255) / 2.0
data['hour'] = payload[19]
data['min'] = payload[20]
data['sec'] = payload[21]
data['dayofweek'] = payload[22]
weekday = []
for i in range(0, 6):
weekday.append(
{'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0})
data['weekday'] = weekday
weekend = []
for i in range(6, 8):
weekend.append(
{'start_hour': payload[2 * i + 23], 'start_minute': payload[2 * i + 24], 'temp': payload[i + 39] / 2.0})
data['weekend'] = weekend
return data
# Change controller mode
# auto_mode = 1 for auto (scheduled/timed) mode, 0 for manual mode.
# Manual mode will activate last used temperature.
# In typical usage call set_temp to activate manual control and set temp.
# loop_mode refers to index in [ "12345,67", "123456,7", "1234567" ]
# E.g. loop_mode = 0 ("12345,67") means Saturday and Sunday follow the "weekend" schedule
# loop_mode = 2 ("1234567") means every day (including Saturday and Sunday) follows the "weekday" schedule
# The sensor command is currently experimental
def set_mode(self, auto_mode, loop_mode, sensor=0):
mode_byte = ((loop_mode + 1) << 4) + auto_mode
self.send_request(bytearray([0x01, 0x06, 0x00, 0x02, mode_byte, sensor]))
# Advanced settings
# Sensor mode (SEN) sensor = 0 for internal sensor, 1 for external sensor,
# 2 for internal control temperature, external limit temperature. Factory default: 0.
# Set temperature range for external sensor (OSV) osv = 5..99. Factory default: 42C
# Deadzone for floor temprature (dIF) dif = 1..9. Factory default: 2C
# Upper temperature limit for internal sensor (SVH) svh = 5..99. Factory default: 35C
# Lower temperature limit for internal sensor (SVL) svl = 5..99. Factory default: 5C
# Actual temperature calibration (AdJ) adj = -0.5. Prescision 0.1C
# Anti-freezing function (FrE) fre = 0 for anti-freezing function shut down,
# 1 for anti-freezing function open. Factory default: 0
# Power on memory (POn) poweron = 0 for power on memory off, 1 for power on memory on. Factory default: 0
def set_advanced(self, loop_mode, sensor, osv, dif, svh, svl, adj, fre, poweron):
input_payload = bytearray([0x01, 0x10, 0x00, 0x02, 0x00, 0x05, 0x0a, loop_mode, sensor, osv, dif, svh, svl,
(int(adj * 2) >> 8 & 0xff), (int(adj * 2) & 0xff), fre, poweron])
self.send_request(input_payload)
# For backwards compatibility only. Prefer calling set_mode directly.
# Note this function invokes loop_mode=0 and sensor=0.
def switch_to_auto(self):
self.set_mode(auto_mode=1, loop_mode=0)
def switch_to_manual(self):
self.set_mode(auto_mode=0, loop_mode=0)
# Set temperature for manual mode (also activates manual mode if currently in automatic)
def set_temp(self, temp):
self.send_request(bytearray([0x01, 0x06, 0x00, 0x01, 0x00, int(temp * 2)]))
# Set device on(1) or off(0), does not deactivate Wifi connectivity.
# Remote lock disables control by buttons on thermostat.
def set_power(self, power=1, remote_lock=0):
self.send_request(bytearray([0x01, 0x06, 0x00, 0x00, remote_lock, power]))
# set time on device
# n.b. day=1 is Monday, ..., day=7 is Sunday
def set_time(self, hour, minute, second, day):
self.send_request(bytearray([0x01, 0x10, 0x00, 0x08, 0x00, 0x02, 0x04, hour, minute, second, day]))
# Set timer schedule
# Format is the same as you get from get_full_status.
# weekday is a list (ordered) of 6 dicts like:
# {'start_hour':17, 'start_minute':30, 'temp': 22 }
# Each one specifies the thermostat temp that will become effective at start_hour:start_minute
# weekend is similar but only has 2 (e.g. switch on in morning and off in afternoon)
def set_schedule(self, weekday, weekend):
# Begin with some magic values ...
input_payload = bytearray([0x01, 0x10, 0x00, 0x0a, 0x00, 0x0c, 0x18])
# Now simply append times/temps
# weekday times
for i in range(0, 6):
input_payload.append(weekday[i]['start_hour'])
input_payload.append(weekday[i]['start_minute'])
# weekend times
for i in range(0, 2):
input_payload.append(weekend[i]['start_hour'])
input_payload.append(weekend[i]['start_minute'])
# weekday temperatures
for i in range(0, 6):
input_payload.append(int(weekday[i]['temp'] * 2))
# weekend temperatures
for i in range(0, 2):
input_payload.append(int(weekend[i]['temp'] * 2))
self.send_request(input_payload)
S1C_SENSORS_TYPES = {
0x31: 'Door Sensor', # 49 as hex
0x91: 'Key Fob', # 145 as hex, as serial on fob corpse
0x21: 'Motion Sensor' # 33 as hex
}
class S1C(device):
"""
Its VERY VERY VERY DIRTY IMPLEMENTATION of S1C
"""
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = 'S1C'
def get_sensors_status(self):
packet = bytearray(16)
packet[0] = 0x06 # 0x06 - get sensors info, 0x07 - probably add sensors
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
if not payload:
return None
count = payload[0x4]
sensors = payload[0x6:]
sensors_a = [bytearray(sensors[i * 83:(i + 1) * 83]) for i in range(len(sensors) // 83)]
sens_res = []
for sens in sensors_a:
status = ord(chr(sens[0]))
_name = str(bytes(sens[4:26]).decode())
_order = ord(chr(sens[1]))
_type = ord(chr(sens[3]))
_serial = bytes(codecs.encode(sens[26:30], "hex")).decode()
type_str = S1C_SENSORS_TYPES.get(_type, 'Unknown')
r = {
'status': status,
'name': _name.strip('\x00'),
'type': type_str,
'order': _order,
'serial': _serial,
}
if r['serial'] != '00000000':
sens_res.append(r)
result = {
'count': count,
'sensors': sens_res
}
return result
class dooya(device):
def __init__(self, *args, **kwargs):
device.__init__(self, *args, **kwargs)
self.type = "Dooya DT360E"
def _send(self, magic1, magic2):
packet = bytearray(16)
packet[0] = 0x09
packet[2] = 0xbb
packet[3] = magic1
packet[4] = magic2
packet[9] = 0xfa
packet[10] = 0x44
response = self.send_packet(0x6a, packet)
err = response[0x22] | (response[0x23] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
return ord(payload[4])
def open(self):
return self._send(0x01, 0x00)
def close(self):
return self._send(0x02, 0x00)
def stop(self):
return self._send(0x03, 0x00)
def get_percentage(self):
return self._send(0x06, 0x5d)
def set_percentage_and_wait(self, new_percentage):
current = self.get_percentage()
if current > new_percentage:
self.close()
while current is not None and current > new_percentage:
time.sleep(0.2)
current = self.get_percentage()
elif current < new_percentage:
self.open()
while current is not None and current < new_percentage:
time.sleep(0.2)
current = self.get_percentage()
self.stop()
class lb1(device):
state_dict = []
effect_map_dict = { 'lovely color' : 0,
'flashlight' : 1,
'lightning' : 2,
'color fading' : 3,
'color breathing' : 4,
'multicolor breathing' : 5,
'color jumping' : 6,
'multicolor jumping' : 7 }
def __init__(self, host, mac, devtype):
device.__init__(self, host, mac, devtype)
self.type = "SmartBulb"
def send_command(self,command, type = 'set'):
packet = bytearray(16+(int(len(command)/16) + 1)*16)
packet[0x02] = 0xa5
packet[0x03] = 0xa5
packet[0x04] = 0x5a
packet[0x05] = 0x5a
packet[0x08] = 0x02 if type == "set" else 0x01 # 0x01 => query, # 0x02 => set
packet[0x09] = 0x0b
packet[0x0a] = len(command)
packet[0x0e:] = map(ord, command)
checksum = adler32(packet, 0xbeaf) & 0xffff
packet[0x00] = (0x0c + len(command)) & 0xff
packet[0x06] = checksum & 0xff # Checksum 1 position
packet[0x07] = checksum >> 8 # Checksum 2 position
response = self.send_packet(0x6a, packet)
err = response[0x36] | (response[0x37] << 8)
if err != 0:
return None
payload = self.decrypt(bytes(response[0x38:]))
responseLength = int(payload[0x0a]) | (int(payload[0x0b]) << 8)
if responseLength > 0:
self.state_dict = json.loads(payload[0x0e:0x0e+responseLength])
def set_json(self, jsonstr):
reconvert = json.loads(jsonstr)
if 'bulb_sceneidx' in reconvert.keys():
reconvert['bulb_sceneidx'] = self.effect_map_dict.get(reconvert['bulb_sceneidx'], 255)
self.send_command(json.dumps(reconvert))
return json.dumps(self.state_dict)
def set_state(self, state):
cmd = '{"pwr":%d}' % (1 if state == "ON" or state == 1 else 0)
self.send_command(cmd)
def get_state(self):
cmd = "{}"
self.send_command(cmd)
return self.state_dict
# Setup a new Broadlink device via AP Mode. Review the README to see how to enter AP Mode.
# Only tested with Broadlink RM3 Mini (Blackbean)
def setup(ssid, password, security_mode):
# Security mode options are (0 - none, 1 = WEP, 2 = WPA1, 3 = WPA2, 4 = WPA1/2)
payload = bytearray(0x88)
payload[0x26] = 0x14 # This seems to always be set to 14
# Add the SSID to the payload
ssid_start = 68
ssid_length = 0
for letter in ssid:
payload[(ssid_start + ssid_length)] = ord(letter)
ssid_length += 1
# Add the WiFi password to the payload
pass_start = 100
pass_length = 0
for letter in password:
payload[(pass_start + pass_length)] = ord(letter)
pass_length += 1
payload[0x84] = ssid_length # Character length of SSID
payload[0x85] = pass_length # Character length of password
payload[0x86] = security_mode # Type of encryption (00 - none, 01 = WEP, 02 = WPA1, 03 = WPA2, 04 = WPA1/2)
checksum = adler32(payload, 0xbeaf) & 0xffff
payload[0x20] = checksum & 0xff # Checksum 1 position
payload[0x21] = checksum >> 8 # Checksum 2 position
sock = socket.socket(socket.AF_INET, # Internet
socket.SOCK_DGRAM) # UDP
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
sock.sendto(payload, ('255.255.255.255', 80))
|