about summary refs log tree commit diff
path: root/absl/types/span.h
blob: 0e26fd4ded177d9535972f8737332ea85f682b33 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// span.h
// -----------------------------------------------------------------------------
//
// This header file defines a `Span<T>` type for holding a view of an existing
// array of data. The `Span` object, much like the `absl::string_view` object,
// does not own such data itself. A span provides a lightweight way to pass
// around view of such data.
//
// Additionally, this header file defines `MakeSpan()` and `MakeConstSpan()`
// factory functions, for clearly creating spans of type `Span<T>` or read-only
// `Span<const T>` when such types may be difficult to identify due to issues
// with implicit conversion.
//
// The C++ standards committee currently has a proposal for a `std::span` type,
// (http://wg21.link/p0122), which is not yet part of the standard (though may
// become part of C++20). As of August 2017, the differences between
// `absl::Span` and this proposal are:
//    * `absl::Span` uses `size_t` for `size_type`
//    * `absl::Span` has no `operator()`
//    * `absl::Span` has no constructors for `std::unique_ptr` or
//      `std::shared_ptr`
//    * `absl::span` has the factory functions `MakeSpan()` and
//      `MakeConstSpan()`
//    * `absl::Span` has `front()` and `back()` methods
//    * bounds-checked access to `absl::Span` is accomplished with `at()`
//    * `absl::Span` has compiler-provided move and copy constructors and
//      assignment. This is due to them being specified as `constexpr`, but that
//      implies const in C++11.
//    * `absl::Span` has no `element_type` or `index_type` typedefs
//    * A read-only `absl::Span<const T>` can be implicitly constructed from an
//      initializer list.
//    * `absl::Span` has no `bytes()`, `size_bytes()`, `as_bytes()`, or
//      `as_mutable_bytes()` methods
//    * `absl::Span` has no static extent template parameter, nor constructors
//      which exist only because of the static extent parameter.
//    * `absl::Span` has an explicit mutable-reference constructor
//
// For more information, see the class comments below.
#ifndef ABSL_TYPES_SPAN_H_
#define ABSL_TYPES_SPAN_H_

#include <algorithm>
#include <cassert>
#include <cstddef>
#include <initializer_list>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>

#include "absl/algorithm/algorithm.h"
#include "absl/base/internal/throw_delegate.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/meta/type_traits.h"

namespace absl {

template <typename T>
class Span;

namespace span_internal {
// A constexpr min function
constexpr size_t Min(size_t a, size_t b) noexcept { return a < b ? a : b; }

// Wrappers for access to container data pointers.
template <typename C>
constexpr auto GetDataImpl(C& c, char) noexcept  // NOLINT(runtime/references)
    -> decltype(c.data()) {
  return c.data();
}

// Before C++17, std::string::data returns a const char* in all cases.
inline char* GetDataImpl(std::string& s,  // NOLINT(runtime/references)
                         int) noexcept {
  return &s[0];
}

template <typename C>
constexpr auto GetData(C& c) noexcept  // NOLINT(runtime/references)
    -> decltype(GetDataImpl(c, 0)) {
  return GetDataImpl(c, 0);
}

// Detection idioms for size() and data().
template <typename C>
using HasSize =
    std::is_integral<absl::decay_t<decltype(std::declval<C&>().size())>>;

// We want to enable conversion from vector<T*> to Span<const T* const> but
// disable conversion from vector<Derived> to Span<Base>. Here we use
// the fact that U** is convertible to Q* const* if and only if Q is the same
// type or a more cv-qualified version of U.  We also decay the result type of
// data() to avoid problems with classes which have a member function data()
// which returns a reference.
template <typename T, typename C>
using HasData =
    std::is_convertible<absl::decay_t<decltype(GetData(std::declval<C&>()))>*,
                        T* const*>;

// Extracts value type from a Container
template <typename C>
struct ElementType {
  using type = typename absl::remove_reference_t<C>::value_type;
};

template <typename T, size_t N>
struct ElementType<T (&)[N]> {
  using type = T;
};

template <typename C>
using ElementT = typename ElementType<C>::type;

template <typename T>
using EnableIfMutable =
    typename std::enable_if<!std::is_const<T>::value, int>::type;

template <typename T>
bool EqualImpl(Span<T> a, Span<T> b) {
  static_assert(std::is_const<T>::value, "");
  return absl::equal(a.begin(), a.end(), b.begin(), b.end());
}

template <typename T>
bool LessThanImpl(Span<T> a, Span<T> b) {
  static_assert(std::is_const<T>::value, "");
  return std::lexicographical_compare(a.begin(), a.end(), b.begin(), b.end());
}

// The `IsConvertible` classes here are needed because of the
// `std::is_convertible` bug in libcxx when compiled with GCC. This build
// configuration is used by Android NDK toolchain. Reference link:
// https://bugs.llvm.org/show_bug.cgi?id=27538.
template <typename From, typename To>
struct IsConvertibleHelper {
 private:
  static std::true_type test(To);
  static std::false_type test(...);

 public:
  using type = decltype(test(std::declval<From>()));
};

template <typename From, typename To>
struct IsConvertible : IsConvertibleHelper<From, To>::type {};

// TODO(zhangxy): replace `IsConvertible` with `std::is_convertible` once the
// older version of libcxx is not supported.
template <typename From, typename To>
using EnableIfConvertibleToSpanConst =
    typename std::enable_if<IsConvertible<From, Span<const To>>::value>::type;
}  // namespace span_internal

//------------------------------------------------------------------------------
// Span
//------------------------------------------------------------------------------
//
// A `Span` is an "array view" type for holding a view of a contiguous data
// array; the `Span` object does not and cannot own such data itself. A span
// provides an easy way to provide overloads for anything operating on
// contiguous sequences without needing to manage pointers and array lengths
// manually.

// A span is conceptually a pointer (ptr) and a length (size) into an already
// existing array of contiguous memory; the array it represents references the
// elements "ptr[0] .. ptr[size-1]". Passing a properly-constructed `Span`
// instead of raw pointers avoids many issues related to index out of bounds
// errors.
//
// Spans may also be constructed from containers holding contiguous sequences.
// Such containers must supply `data()` and `size() const` methods (e.g
// `std::vector<T>`, `absl::InlinedVector<T, N>`). All implicit conversions to
// `absl::Span` from such containers will create spans of type `const T`;
// spans which can mutate their values (of type `T`) must use explicit
// constructors.
//
// A `Span<T>` is somewhat analogous to an `absl::string_view`, but for an array
// of elements of type `T`. A user of `Span` must ensure that the data being
// pointed to outlives the `Span` itself.
//
// You can construct a `Span<T>` in several ways:
//
//   * Explicitly from a reference to a container type
//   * Explicitly from a pointer and size
//   * Implicitly from a container type (but only for spans of type `const T`)
//   * Using the `MakeSpan()` or `MakeConstSpan()` factory functions.
//
// Examples:
//
//   // Construct a Span explicitly from a container:
//   std::vector<int> v = {1, 2, 3, 4, 5};
//   auto span = absl::Span<const int>(v);
//
//   // Construct a Span explicitly from a C-style array:
//   int a[5] =  {1, 2, 3, 4, 5};
//   auto span = absl::Span<const int>(a);
//
//   // Construct a Span implicitly from a container
//   void MyRoutine(absl::Span<const int> a) {
//     ...
//   };
//   std::vector v = {1,2,3,4,5};
//   MyRoutine(v)                     // convert to Span<const T>
//
// Note that `Span` objects, in addition to requiring that the memory they
// point to remains alive, must also ensure that such memory does not get
// reallocated. Therefore, to avoid undefined behavior, containers with
// associated span views should not invoke operations that may reallocate memory
// (such as resizing) or invalidate iterarors into the container.
//
// One common use for a `Span` is when passing arguments to a routine that can
// accept a variety of array types (e.g. a `std::vector`, `absl::InlinedVector`,
// a C-style array, etc.). Instead of creating overloads for each case, you
// can simply specify a `Span` as the argument to such a routine.
//
// Example:
//
//   void MyRoutine(absl::Span<const int> a) {
//     ...
//   };
//
//   std::vector v = {1,2,3,4,5};
//   MyRoutine(v);
//
//   absl::InlinedVector<int, 4> my_inline_vector;
//   MyRoutine(my_inline_vector);
//
//   // Explicit constructor from pointer,size
//   int* my_array = new int[10];
//   MyRoutine(absl::Span<const int>(my_array, 10));
template <typename T>
class Span {
 private:
  // Used to determine whether a Span can be constructed from a container of
  // type C.
  template <typename C>
  using EnableIfConvertibleFrom =
      typename std::enable_if<span_internal::HasData<T, C>::value &&
                              span_internal::HasSize<C>::value>::type;

  // Used to SFINAE-enable a function when the slice elements are const.
  template <typename U>
  using EnableIfConstView =
      typename std::enable_if<std::is_const<T>::value, U>::type;

  // Used to SFINAE-enable a function when the slice elements are mutable.
  template <typename U>
  using EnableIfMutableView =
      typename std::enable_if<!std::is_const<T>::value, U>::type;

 public:
  using value_type = absl::remove_cv_t<T>;
  using pointer = T*;
  using const_pointer = const T*;
  using reference = T&;
  using const_reference = const T&;
  using iterator = pointer;
  using const_iterator = const_pointer;
  using reverse_iterator = std::reverse_iterator<iterator>;
  using const_reverse_iterator = std::reverse_iterator<const_iterator>;
  using size_type = size_t;
  using difference_type = ptrdiff_t;

  static const size_type npos = -1;

  constexpr Span() noexcept : Span(nullptr, 0) {}
  constexpr Span(pointer array, size_type length) noexcept
      : ptr_(array), len_(length) {}

  // Implicit conversion constructors
  template <size_t N>
  constexpr Span(T (&a)[N]) noexcept  // NOLINT(runtime/explicit)
      : Span(a, N) {}

  // Explicit reference constructor for a mutable `Span<T>` type
  template <typename V, typename = EnableIfConvertibleFrom<V>,
            typename = EnableIfMutableView<V>>
  explicit Span(V& v) noexcept  // NOLINT(runtime/references)
      : Span(span_internal::GetData(v), v.size()) {}

  // Implicit reference constructor for a read-only `Span<const T>` type
  template <typename V, typename = EnableIfConvertibleFrom<V>,
            typename = EnableIfConstView<V>>
  constexpr Span(const V& v) noexcept  // NOLINT(runtime/explicit)
      : Span(span_internal::GetData(v), v.size()) {}

  // Implicit constructor from an initializer list, making it possible to pass a
  // brace-enclosed initializer list to a function expecting a `Span`. Such
  // spans constructed from an initializer list must be of type `Span<const T>`.
  //
  //   void Process(absl::Span<const int> x);
  //   Process({1, 2, 3});
  //
  // Note that as always the array referenced by the span must outlive the span.
  // Since an initializer list constructor acts as if it is fed a temporary
  // array (cf. C++ standard [dcl.init.list]/5), it's safe to use this
  // constructor only when the `std::initializer_list` itself outlives the span.
  // In order to meet this requirement it's sufficient to ensure that neither
  // the span nor a copy of it is used outside of the expression in which it's
  // created:
  //
  //   // Assume that this function uses the array directly, not retaining any
  //   // copy of the span or pointer to any of its elements.
  //   void Process(absl::Span<const int> ints);
  //
  //   // Okay: the std::initializer_list<int> will reference a temporary array
  //   // that isn't destroyed until after the call to Process returns.
  //   Process({ 17, 19 });
  //
  //   // Not okay: the storage used by the std::initializer_list<int> is not
  //   // allowed to be referenced after the first line.
  //   absl::Span<const int> ints = { 17, 19 };
  //   Process(ints);
  //
  //   // Not okay for the same reason as above: even when the elements of the
  //   // initializer list expression are not temporaries the underlying array
  //   // is, so the initializer list must still outlive the span.
  //   const int foo = 17;
  //   absl::Span<const int> ints = { foo };
  //   Process(ints);
  //
  template <typename LazyT = T,
            typename = EnableIfConstView<LazyT>>
  Span(
      std::initializer_list<value_type> v) noexcept  // NOLINT(runtime/explicit)
      : Span(v.begin(), v.size()) {}

  // Accessors

  // Span::data()
  //
  // Returns a pointer to the span's underlying array of data (which is held
  // outside the span).
  constexpr pointer data() const noexcept { return ptr_; }

  // Span::size()
  //
  // Returns the size of this span.
  constexpr size_type size() const noexcept { return len_; }

  // Span::length()
  //
  // Returns the length (size) of this span.
  constexpr size_type length() const noexcept { return size(); }

  // Span::empty()
  //
  // Returns a boolean indicating whether or not this span is considered empty.
  constexpr bool empty() const noexcept { return size() == 0; }

  // Span::operator[]
  //
  // Returns a reference to the i'th element of this span.
  constexpr reference operator[](size_type i) const noexcept {
    // MSVC 2015 accepts this as constexpr, but not ptr_[i]
    return *(data() + i);
  }

  // Span::at()
  //
  // Returns a reference to the i'th element of this span.
  constexpr reference at(size_type i) const {
    return ABSL_PREDICT_FALSE(i < size())
               ? ptr_[i]
               : (base_internal::ThrowStdOutOfRange(
                      "Span::at failed bounds check"),
                  ptr_[i]);
  }

  // Span::front()
  //
  // Returns a reference to the first element of this span.
  reference front() const noexcept { return ABSL_ASSERT(size() > 0), ptr_[0]; }

  // Span::back()
  //
  // Returns a reference to the last element of this span.
  reference back() const noexcept {
    return ABSL_ASSERT(size() > 0), ptr_[size() - 1];
  }

  // Span::begin()
  //
  // Returns an iterator to the first element of this span.
  constexpr iterator begin() const noexcept { return ptr_; }

  // Span::cbegin()
  //
  // Returns a const iterator to the first element of this span.
  constexpr const_iterator cbegin() const noexcept { return ptr_; }

  // Span::end()
  //
  // Returns an iterator to the last element of this span.
  iterator end() const noexcept { return ptr_ + len_; }

  // Span::cend()
  //
  // Returns a const iterator to the last element of this span.
  const_iterator cend() const noexcept { return end(); }

  // Span::rbegin()
  //
  // Returns a reverse iterator starting at the last element of this span.
  reverse_iterator rbegin() const noexcept { return reverse_iterator(end()); }

  // Span::crbegin()
  //
  // Returns a reverse const iterator starting at the last element of this span.
  const_reverse_iterator crbegin() const noexcept { return rbegin(); }

  // Span::rend()
  //
  // Returns a reverse iterator starting at the first element of this span.
  reverse_iterator rend() const noexcept { return reverse_iterator(begin()); }

  // Span::crend()
  //
  // Returns a reverse iterator starting at the first element of this span.
  const_reverse_iterator crend() const noexcept { return rend(); }

  // Span mutations

  // Span::remove_prefix()
  //
  // Removes the first `n` elements from the span.
  void remove_prefix(size_type n) noexcept {
    assert(len_ >= n);
    ptr_ += n;
    len_ -= n;
  }

  // Span::remove_suffix()
  //
  // Removes the last `n` elements from the span.
  void remove_suffix(size_type n) noexcept {
    assert(len_ >= n);
    len_ -= n;
  }

  // Span::subspan()
  //
  // Returns a `Span` starting at element `pos` and of length `len`, with
  // proper bounds checking to ensure `len` does not exceed the ptr+size of the
  // original array. (Spans whose `len` would point past the end of the array
  // will throw a `std::out_of_range`.)
  constexpr Span subspan(size_type pos = 0, size_type len = npos) const {
    return (pos <= len_)
               ? Span(ptr_ + pos, span_internal::Min(len_ - pos, len))
               : (base_internal::ThrowStdOutOfRange("pos > size()"), Span());
  }

 private:
  pointer ptr_;
  size_type len_;
};

template <typename T>
const typename Span<T>::size_type Span<T>::npos;

// Span relationals

// Equality is compared element-by-element, while ordering is lexicographical.
// We provide three overloads for each operator to cover any combination on the
// left or right hand side of mutable Span<T>, read-only Span<const T>, and
// convertible-to-read-only Span<T>.
// TODO(zhangxy): Due to MSVC overload resolution bug with partial ordering
// template functions, 5 overloads per operator is needed as a workaround. We
// should update them to 3 overloads per operator using non-deduced context like
// string_view, i.e.
// - (Span<T>, Span<T>)
// - (Span<T>, non_deduced<Span<const T>>)
// - (non_deduced<Span<const T>>, Span<T>)

// operator==
template <typename T>
bool operator==(Span<T> a, Span<T> b) {
  return span_internal::EqualImpl<const T>(a, b);
}
template <typename T>
bool operator==(Span<const T> a, Span<T> b) {
  return span_internal::EqualImpl<const T>(a, b);
}
template <typename T>
bool operator==(Span<T> a, Span<const T> b) {
  return span_internal::EqualImpl<const T>(a, b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator==(const U& a, Span<T> b) {
  return span_internal::EqualImpl<const T>(a, b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator==(Span<T> a, const U& b) {
  return span_internal::EqualImpl<const T>(a, b);
}

// operator!=
template <typename T>
bool operator!=(Span<T> a, Span<T> b) {
  return !(a == b);
}
template <typename T>
bool operator!=(Span<const T> a, Span<T> b) {
  return !(a == b);
}
template <typename T>
bool operator!=(Span<T> a, Span<const T> b) {
  return !(a == b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator!=(const U& a, Span<T> b) {
  return !(a == b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator!=(Span<T> a, const U& b) {
  return !(a == b);
}

// operator<
template <typename T>
bool operator<(Span<T> a, Span<T> b) {
  return span_internal::LessThanImpl<const T>(a, b);
}
template <typename T>
bool operator<(Span<const T> a, Span<T> b) {
  return span_internal::LessThanImpl<const T>(a, b);
}
template <typename T>
bool operator<(Span<T> a, Span<const T> b) {
  return span_internal::LessThanImpl<const T>(a, b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator<(const U& a, Span<T> b) {
  return span_internal::LessThanImpl<const T>(a, b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator<(Span<T> a, const U& b) {
  return span_internal::LessThanImpl<const T>(a, b);
}

// operator>
template <typename T>
bool operator>(Span<T> a, Span<T> b) {
  return b < a;
}
template <typename T>
bool operator>(Span<const T> a, Span<T> b) {
  return b < a;
}
template <typename T>
bool operator>(Span<T> a, Span<const T> b) {
  return b < a;
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator>(const U& a, Span<T> b) {
  return b < a;
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator>(Span<T> a, const U& b) {
  return b < a;
}

// operator<=
template <typename T>
bool operator<=(Span<T> a, Span<T> b) {
  return !(b < a);
}
template <typename T>
bool operator<=(Span<const T> a, Span<T> b) {
  return !(b < a);
}
template <typename T>
bool operator<=(Span<T> a, Span<const T> b) {
  return !(b < a);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator<=(const U& a, Span<T> b) {
  return !(b < a);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator<=(Span<T> a, const U& b) {
  return !(b < a);
}

// operator>=
template <typename T>
bool operator>=(Span<T> a, Span<T> b) {
  return !(a < b);
}
template <typename T>
bool operator>=(Span<const T> a, Span<T> b) {
  return !(a < b);
}
template <typename T>
bool operator>=(Span<T> a, Span<const T> b) {
  return !(a < b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator>=(const U& a, Span<T> b) {
  return !(a < b);
}
template <typename T, typename U,
          typename = span_internal::EnableIfConvertibleToSpanConst<U, T>>
bool operator>=(Span<T> a, const U& b) {
  return !(a < b);
}

// MakeSpan()
//
// Constructs a mutable `Span<T>`, deducing `T` automatically from either a
// container or pointer+size.
//
// Because a read-only `Span<const T>` is implicitly constructed from container
// types regardless of whether the container itself is a const container,
// constructing mutable spans of type `Span<T>` from containers requires
// explicit constructors. The container-accepting version of `MakeSpan()`
// deduces the type of `T` by the constness of the pointer received from the
// container's `data()` member. Similarly, the pointer-accepting version returns
// a `Span<const T>` if `T` is `const`, and a `Span<T>` otherwise.
//
// Examples:
//
//   void MyRoutine(absl::Span<MyComplicatedType> a) {
//     ...
//   };
//   // my_vector is a container of non-const types
//   std::vector<MyComplicatedType> my_vector;
//
//   // Constructing a Span implicitly attempts to create a Span of type
//   // `Span<const T>`
//   MyRoutine(my_vector);                // error, type mismatch
//
//   // Explicitly constructing the Span is verbose
//   MyRoutine(absl::Span<MyComplicatedType>(my_vector);
//
//   // Use MakeSpan() to make an absl::Span<T>
//   MyRoutine(absl::MakeSpan(my_vector));
//
//   // Construct a span from an array ptr+size
//   absl::Span<T> my_span() {
//     return absl::MakeSpan(&array[0], num_elements_);
//   }
//
template <int&... ExplicitArgumentBarrier, typename T>
constexpr Span<T> MakeSpan(T* ptr, size_t size) noexcept {
  return Span<T>(ptr, size);
}

template <int&... ExplicitArgumentBarrier, typename T>
Span<T> MakeSpan(T* begin, T* end) noexcept {
  return ABSL_ASSERT(begin <= end), Span<T>(begin, end - begin);
}

template <int&... ExplicitArgumentBarrier, typename C>
constexpr auto MakeSpan(C& c) noexcept  // NOLINT(runtime/references)
    -> decltype(absl::MakeSpan(span_internal::GetData(c), c.size())) {
  return MakeSpan(span_internal::GetData(c), c.size());
}

template <int&... ExplicitArgumentBarrier, typename T, size_t N>
constexpr Span<T> MakeSpan(T (&array)[N]) noexcept {
  return Span<T>(array, N);
}

// MakeConstSpan()
//
// Constructs a `Span<const T>` as with `MakeSpan`, deducing `T` automatically,
// but always returning a `Span<const T>`.
//
// Examples:
//
//   void ProcessInts(absl::Span<const int> some_ints);
//
//   // Call with a pointer and size.
//   int array[3] = { 0, 0, 0 };
//   ProcessInts(absl::MakeConstSpan(&array[0], 3));
//
//   // Call with a [begin, end) pair.
//   ProcessInts(absl::MakeConstSpan(&array[0], &array[3]));
//
//   // Call directly with an array.
//   ProcessInts(absl::MakeConstSpan(array));
//
//   // Call with a contiguous container.
//   std::vector<int> some_ints = ...;
//   ProcessInts(absl::MakeConstSpan(some_ints));
//   ProcessInts(absl::MakeConstSpan(std::vector<int>{ 0, 0, 0 }));
//
template <int&... ExplicitArgumentBarrier, typename T>
constexpr Span<const T> MakeConstSpan(T* ptr, size_t size) noexcept {
  return Span<const T>(ptr, size);
}

template <int&... ExplicitArgumentBarrier, typename T>
Span<const T> MakeConstSpan(T* begin, T* end) noexcept {
  return ABSL_ASSERT(begin <= end), Span<const T>(begin, end - begin);
}

template <int&... ExplicitArgumentBarrier, typename C>
constexpr auto MakeConstSpan(const C& c) noexcept -> decltype(MakeSpan(c)) {
  return MakeSpan(c);
}

template <int&... ExplicitArgumentBarrier, typename T, size_t N>
constexpr Span<const T> MakeConstSpan(const T (&array)[N]) noexcept {
  return Span<const T>(array, N);
}
}  // namespace absl
#endif  // ABSL_TYPES_SPAN_H_